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Abstract: The intermittency and variability of permeated distributed generators (DGs) could cause
many critical security and economy risks to distribution systems. This paper applied a certain
mathematical distribution to imitate the output variability and uncertainty of DGs. Then, four
risk indices—EENS (expected energy not supplied), PLC (probability of load curtailment), EFLC
(expected frequency of load curtailment), and SI (severity index)—were established to reflect the
system risk level of the distribution system. For the certain mathematical distribution of the DGs’
output power, an improved PEM (point estimate method)-based method was proposed to calculate
these four system risk indices. In this improved PEM-based method, an enumeration method was
used to list the states of distribution systems, and an improved PEM was developed to deal with the
uncertainties of DGs, and the value of load curtailment in distribution systems was calculated by an
optimal power flow algorithm. Finally, the effectiveness and advantages of this proposed PEM-based
method for distribution system assessment were verified by testing a modified IEEE 30-bus system.
Simulation results have shown that this proposed PEM-based method has a high computational
accuracy and highly reduced computational costs compared with other risk assessment methods and
is very effective for risk assessments.

Keywords: distributed generators; risk assessment; distribution systems; improved PEM-based
method; optimal power flow algorithm

1. Introduction

The extensive penetration of renewable-type distributed generators (DGs) (e.g., wind and PV) in
distribution networks could bring many benefits to the grid, as they are alternative to conventional
generators [1,2]. However, the randomness of these DGs could cause some critical risks to security and
economy aspects of distribution systems, such as power quality and stability, fault level, and the value
of load curtailment, which impose challenges when planning distribution systems [3,4]. Therefore, it is
becoming increasingly important to assess the risks associated with the variability and uncertainty
of DGs.

In the past decade, many researches concentrated on how to assess the impacts of random DGs
on distribution systems. Many risk indices have been established in [5–8]. These papers aimed to
establish the risk indices by using the product of probability and severity, but ignored many significant
aspects such as the value of load curtailment. Many other risk indices have also been presented.
In [9], three risk indices—including LOLP (loss of load probability), EENS (expected energy not
supplied), and ECOST (expected customer interruption cost)—were used for reliability and price risk
assessment. In [10,11], the indices of SAIFI (system average interruption frequency index), SAIDI
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(system average interruption duration index), and EENS were used to assess the reliability of an active
distribution network. In [12], EENS, ENLC (expected number of load curtailment), and ADLC (average
duration of load curtailment) were used for power system reliability assessment. In [13–15], EENS,
PLC (probability of load curtailment), EFLC (expected frequency of load curtailment), and SI (severity
index) were presented as risk indices to assess the risk level of distribution system. In [9–15], more
considerations were concentrated on the operation risk level. Needless to say, EENS, PLC, EFLC, and
SI are the most important risk indices that reflect the high penetration of DGs in distribution system.

The output uncertainties of DGs can be dealt with by many uncertainty modeling
methods including probabilistic methods and other uncertainty methods [16]. Among the other
uncertainty methods, IGDT (information gap decision theory), robust optimization, and a hybrid
possibilistic–probabilistic approach were respectively introduced in [17–19]. However, the power
output of wind or photovoltaic (PV) generating units is generally subject to a certain mathematical
distribution [20,21]. Namely, the randomness of wind and PV can be imitated by some mathematical
formulas. Therefore, these other uncertainty methods mentioned are not applicable for the risk
assessment of a distribution system with the penetration of probabilistic DGs. For probabilistic DGs,
probabilistic methods—including the Monte Carlo method, scenario-based decision-making method,
and point estimate method—can be suitably applied. However, the Monte Carlo method (which was
introduced in [22,23]) and the scenario-based decision-making method (introduced in [24]) are all
computationally harder. Compared to the other probabilistic methods, the point estimate method
(PEM), described in [25–27], has highly reduced computational costs and is extremely applicable
for the probabilistic uncertainties of DGs. However, the accuracy of PEM is very low. Therefore,
the traditional PEM should be improved for application.

In this study, in order to reasonably assess the risks of distribution systems with the penetration
of DGs, a risk assessment method for distribution systems using an improved PEM-based
method—considering wind and photovoltaic power distribution—was proposed. Four risk indices
(EENS, PLC, EFLC, and SI) were applied to reflect the system risk level of distribution systems. Then,
for the certain mathematical distribution of the DGs’ output power, an improved PEM-based method
was proposed to calculate these four system risk indices. In this improved PEM-based method,
an enumeration method was used to list the states of the distribution system; an improved PEM was
proposed to deal with the uncertainties of DGs in the distribution system. Finally, the effectiveness
and advantage of this proposed PEM-based method for power system assessment were verified by
testing a modified IEEE 30-bus system, which showed that this proposed PEM-based method is very
effective for risk assessments in distribution systems and has a high computational accuracy and
largely reduced computational costs compared with other risk assessment methods. Simulation results
also demonstrate that total generation capacity, type, location, dispersion, and capacity proportion of
DGs have great influences on the system risk indices.

