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Abstract: Social media is valuable in propagating information during disasters for its timely and
available characteristics nowadays, and assists in making decisions when tagged with locations.
Considering the ambiguity and inaccuracy in some social data, additional authoritative data are
needed for important verification. However, current works often fail to leverage both social and
authoritative data and, on most occasions, the data are used in disaster analysis after the fact.
Moreover, current works organize the data from the perspective of the spatial location, but not from
the perspective of the disaster, making it difficult to dynamically analyze the disaster. All of the
disaster-related data around the affected locations need to be retrieved. To solve these limitations, this
study develops a geo-event-based geospatial information service (GEGIS) framework and proceeded
as follows: (1) a geo-event-related ontology was constructed to provide a uniform semantic basis
for the system; (2) geo-events and attributes were extracted from the web using a natural language
process (NLP) and used in the semantic similarity match of the geospatial resources; and (3) a
geospatial information service prototype system was designed and implemented for automatically
retrieving and organizing geo-event-related geospatial resources. A case study of a typhoon hazard is
analyzed here within the GEGIS and shows that the system would be effective when typhoons occur.
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1. Introduction

Recent disasters have drawn attention to the vulnerability of human populations and
infrastructure, and the extremely high cost of recovering from the damage they have caused [1].
Information needs to be immediately propagated to inform people of the severe impacts of the disaster,
such as the damage, injury, and loss of life. Social media, such as Twitter or Flickr, with their timely
and available information-delivering capabilities, can be useful for exchanging messages in such
situations. Millions of social data are generated to support diverse activities during all stages of
disaster management [2]. In order to achieve the benefits of social data, some projects and systems
have been designed and implemented on disaster awareness and assessment [3–6]. Although progress
is satisfying, some challenges still exist: the lack of a capability to leverage the authoritative (derived
from the authority agencies) and social data to support timely and accurate information delivery
during an emergency is still a problem; moreover, the geospatial data are generally organized from
the perspective of the spatial location, making it difficult to dynamically analyze the actual disaster.
All disaster-related data around the affected locations need to be retrieved.
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A disaster can generally be considered a geo-event, which is a natural or social phenomenon taking
place on the Earth’s surface with definite spatiotemporal attributes (e.g., a hazard event, a military
exercise, or a terrorist attack happening at some location and lasting for some time). However, most
people are concerned with natural disasters, e.g., typhoons, floods, and earthquakes. Once a geo-event
is detected, a mechanism should be triggered to retrieve and organize both authoritative and social
data; thus, users, such as scientists and the general public, could use the results for their own purposes.

Applying social data to situational awareness and disaster management when the data are
geo-referenced (e.g., location, place names) has become a growing research area [7–9], which is a
must for aiding in the understanding and interpretation of the collected data [2]. However, finding
meaningful information from unstructured social data for analysis is still challenging [7]. Assisted by
the NLP and semantic web technologies, social data can be interpreted and used in disaster mapping
to make disaster assessments [10–12].

Detecting disasters implied in the social data is the primary task for further analysis and
management of disasters. Social data generally contains meaningless and event-irrelevant messages
that weaken the detection performance to a certain degree [13]. In order to discover valuable
information from the social data, machine learning algorithms are mostly adopted. Thus, detection
approaches can be divided into supervised and unsupervised approaches. Common supervised
approaches, such as support vector machine (SVM) [14] and naïve Bayes [15], are often based on the
established corpus, which contains samples of specific event types [16]. Meanwhile, unsupervised
approaches mostly rely on clustering approaches to discover topics from messages, such as latent
Dirichlet allocation (LDA) [17,18] and the graph-based approach [19]. Considering the fact that disaster
types are defined in advance, disaster detection involves determining the event type of each message.
In this case, supervised approaches are more suitable. However, a mechanism is still needed to retrieve
and organize the corresponding data for disaster analysis and management after detection.

Academic research into disaster management has largely focused on the application of social
data to disaster response in recent years [20]. One important factor of the social data is the ability to
provide more timely observations; the public can act as an early warning system for disasters [5,21–23].
Meanwhile, for the characteristics in each stage of a disaster (e.g., before, during, and after disasters),
different standards should be proposed to improve situational awareness and damage assessment.
For instance, Chae et al. [7] analyzed public behavior responses from social media. Deng et al. [9]
proposed an index model to improve situational awareness and damage assessments.