2. Distribution of Wind and Photovoltaic DGs

In distribution systems, the output of DGs contributes to whether the load can be supplied when
malfunction occurs. Therefore, the output randomness of DGs should be imitated by mathematical
formulas. In this paper, wind generators and photovoltaic generators are only considered as DGs.

2.1. Output Uncertainty of Wind Generators

Large amounts of research in the past decades have demonstrated that wind speed v is the
main stochastic factor that determines the output power of wind generators. Generally, a Weibull
distribution can be used to imitate the stochastic wind speed v [6]. The probability density function
(PDF) for wind speed v is described as (1):

fv(v) =
k
c
(

v
c
) exp[−(v

c
)

k
] (1)
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where k and c are, respectively, the shape parameter and the scale parameter of the wind speed
distribution. According to the historical data of wind speed v, these two indices can be estimated.

Based on the PDF of wind speed v, the output of a wind turbine generator can be acquired [28]:

Pw =


0,

PN
v−vin

vN−vin
,

PN ,
0,

v < vin
vin ≤ v < vN
vN ≤ v < vout

v ≥ vout

(2)

where Pw is the active output power, PN is the rated output power of wind turbine generator, vN is
rated wind speed, vin is cut-in wind speed, and vout is cut-out wind speed.

2.2. Output Uncertainty of Photovoltaic Generators

In most occasions, illumination intensity is thought to be the major factor that affects the active
output of photovoltaic generators. Because of cloud cover and other insolation-reducing phenomena,
the illumination intensity I can also be represented by a random variable. In general, illumination
intensity I approximately follows a beta distribution with shape indexes α and β [29]:

f (I) =
Γ(α + β)

Γ(α)Γ(β)
·
(

I
Imax

)α−1
·
(

1− I
Imax

)β−1
(3)

where Imax is the maximum intensity during a certain interval. The two shape indexes α and β can be
evaluated by the mean value and the variance of illumination intensity.

Many studies have showed that the active output of photovoltaic generators could be described
as [30]:

Pv = A · η · I (4)

where A is photoelectric array area and η is the photoelectric transformation efficiency. Combining
Equations (3) and (4), the PDF of photovoltaic generators’ output power Pv can be acquired:

f (Pv) =
Γ(α + β)

A · η · Γ(α)Γ(β)
·
(

Pv

Pmax
v

)α−1
·
(

1− Pv

Pmax
v

)β−1
(5)

where Pmax
v is the maximum value of Pv, which can be calculated by Pmax

v = A·η·Imax. According to (5),
Pv also follows beta distribution with shape indexes α and β.

3. Risk Assessment Indices and Method

3.1. Risk Assessment Indices

It should be noted that risk indices such as EENS, PLC, EFLC, and SI in [13–15] are more
considered with the penetration of DGs. Therefore, in this paper, these four risk indices were used to
reflect the system risk level of distribution systems. The calculation methods of these four risk indices
are illustrated by the following [13]:

(1) EENS (unit: MWh/y) represents the energy that is not supplied with the penetration of DGs
in the distribution system, which can be computed by (6):

EENS =
NL

∑
i=1

( ∑
s∈Qi

pT(s) · C0(s)) · Ti (6)

where i is the load level, NL is the set for load levels, Ti is the duration of i, and Qi is the set for
system state s at load level i. pT(s) and C0(s) are, respectively, the occurrence probability and total load
curtailment of system state s.
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(2) PLC can be calculated by:

PLC =
NL

∑
i=1

( ∑
s∈Qi

pT(s)) ·
Ti
T

(7)

(3) EFLC (unit: times/y) can be calculated by:

EFLC =
NL

∑
i=1

∑
s∈Qi

(
pT(s)

m(s)

∑
j=1

θj

)
· Ti

T
(8)

where T is total duration of Ti and m(s) is the set of component j at system state s. For component j, θj
represents transfer rate of component j, which is equal to repair rate µj in this paper.

(4) SI (unit: min/y) represents the equivalent duration under an entire system outage during peak
conditions, which can be calculated:

SI =
EENS× 60

L
(9)

where L is the value of peak load in 1 year.
In these four risk indices, SI is closely related to EENS. In order to calculate the index of EENS,

the total load curtailment at state s C0(s) should be calculated beforehand; this can be calculated by
optimal power flow (OPF), introduced in Section 3.3. For all of these four risk indices, the occurrence
probability of system state s pT(s) is needed. Therefore, an enumeration method is applied for system
state selection, which is introduced in Section 4.2.

3.2. Improved Point Estimate Methods

Point estimate method (PEM), which was firstly proposed by Hong in 1998, focuses on the
statistical information that is provided by the first few central moments of the input random
variables [25]. For each variable, K points are used, and K is a parameter named concentrations
and depends on the Hong’s method. These points and the function—which relates input and output
variables—are used to obtain the information about the uncertainty associated with problem output
random variables.

This paper relies on a 2m and 2m + 1 type scheme of PEM for computing the four risk
indices described in Section 3.1, which gives a good trade-off between the solution accuracy and
the computational efforts. m denotes the number of random variables, which are wind speed v or
illumination intensity I. The 2m type scheme of PEM uses the first two concentrations for each input
random variable (i.e., K = 2). For the 2m + 1 type scheme of PEM, K = 3.

Generally speaking, PEM is used to calculate the estimation value (Zj) of F(X) (Z = F(X) = F(X1, X2,
. . . , Xm)) when the stochastic numerical characteristics of variables X1, X2, . . . , Xm are known [26,27].
The point estimation principle can be depicted as:

E(Zj) ≈
m

∑
l=1

K

∑
k=1

ωl,kFj(µX1, · · · , xl,k, · · · , µXm) (10)

where j is the power of F(X), m is the number of DGs, µXi and ξi,k are, respectively, the expectation
and standard location of variable Xi, which represents illumination intensity I or wind speed v in this
paper. ωl,k represents the weight of Xi at xl,k, which can be calculated by (11):

xi,k = µXi + ξi,kσXi , i = 1, 2, · · · , m; k = 1, 2, · · · , 2K− 1 (11)

where σXi represents the variance of Xi. Standard location ξi,k and weight ωl,k could be determined
by (12):
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K
∑

k=1
ωi,k · ξi,k

j = λi,j, j = 1, · · · , 2K− 1

λi,j = E
[
(xi − µXi )

j
]
/σXi

j

K
∑

k=1
ωi,k = αi

(12)

In traditional PEM,
K
∑

k=1
ωi,k is set as 1

m , which means the impacts of Xi on Z are the same. This

assumption can simplify the calculation but may cause a big computational error as there are different

impacts of Xi on Z. In the improved PEM,
K
∑

k=1
ωi,k is set as αi, which can be determined by the analytic

hierarchy process (AHP) described in [31] or the contribution of Xi on Z. This equation appears to be
more reasonable, as it considers the different impacts of Xi on Z.

When K = 2 and ξi,3 = 0, the equation of (12) can be solved: ξi,1 =
λi,3

2 +

√
1
αi
+ (

λi,3
2 )

2
, ξi,2 =

λi,3
2 −

√
1
αi
+ (

λi,3
2 )

2

ωi,1 = − αi ·ξi,2
ξi,1−ξi,2

, ωi,2 =
αi ·ξi,1

ξi,1−ξi,2

(13)

The calculation results based on (13) is named 2m improved PEM. When K = 3 and ξi,3 = 0, 2m + 1
improved PEM can be constructed, and the solving results of Equation (12) are:

ξi,1 =
λi,3

2 +
√

λi,4 − 3
4 λi,3

2, ξi,2 =
λi,3

2 −
√

λi,4 − 3
4 λi,3

2

ωi,1 = 1
ξi,1(ξi,1−ξi,2)

, ωi,2 = − 1
ξi,2(ξi,1−ξi,2)

ωi,3 = αi − 1
λi,4−λi,3

2

(14)

The AHP is a rough estimation of weights and may be complex in operation. Therefore,
the contribution of Xi on Z which can be approximated by the capacity proportion of DG i was
used to calculate the value of αi.

According to Equations (10)–(14), the j-th raw moment of the output random vector Z can be
acquired. Then, the mean and the standard deviation of Z can be estimated by Equation (15):

µZ = E(Z)≈
m

∑
l=1

K

∑
k=1

ωl,kF(µX1, · · · , xl,k, · · · , µXm), σZ =
√

E(Z2)− µZ2 (15)

For each risk assessment index, the mean and the standard deviation can be respectively acquired
by Equation (15). For a variable with a certain mathematical distribution, the mean is the most probable
value of the variable [26]. Therefore, the mean of Z, µZ, is used as the estimation value of each risk
index in this paper.