Taking advantages of data mining technologies, some implicit relations can be achieved and
analyzed to reduce the influence of a disaster. Some secondary disasters could thereby be avoided.
For instance, Albuquerque et al. [24] presented an approach to enhance the identification of relevant
messages from social media, relaying relations between social data and the geographic features of
disasters. Bakillah [25] used a cluster algorithm with semantic similarity to process complex social
graphs extracted from Twitter, and discussed correlations between clustering patterns of people and
hazard regions.

Moreover, some situational awareness and management systems have been developed to collect
useful geo-referenced social data to provide information to the public and support crisis management
in recent years [26], such as MicroMappers [3], CrisisTracker [27], LITMUS [28], Petajakarta [5], and
EAIMS [29]. However, these systems are generally focused on one kind of disaster and trigger the
corresponding data organizing from the perspective of spatial location, but they have failed to leverage
authoritative data and dynamically respond to other disaster types, thus limiting their usage.

On the other hand, more work could be done when combined with the authoritative data to
enhance the disaster situational awareness and management [4,30–32], such as forest fires [33], flood
risks [32], and air pollution [34]. Generally, most authoritative data are derived from authority
agencies, e.g., NOAA (National Oceanic and Atmospheric Administration) and USGS (United States
Geological Survey), and contain many categories, such as hydrology, meteorology, and oceanography.
Therefore, they are often regarded as credible resources for scientific research, but challenges still exist
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in providing timely information and analysis results of the occurring disaster. However, for the timely
and available characteristics of the social data, the weakness can be reduced by the supplement of
social data in disaster management [32,35].

Dorn et al. [36] analyzed the effectiveness of orthophotos, LiDAR data, official land use data,
OpenStreetMap data, and CORINE Land Cover data in flood simulations, and confirmed the usability
of crowdsourced data. Jongman et al. [6] utilized satellite observations of water coverage and
flood-related social media to support rapid disaster response, and suggested their usage in early
disaster warning.

However, these studies are mainly focused on the verification of social data assisted by
authoritative data, and the social data are almost collected in a static form that cannot be fitted
to the dynamic combination of the data to deliver timely and accurate messages to the public when a
disaster occurs.

To solve the limitations mentioned in the previous paragraphs, this study presents a
geo-event-based geospatial information service (GEGIS) framework and constructs an ontology to
support geo-event recognition and geospatial resource retrieval. This ontology implements almost
automatic processing and thematic organization of geospatial resources. An SVM algorithm is utilized
to calculate the thematic probability, which is the likelihood of a message crawled from social media
to the specific topic, and determines its category. Then, named entity recognition (NER) technology,
which is a subtask of information extraction that seeks to locate and classify named entities in text into
predefined categories, is utilized to recognize the geo-event and its attributes in the message. Moreover,
an ontology-based semantic match algorithm is presented to implement geospatial resource retrieval
and organization. To verify the feasibility and effectiveness of the framework, a geospatial information
service prototype system was designed and implemented. The system can automatically retrieve
and organize the geo-event-related geospatial resources, depending on attributes of the geo-event.
The main contribution of the study involves the following aspects:

(1) We leverage the authoritative and social data to provide timely and accurate geo-event-related
resources.

(2) We present an approach from the perspective of the geo-event, which means each geo-event
will contain a series of related, topical, classified data based on the established ontology, and the
spatial extent of the event will cover all of the impact regions. Therefore, the dynamic analysis of
the event and effective response to the event change can be easily achieved.

The remainder of the study is organized as follows: Section 2 presents the GEGIS and addresses
the approach to implement the framework based on the ontology; implementation of the approach
and result analysis are described in Section 3, and a typhoon hazard case study is illustrated; Section 4
provides a discussion of the work; and, finally, Section 5 presents conclusions and suggestions for
future work.