3.3. Optimal Power Flow Algorithm in Distribution Systems

In distribution systems, load curtailment and generation dispatch are extensively applied to
enable the system to go from urgent state to normal state. In order to obtain the system security indices
in distribution systems, an optimal power flow (OPF) algorithm was presented in this paper to assess
the total load curtailment C0(s) in state s. Equations (16) and (17) were used in the optimal power
flow algorithm to simulate the curtailment and dispatch work and ensure the security of distribution
system [32]:

min f (∆PG1, · · · , ∆PGm, ∆PL1, · · · , ∆PLl) =
m

∑
k=1

CGk∆PGk +
l

∑
h=1

CLh∆PLh (16)
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s.t.
m
∑

k=1

∂Iij
∂PGk

∆PGk +
l

∑
h=1

∂Iij
∂PLh

∆PLh ≤ Imax
ij − I0

ij

m
∑

k=1

∂Ps
∂PGk

∆PGk +
l

∑
h=1

∂Ps
∂PLh

∆PLh = 0

Pmin
Gk − P0

Gk ≤ ∆PGk ≤ Pmax
Gk − P0

Gk

0 ≤ ∆PLh ≤ P0
Lh

1 ≤ k ≤ m, 1 ≤ h ≤ l, 1 ≤ i ≤ Nb, 1 ≤ j ≤ Nb

(17)

where l is the number of load buses in distribution systems. ∂z
∂x (z = Iij, Ps; x = PGk, PLh) are sensitivity

coefficients. Nb is the number of buses; ∆PGk and ∆PLh are respectively the power variations of
generator k and load h; CGK and CLh are respectively the control cost of generator k and load h; and Iij
is the current through overload line ij.

According to the results of this optimal power flow algorithm in distribution systems, the total
load curtailment in state s, C0(s), can be calculated by Equation (18):

C0(s) =
l

∑
h=1

∆PLh + ∆Pd (18)

where ∆Pd is the value of load curtailment caused by direct structure change of the distribution
system. In line with the values of C0(s) and pT(s), the risk assessment indices in Equations (6)–(9) can
be calculated.

4. Risk Assessment Procedure for Distribution Systems

4.1. Structure for Risk Assessment

To assess the four risk indices in distribution systems, PEM was used and the uncertainties
of distribution generators were sufficiently considered. The flowchart of the improved PEM-based
method for risk assessment of distribution systems is shown in Figure 1.

In Step A, active outputs of photovoltaic generators and wind generators are calculated according
to the stochastic wind speed v and illumination intensity I. In step B, random operation state s of the
distribution system was firstly selected. Then, optimal power flow algorithm in state s was applied to
compute the value of load curtailment based on the improved point estimate method. Then, the four
risk indices listed in Section 3.1 were computed until all the random operation states s are considered.
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4.2. Procedure for Calculating Risk Indices

In [13], according to DGs’ probability model, the indices of EENS, PLC, EFLC, and SI were
calculated by a proposed hierarchical risk assessment method, which is the combination of a Monte
Carlo simulation and an enumeration method. However, this proposed hierarchical method is
relatively complex in application. In [6], 2m + 1 PEM was utilized to assess the overload risk of
a transmission line. This 2m + 1 PEM has lower accuracy compared to a Monte Carlo simulation.
However, the computational burden of 2m + 1 PEM is greatly reduced. Consequently, the improved
PEM is applied to compute the four risk indices in this paper. For comparison, the calculation results
of the four risk indices based on the hierarchical risk assessment method in [13] were used as the exact
values, and the error in accuracy of the improved PEM-based method for risk assessment was analyzed.

For convenience, symbol G is used to represent any parameter of the four risk indices including
EENS, PLC, EFLC, and SI. Namely, to calculate the parameter G is to calculate these four risk indices.
The designed procedure for computing the symbol G based on PEM is summarized as Figure 2.
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In Figure 2, 2m and 2m + 1 improved-PEM were used, respectively. The output power of DG i is
calculated by Equation (2) or (4). Further, OPF was applied to calculate the value of C0(s), which can
be referred from Equations (16) and (17). The detailed procedure of the improved PEM-based method
for computing risk indices G is summarized as follows.

Step (1): Enumeration method is used to list the states of the distribution system. The occurrence
probability pT(s) in system state s can be calculated by Equation (19):

pT(s) =
N f

∏
i=1

λi
λi + µi i

Nn

∏
j=1

(1−
λj

λj + µj
) (19)

where Nf is the total number of failure components, Nn is the total number of normal components.
For component i, µi is the repair rate, λi is the outage rate, and these two parameters can be obtained
by statistics.

Step (2): Initialize and generate the constructed points of wind speed v as well as illumination
intensity I. Initialize the initial value of load curtailment calculation E(Z) = 0 and the initial value of
G = 0.

Step (3): Construct the parameters of improved point estimate method, which contains the
following substeps:

1) Select the input variable Xi (i = 1, 2, . . . , m). For wind generating unit i, Xi represents the
stochastic wind speed v; for photovoltaic generating units i, Xi represents the stochastic illumination
intensity I. m is the total number of wind generators and photovoltaic generators. Then, the output
power of DG i is calculated by Equation (2) or (4).

2) With the first central moments, standard locations ξi,k and the weights ωl,k for random variables
are computed by Equation (12) or (13). Then, the concentrations xi,k can be calculated by Equation (10).
Consequently, the point (µx1, µx2, . . . , xi,k, . . . , µxm) is constructed.

3) Based on the output of DG i, optimal power flow in state s is applied to compute the value of
C0(s) according to Equations (15) and (16).

4) Repeat sub-steps 2–3 until variable k reaches K. For 2m improved PEM, K = 2; for 2m + 1
improved PEM, K = 3.

5) Repeat sub-steps 2–4 until variable i reaches the total number m, and the calculation of G in
state s is completed.

Step (4): Repeat Steps (1)–(3) until all the states in distribution system are considered.
Step (5): Output the values of the four risk indices EENS, PLC, EFLC, and SI.

5. Case Studies

In order to verify the rationality of the proposed PEM-based method for risk assessment of a
distribution system, IEEE 30-bus system with DGs is applied, as shown in Figure 3. For all nodes,
the upper voltage bound is 1.06 p.u. and lower voltage bound is 0.94 p.u. in this paper [6]. All the cases
are achieved by MATLAB in an Advanced Micro Devices 64 Dual Core 3.3 GHz PC. For photovoltaic
farms, shape indexes α = 15.42, β = 4.3, A = 2.17 m, η = 13.53%. For wind farms, rated wind speed
vN = 15 m/s, cut-in wind speed vin = 4m/s, cut-out wind speed vout = 20 m/s, shape index k = 6.23,
and scale index c = 10.43.
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5.1. Calculation of Risk Indices Based on PEM

In this modified IEEE 30-bus system, two wind farms and two photovoltaic farms are connected
to nodes 7, 14, 24, and 29. The capacity proportion of these four farms is 20%:30%:20%:30%. However,
the ratio of DGs’ total generation capacity to the total load Kd varies from 0 to 1. With the known
capacity proportion of DGs, the value of αi can be obtained: α1 = 0.2, α2 = 0.3, α3 = 0.2, α4 = 0.3.

According to the designed procedure for computing risk indices in Figure 2 and the parameters
of DGs, the calculation results of EENS, PLC, EFLC, and SI, based on 2m and 2m + 1 improved PEM,
are listed in Tables 1 and 2, respectively.

Table 1. Calculation results of risk indices based on 2m improved PEM.

Kd
2m PEM

EENS (MWh/y) PLC EFLC (Times/y) SI (min/y)

0 3151.2 62,247 × 10−7 2.4899 66.716
0.2 2382.5 59,981 × 10−7 2.3992 50.441
0.4 1945.7 53,176 × 10−7 2.1285 41.193
0.6 1744.4 48,635 × 10−7 1.9454 36.932
0.8 1619.1 47,516 × 10−7 1.9006 34.279
1 1580.3 45,243 × 10−7 1.8097 33.457

Kd: generation capacity; EENS: expected energy not supplied; PLC: probability of load curtailment; EFLC: expected
frequency of load curtailment; SI: severity index.

Table 2. Calculation results of risk indices based on 2m + 1 improved PEM.

Kd
2m + 1 PEM

EENS (MWh/y) PLC EFLC (Times/y) SI (min/y)

0 3156.7 62,293 × 10−7 2.4917 66.832
0.2 2385.4 60,033 × 10−7 2.4013 50.502
0.4 1948.2 53,212 × 10−7 2.1285 41.246
0.6 1747.3 48,687 × 10−7 1.9475 36.993
0.8 1621.8 47,551 × 10−7 1.9020 34.336
1 1582.5 45,285 × 10−7 1.8114 33.504

As can be seen from Tables 1 and 2, with the increase of total generation capacity Kd, all of these
risk indices decrease gradually. When the generation capacity Kd = 0, which means that DGs are not
permeated, the value of EENS is about 3156.7 MWh/year. However, EENS decreases by nearly a half
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and drops to about 1582.5 MWh/year when the generation capacity Kd rises to 1. Analogously, the
value of PLC decreases from about 0.0062293 to 0.0045285 when generation capacity Kd rises from 0
to 1.