2. GEGIS Framework

To implement the GEGIS, we regard the ontology as a key component and integrate the
technologies of NLP, NER, and the semantic web into a unified framework (Figure 1). The GEGIS
mainly contains three modules: the social data service module, which can monitor, crawl, and classify
social data, from which structured information is achieved; the geospatial service module, which can
monitor and crawl geographical information services from the web; and the service manager module,
which can retrieve and organize geospatial resources.
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GEGIS processes are briefly described as follows:

(1) Social media is monitored and crawled by a web crawler every five minutes from Sina Weibo [37],
which is a popular social media site similar to Twitter in China, and records normal life in words
or pictures. Each message with its published time and location (if they exist) is recorded in a
text file.

(2) Assisted by a predefined classification corpus, the thematic probability distribution of the message
is calculated using an SVM to determine its corresponding category. Then, NPL tools and regexes
are used to extract the geo-event with its attributes from the message. Finally, approaches are
adopted to exclude unreliable and redundant data, as is discussed in Section 2.2.

(3) The geographical information services are monitored, and their metadata are crawled and
stored, mainly using the GetCapabilities function. The metadata contains some descriptions and
parameters of the service, such as the description and the spatial extent of the layer.

(4) Based on the ontology, geo-event-related resources are retrieved by calculating the semantic
similarity of extracted attributes from messages, as is discussed in Section 2.3.

(5) The latest geo-event, with its corresponding geospatial resources, is delivered to users and shown
at the top rank.

There are, mainly, three aspects in the GEGIS framework: ontology construction, text processing,
and semantic matching. These are discussed, respectively, in the following sections.

2.1. Constructing Ontology

The ontology is the semantic foundation supporting retrieval and organization of related
geospatial resources, and a key part of the GEGIS. The ontology is constructed using Protégé
Editor, which was designed and implemented by Stanford University. To maximize reuse of domain
terminology, a unified domain concept set is constructed with the aid of maritime domain terminology
from the Semantic Web For Earth and Environmental Terminology [38]. Natural disaster classification
terminology provided by the national government [39] is used as the geo-event-related terminology
(Figure 2a). Meanwhile, a Chinese place name database is constructed to provide basic place names.
A geo-event related ontology is thereby constructed.
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Figure 2a shows a fragment of the ontology, mainly referring to natural hazards, and Figure 2b
shows a sublevel ontology on the typhoon (hurricane). The top ontology is the abstraction of all
concepts and contains two parts: one is the natural hazard event, and the other is the event impact.
The natural hazard events can be divided into five subclasses: MeteorologicalHydrologicalHazard,
OceanicHazard, GeologicalEarthquakeHazard, BiologicalHazard, and EcologicalHazard. Each
subclass can be further divided, such as into typhoon, landslide, and flood. Each event has several
attributes: the hasInduce property is used to establish relationships between different events, such as
landslides and rainstorms caused by a typhoon; the hasDataTheme property is used to establish
relationships between events and resource themes, such as the correlation between a typhoon
hazard and wind field data. The event impacts can be divided into four subclasses: FacilityImpact,
IndividualImpact, CommercialImpact, and ResidentialImpact. For example, typhoons can induce
economic loss. Assisted by the ontology, the retrieval and thematic organization of geospatial resources
can be achieved.
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2.2. Processing Text

Text processing uses NLP technology to convert unstructured text into structured text, which can
be recognized and processed by a computer. The procedure contains three stages: text classification,
extraction, and verification.

2.2.1. Text Classification

For messages crawled from the web, identifying a geo-event implicit in the message is an essential
premise for implementing content extraction, resource retrieval, and organization. Generally, a message
cannot exceed 140 words; thus, sentences in the message often concisely express the specific purpose.
However, a large proportion of messages are irrelevant to geo-events, although some of them are
geo-referenced. In order to identify useful information from crawled messages, a text classification
algorithm should be adopted. We used an SVM, which is a popular supervised learning algorithm
that can be utilized to classify the text using a training dataset in the corpus. An SVM generally uses
a kernel function to map the original data to a high-dimensional space where linear classification of
two types of data can be conducted. Moreover, a corpus containing classified texts are established to
support the classification. Assisted by LibSVM [40], classification of a geo-event can be achieved and
is discussed in Section 3.

2.2.2. Text Extraction

After text classifying, a further process is necessary to extract useful information from a message,
e.g., time, location, and geo-event type. In most cases, a geo-event is just simply mentioned in the
message without any other words to describe the disaster. Therefore, important information, such as
impact scope and level, could not be obtained from these messages, and a useful message about the
disaster should contain words that are helpful for situational awareness and assessment, e.g., power
failure and road flooding.

Generally, words in a message are partitioned by using a natural language processing and
information retrieval (NLPIR) [41] package, and the geo-event and locations are then extracted by
using regexes, which are mostly dependent on sentence structure after using NLPIR. Therefore, the
geo-event with its name, time, location, and spatial relation is extracted. For instance, an original
typhoon-related message after text partitioning is shown as follows:

“今今今 年年年/t第第第1/m号号号/q台台台 风风风/n“/wyz尼尼尼 伯伯伯 特特特/nrf ”/wyy（（（/wkz台台台 风风风/n级级级/q）））/wky，，，/wd今今今
天天天/t00时时时/t中中中心心心/n位位位于于于/v北北北纬纬纬/b23.3/m度度度/qv, /wd东东东经经经/b119.7/m度度度/qv, /wd...” (Translation:
The centre of No.1 Nepal Typhoon (typhoon level) is 23.3◦N, 119.7◦E at zero o’clock . . . ),

where the original words are shown in bold, and the italic words are the identifications of parts
of speeches predefined in NLPIR, i.e., noun (/n), verb (/v), time word (/t), numeral word (/m),
punctuation (/wyz, /wyy, /wkz, /wky, and /wd), quantifier (/q and /qv), and distinguishing words
(/b). In this case, for an identified geo-event type, its name can be extracted by using regex “台
风/n([4̆e00-9̆fa52̆01c2̆01d]+)/wyz[4̆E00-9̆FA5]+/nrf([4̆e00-9̆fa52̆01c2̆01d]+)/wyy,” and the location can
be extracted by using “[4̆e00-9̆fa5]+/b([0-9]+[.]*[0-9]*)/m[4̆e00-9̆fa5]/qv”. Since a simple gazetteer in
the NLPIR package can be modified by the developer, the place name will be extracted directly if a
word is identified as a location word. For a message containing a geo-event without any location, if a
published location exists, it will be used as a place name, or it will be excluded.

Other factors, such as time and spatial relations, are also extracted by using regexes. For the near
real-time requirement of the system, time words are required to be in the same time interval. Therefore,
time words, including the published time and the extracted time, are used. The extracted time from
the message is identified first, and the published time will only be used if the extracted time does not
exist. Then, the identified time is judged to exclude the messages outside the required time. As for
the spatial relation, for instance, original words expressing spatial relations after text partitioning are
as follows:
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“东东东南南南/f方方方向向向/n40/m公公公里里里/q” (Translation: 40 km southeast)

Thus, the regex can be expressed as “[4̆e00-9̆fa5]+/f[4̆e00-9̆fa5]+/n[0–9]+/m[4̆e00-9̆fa5]+/q”.
Moreover, the impact words of the geo-event are extracted by using a keyword matching algorithm
based on the established ontology. Finally, the text is stored in the database with extracted attributes,
such as location, time, event name, and impacts.

2.2.3. Text Verification

Reliability and authenticity issues are the single greatest challenge for the use of social
media [42,43]. Since ambiguous, inaccurate, or confused expressions in the messages published
by non-professional users about the disaster exist, poor information quality exists such that a message
cannot be fully leveraged by scientists and decision-makers. Therefore, some approaches are adopted
to reduce problematic messages.

For the data accumulated in a time interval, the geo-event with the maximum frequency will be
selected, and the problematic data will then be processed.

Data redundancy, which is mostly caused by reposting messages, often exists in the accumulated
data, reducing the usefulness of the data. Therefore, the study introduced an information fingerprint
algorithm [44] to reduce the data redundancy. Another challenge lying in the verification is the
ambiguous nature of the geo-event name. On some occasions, different names indicate the same
geo-event, which is often caused by non-uniform naming between different government agencies,
such as Tropical Storm Mekkhala, named Amang in the Philippines (2015). In this case, an approach
combines the geographic approach and similarity approach to determine the similarity of the geo-event.
Historical data stored in the database are retrieved using Lucene [45] under the condition of the
geo-event names, and the similarity of historical traces and impact regions in the same time interval are
calculated. The similarity mainly depends on the overlapping area of the two regions. If the calculation
scores are similar, the names will be considered as the same geo-event.