The variation tendency of SI is consistent with the variation tendency of EENS since the index
of SI is calculated by EENS, which is shown in Section 3.1. Similarly, the variation tendency of EFLC
is consistent with the variation tendency of PLC. In addition, the calculation results of risk indices
based on 2m improved PEM are very close with the calculation results of risk indices based on 2m + 1
improved PEM.

From Tables 1 and 2, EENS and SI decrease smoothly with the increment of generation capacity Kd.
In addition, the slope of EENS and SI decreases with the growth of generation capacity Kd. Therefore,
the decreasing trend of EENS and SI is not as tangible as before, decreasingly when generation capacity
Kd increases.

As shown in Tables 1 and 2, the decrease of EENS, PLC, ELIC, and SI slows when generation
capacity Kd increases to about 0.6. Namely, a large value of Kd that promotes the decrease of risk
indices of distribution systems is not significantly remarkable. However, the consumption of wind
and photovoltaic energy becomes an increasing problem with the increasing generation capacity Kd.
It is with reluctance that too much wind and photovoltaic power is abandoned in distribution systems.
Therefore, it is not necessary to increase the value of Kd to a certain large degree.

5.2. Deviation and Computational Cost Comparison

In order to illustrate the effectiveness of this improved PEM-based method for risk assessment in
distribution systems, the calculation results of EENS, PLC, EFLC, and SI are shown in Table 3.

Table 3. Calculation results of risk indices based on hierarchical risk assessment method.

Kd
Hierarchical Method

EENS (MWh/y) PLC EFLC (Times/y) SI (min/y)

0 3178.5 62,434 × 10−7 2.4974 67.293
0.2 2406.6 60,164 × 10−7 2.4066 50.95
0.4 1963.8 53,353 × 10−7 2.1341 41.577
0.6 1759.5 48,812 × 10−7 1.9525 37.251
0.8 1634.6 47,677 × 10−7 1.9071 34.608
1 1589.2 45,407 × 10−7 1.8163 33.646

Comparing the calculation results of risk indices in Tables 1 and 2 with Table 3, it can be seen that
they are very close in value. However, the calculation results of these improved PEM-based methods
are all less than that of the hierarchical risk assessment method since PEM is an order approximation,
which ignores the higher-order terms. Besides, the calculation results of 2m + 1 improved PEM are
closer to the exact value than the calculation results of 2m improved PEM, as 2m improved PEM is a
third-order approximation but 2m + 1 improved PEM is a fourth-order approximation, in fact.

According to the analysis in Section 3.1, the variation tendency of SI is consistent with the variation
tendency of EENS, and the variation tendency of EFLC is consistent with the variation tendency of
PLC. Therefore, the deviation comparison of EENS and PLC are only needed to be analyzed, which
are shown in Figures 4 and 5.

In Figures 4 and 5, errors δ1 and δ2 are respectively calculated by comparing the results of EENS
and PLC in Tables 1 and 2 with Table 3. As can be seen from Figures 4 and 5, the maximum value of
computational error δ1 is about 0.99% and the maximum value of computational error δ2 is about 0.37%.
The computational errors δ1 and δ2 are all less than 1%, which greatly verifies the effectiveness of this
improved PEM-based method for risk assessment of distribution systems. Also, the computational
error δ2 of PLC is less than the computational error δ1 of EENS. This is because optimal power flow
algorithm (based on Equations (15) and (16)) is used in the calculation procedure for EENS.
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Compared with hierarchical risk assessment method—which is a combination of the Monte Carlo
method and enumeration method—in fact, the computational burden of this PEM-based method is
greatly reduced. When generation capacity Kd = 0.5, the computational costs of risk indices are as
listed in Table 4.

Sustainability 2017, 9, 491  11 of 14 

method is greatly reduced. When generation capacity Kd = 0.5, the computational costs of risk 
indices are as listed in Table 4. 

 
Figure 4. The computational error δ1 of EENS in pace with Kd. 

 

Figure 5. The computational error δ2 of PLC in pace with Kd. 

Table 4. Calculation results of risk indices based on hierarchical risk assessment method. 