However, two types of errors should be further noticed, i.e., false positives and false negatives,
which, respectively, express a rumor of an event and an absence of information about the existence of
an event [1]. For a false positive, the location of the geo-event is used as an important factor to exclude
some errors, based on the hypothesis that an event location should not exceed the impact region of the
event in the specific time interval. Then, the authoritative social data around the suspicious location,
mainly from government agencies and credible users, are used to verify the data quality based on
the similarity match of the keywords in the messages using an ontology. The false positive error
will, thereby, be reduced. Nonetheless, for a false negative, effective non-artificial approaches are still
lacking in the current work, and an interactive interface will be added in the future to improve the
credibility of the system.

After those processes, words representing the time, location, and geo-event are used to build
triples, i.e., query = (geo-event, time, location). In order to simplify the semantic similarity matching,
location is set to the minimum bounding box, which is a minimum rectangle containing all of the
places extracted from related documents in the time interval based on the ontology, and time just
means the time interval, which contains the start time and end time. Moreover, spatial relation is only
reserved for the authoritative document, and is assisted in the location expression of the geo-event.
The usage of triples in the semantic similarity matching to retrieve related geospatial resources will be
presented in the next section.

2.3. Semantic Similarity Matching

After the extraction of the geo-event with its spatiotemporal attributes, related geospatial resources
(both authoritative and social data) will be retrieved by using a semantic similarity matching algorithm
based on the ontology to measure the degree of semantic similarity between them. Semantic similarity
matching is generally composed of thematic similarity, spatial similarity, and temporal similarity
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matching, each of which is calculated via the ontology and is given a certain weight in the result.
Finally, the semantic similarity is the weighted sum of results.

2.3.1. Thematic Similarity

Thematic similarity is for matching the data topic words by querying hasDataTheme property of
the geo-event (query condition) to that mentioned in the related description of service metadata (target)
based on the ontology, and is mainly determined by the distance between two concepts in the ontology.
Many research works have treated semantic similarity and discussed it within a perspective of ontology
concepts and their relationships [46–49]. The ontology is usually represented by a directed graph. Each
concept is represented as a node in the graph, and the hierarchical relationship between two adjacent
concepts is represented as an edge connecting two adjacent nodes in the graph. The thematic similarity
calculation can be considered the shortest path of edges between two nodes, i.e., semantic distance.

Considering the directional property of the graph, the positive and negative semantic distances
of two adjacent concepts with a parent–child relationship should be different. For example, Figure 3
shows a fragment of a data theme in the ontology. The distance from “SST” to “OceanTemperature”
should be shorter than the distance from “OceanTemperature” to “SST”. Consequently, when the
retrieval condition is “OceanTemperature,” the node labeled “OceanTemperature,” with its child nodes
and direct parent node, should both be used to match the condition. However, for the service matched
with “OceanHydrology,” its similarity score should be less than that of the service matched with “SST,”
because a user is more inclined to accept the retrieval of the SST-related service.
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To address the difference between two concepts in the ontology, weights are assigned according
to their relationship. Then, a semantic distance weight table (Table 1), proposed by Ge [50], is utilized.

Table 1. Weight table.

p g s b

Φ 0 2 3 7
p 0 2 3 7
g 2 4 3.5 9
s 3 3.5 6 10
b 7 9 10 14

In the table, g means the edge from the child node to the parent node, s means the edge from the
parent node to the child node, p means the edge connects two synonymous nodes, b means the binary
relation to express the complicated semantic relationship between the two concepts, and Φ means
no-operation and is only used with other single variables to determine the weight in a single operation.
Moreover, the row calculation is first, followed by that of the column. A multi-operation is composed
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of several single operations: the first two operations are regarded as continuous operations and the
weight is chosen in the corresponding cell, while the rest are simply regarded as single operations.
To address this calculation, the concepts in Figure 3 are used as an example: for the distance from
“SST” to “OceanSalinity,” the operation is like g > g > s (SST > OceanTemperature > OceanHydrology
> OceanSalinity), and the weight is 7. However, the weights shown in the table are mainly empirical
values according to the paths and directions along the edges between two nodes [50], so further
consideration is required. The equation of semantic distance can be expressed as follows:

Dist(vi, vj) =
n

∑
k=1

wk × (
Nvi + Nvj

Nvi + Nvj+2× NLCA
) (1)

where ∑n
k=1 wk indicates the weighted sum of the shortest distance between nodes vi and vj, as is

referred in the previous paragraph, and Nvi and Nvj, respectively, express the weighted distance from
nodes vi or vj to their lowest joint ancestor node. NLCA is the weighted distance from the lowest joint
ancestor node to the root node.