Risk Indices 
The Computational Costs of Risk Indices(s) 

2m Improved PEM 2m + 1 Improved PEM Hierarchical Method 
EENS 25.845 27.742 67.293 
PLC 1.985 2.031 5.950 

EFLC 2.157 2.192 6.107 
SI 25.845 27.742 67.293 

As can be seen from Table 4, the computational costs of this improved PEM-based method for 
risk assessment in distribution systems are much less than the computational costs of the 
hierarchical method. For EENS, the computational costs of 2m improved PEM and 2m + 1 improved 
PEM are 25.845 s and 27.742 s, respectively, but the computational cost of the hierarchical method is 
67.293 s. This is because the Monte Carlo method, with many computational hurdles, is used in the 
hierarchical method. On the contrary, only a few numerical operations are needed in the improved 
PEM. The calculation of risk indices has to be evaluated only K times for each input variable, which 
is stochastic wind speed v or stochastic illumination intensity I at the K points. 

In addition, the computational costs of 2m + 1 improved PEM-based method are almost the 
same compared to 2m improved PEM-based method, as the only difference between these two 

Figure 4. The computational error δ1 of EENS in pace with Kd.

Sustainability 2017, 9, 491  11 of 14 

method is greatly reduced. When generation capacity Kd = 0.5, the computational costs of risk 
indices are as listed in Table 4. 

 
Figure 4. The computational error δ1 of EENS in pace with Kd. 

 

Figure 5. The computational error δ2 of PLC in pace with Kd. 

Table 4. Calculation results of risk indices based on hierarchical risk assessment method. 

Risk Indices 
The Computational Costs of Risk Indices(s) 

2m Improved PEM 2m + 1 Improved PEM Hierarchical Method 
EENS 25.845 27.742 67.293 
PLC 1.985 2.031 5.950 

EFLC 2.157 2.192 6.107 
SI 25.845 27.742 67.293 

As can be seen from Table 4, the computational costs of this improved PEM-based method for 
risk assessment in distribution systems are much less than the computational costs of the 
hierarchical method. For EENS, the computational costs of 2m improved PEM and 2m + 1 improved 
PEM are 25.845 s and 27.742 s, respectively, but the computational cost of the hierarchical method is 
67.293 s. This is because the Monte Carlo method, with many computational hurdles, is used in the 
hierarchical method. On the contrary, only a few numerical operations are needed in the improved 
PEM. The calculation of risk indices has to be evaluated only K times for each input variable, which 
is stochastic wind speed v or stochastic illumination intensity I at the K points. 

In addition, the computational costs of 2m + 1 improved PEM-based method are almost the 
same compared to 2m improved PEM-based method, as the only difference between these two 

Figure 5. The computational error δ2 of PLC in pace with Kd.

Table 4. Calculation results of risk indices based on hierarchical risk assessment method.

Risk Indices
The Computational Costs of Risk Indices(s)

2m Improved PEM 2m + 1 Improved PEM Hierarchical Method

EENS 25.845 27.742 67.293
PLC 1.985 2.031 5.950

EFLC 2.157 2.192 6.107
SI 25.845 27.742 67.293

As can be seen from Table 4, the computational costs of this improved PEM-based method for
risk assessment in distribution systems are much less than the computational costs of the hierarchical
method. For EENS, the computational costs of 2m improved PEM and 2m + 1 improved PEM are 25.845
s and 27.742 s, respectively, but the computational cost of the hierarchical method is 67.293 s. This is
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because the Monte Carlo method, with many computational hurdles, is used in the hierarchical method.
On the contrary, only a few numerical operations are needed in the improved PEM. The calculation of
risk indices has to be evaluated only K times for each input variable, which is stochastic wind speed v
or stochastic illumination intensity I at the K points.

In addition, the computational costs of 2m + 1 improved PEM-based method are almost the same
compared to 2m improved PEM-based method, as the only difference between these two methods
are a few numerical operations. These simulations have demonstrated that the improved PEM-based
method has high accuracy and highly reduced computational costs, therefore, it is extremely applicable
for risk assessment of distribution systems.

5.3. Influence of DGs on System Risk

Many researches have shown that many other aspects such as type, location, dispersion, and
capacity proportion of DGs have great influences on the system risk indices. In this part, the influences
of these aspects are analyzed.

In Section 5.1, two wind farms and two photovoltaic farms are connected to nodes 7, 14, 24, and
29. Suppose that four wind generating units are respectively connected to nodes 7, 14, 24, and 29 and
their capacity proportion is still 20%:30%:20%:30%. This case is named case 1 in this paper. According
to the developed 2m + 1 improved PEM-based method for risk assessment in Figure 2, the four system
risk indices of EENS, PLC, EFLC, and SI can be acquired when generation capacity Kd = 0.2, which can
be seen in Table 5.

Table 5. Calculation results of risk indices in case 1.

Kd
2m + 1 Improved PEM

EENS (MWh/y) PLC EFLC (Times/y) SI (min/y)

0.2 2131.7 56,823 × 10−7 2.2729 45.131

As can be seen from Table 5, the index of EENS decreases from 2385.4 MWh/y to 2131.7 MWh/y
and the values of other indices are also cut down distinctly. Therefore, for DGs’ type, wind farms’
power support is better than that of photovoltaic farms. These results reflect that the randomness of
the output power of photovoltaic farms is even bigger than the active output power of wind farms.

To illustrate the influence of DGs’ location, suppose that two wind farms and two photovoltaic
farms are respectively connected to nodes 3, 14, 19, and 30 in this part, and their capacity proportion is
still 20%:30%:20%:30%. This case is named case 2 in this paper. Likewise, the calculation results of
system risk indices based on 2m + 1 improved PEM, when generation capacity Kd = 0.2, are outlined
in Table 6.

Table 6. Calculation results of risk indices in case 2.

Kd
2m + 1 Improved PEM

EENS (MWh/y) PLC EFLC (Times/y) SI (min/y)

0.2 2193.6 57,232 × 10−7 2.2893 46.442

Comparing the calculation results of Table 6 with Table 2, it is observed that the index of EENS
decreases from 2385.4 MWh/y to 2193.6 MWh/y and the values of other indices are also cut down
distinctly. This comparison shows that the locations of nodes 3, 14, 19, and 30 are more suitable for
optimal siting of DGs than nodes 7, 14, 24, and 29. However, these locations may be not the most
optimal siting for DGs, and how to ascertain the optimal siting of DGs is worth further study.

To illustrate the influence of DG dispersion, suppose that three wind farms and three photovoltaic
farms are respectively connected to nodes 3, 7, 14, 24, 29, and 30 in this part, and their capacity
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proportion is 15%:15%:20%:15%:15%:20%. This case is named case 3 in this paper and the calculation
results of system risk indices are outlined in Table 7.

Table 7. Calculation results of risk indices in case 3.

Kd
2m + 1 Improved PEM

EENS (MWh/y) PLC EFLC (Times/y) SI (min/y)

0.2 2058.4 55,785 × 10−7 2.2314 43.579

In case 3, the total proportion of wind farms and photovoltaic farms is still 50%:50% but the
dispersion degree of DGs in case 3 is enhanced. The results in Tables 2 and 7 show that system risk
indices decrease along with dispersion degree increment. Therefore, when installed, DGs should be as
highly dispersed as possible for the optimal siting of DGs for application.

The influence of DGs’ capacity proportion reflects the influence of DGs’ type on system risk
indices. As wind farms’ power support is better than that of photovoltaic farms, the values of system
risk indices are cut down when the wind generating units’ capacity proportion is increased.

These test results illustrate that appropriate DGs’ siting and sizing have great influences on the
system risk indices. For the sizing of DGs, system risk indices increase along with the DG’s capacity,
however, the corresponding investment costs will increase. For the appropriate siting of DGs, different
locations may suit different types of DGs, and DGs’ dispersion can decrease the value of system
risk indices.

6. Conclusions

DGs connected to a distribution system could cause some critical risks to distribution systems
from security and economy aspects. In order to reasonably assess the risks of distribution systems
with penetrating DGs, four risk indices—EENS, PLC, EFLC, and SI—were used in this paper to reflect
the system risk level in distribution systems. The output uncertainties of DGs were depicted by
some certain mathematical distributions. Then, an improved PEM-based method was proposed to
calculate these four system risk indices. In this improved PEM-based method, enumeration method
was used to list the states of distribution systems, and an improved PEM was presented to deal with
the uncertainties of DGs.

Test results of case studies have shown that this proposed PEM-based method is highly effective
for assessing the risk of a distribution system with DGs, as it has a high computational accuracy and
highly reduced computational costs compared with other risk assessment methods. Simulation results
also demonstrate that total generation capacity, type, location, dispersion, and capacity proportion
of DGs have great influences on the system risk indices. The determining method of appropriate
DGs’ siting and sizing, considering the operation risk of a distribution system with DGs, is worthy of
further research.
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