Semantic distance is the foundation of the thematic similarity calculation, and is inversely
proportional to the semantic similarity, and can be expressed as follows:

sim(vi, vj) =
1

Dist(vi, vj) + 1
(2)

where Dist(vi, vj) is obtained from Equation (1).
The final thematic similarity equation is

themeSim =
∑N

i=1 simi

N
(N > 0) (3)

where N is the number of matched items, and simi is the thematic similarity of each item.

2.3.2. Spatial Similarity

The spatial property of the geo-event can be expressed as a spatial extent or a place name. A place
name is generally associated with its spatial location. By relating the spatial property of the geo-event
(query condition) with the spatial extent of the service (target), the service meeting the query condition
will be retrieved [51]. To simplify calculations of spatial similarity between query conditions and
the target, a bounding box is utilized. Consequently, a transformation may be needed to convert the
place name to its spatial extent, i.e., a minimum bounding box. Therefore, the spatial similarity can be
achieved by using spatial extents of query condition and target, and is expressed as follows:

spatialSim(A, B) =
area(A ∩ B)

area(A)
(4)

where A is the query condition, B is the target, and A∩B is the overlap area of A and B. The spatial
similarity is obtained from the ratio of overlap area to the area of A.

2.3.3. Temporal Similarity

The temporal property of the service determines the timeliness of the geographical information
service. For the same geo-event, the dynamic change can be observed according to the time sequence
of the related services, and knowledge of the geo-event can be analyzed.

The temporal similarity calculation can be classified into time point and time period calculations.
The former can be converted to a period calculation by setting the start time as the same as the end time.
To unify time granularity, all time formats are converted to a standard time format, i.e., “yyyy-MM-dd
HH:mm:ss,” where y indicates the year, M the month, d the day, H the hour, m the minute, and s
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the second. Then, the time period calculation is determined by using the temporal property of the
geo-event (query condition) and the service (target), and can be expressed as

timeSim(t, T) =
duration(t ∩ T)

duration(t)
(5)

where t is the query condition, T the target, and t ∩ T is the overlap time between the query condition
and target. The temporal similarity is obtained from the ratio of temporal overlap to the query
condition.

2.3.4. Final Semantic Similarity

The final semantic similarity calculation is the weighted sum of the thematic, spatial, and temporal
similarities, and can be expressed as follows:

sum = w1 × themeSim + w2 × spatialSim + w3 × timeSim (6)

where w1, w2, and w3, respectively, express weights of the thematic, spatial, and temporal similarities,
and their sum equals 1. themeSim is the result of the thematic similarity, spatialSim, that of the spatial
similarity, and timeSim, that of the temporal similarity. In order to assign a proper weight to each
part, an approach proposed by Andrade [52] is adopted. Each weight is calculated using the Pearson
correlation coefficient based on the training set, which contains result samples of weights from several
spatial queries. We set w1 = 0.4, w2 = 0.3, and w3 = 0.3, which indicate that the result is focused on
the thematic similarity. Therefore, results delivered to users are ranked according to the score each
service obtains.

2.3.5. Case Study for Semantic Similarity Matching

In order to further elaborate the procedures in the semantic similarity matching, an example is
illustrated. For a typhoon-related message accumulated in a time interval, its content is as follows:

“我不说话，今天那么大风，然后热搜我只看见广州停电，我大茂名无话可说！#彩虹台
风# 2015-10-04 23:53”(Translation: I would say nothing for the strong wind. But when I
searched on the web, I only saw power off in Guangzhou, what about Maoming? #Rainbow
Typhoon# published time: 2015-10-04 23:53).

After processing the sentence, locations (“Guangzhou” and “Maoming”) and time (“2015-10-04
23:53”) were extracted. Meanwhile, other messages in the time interval were also processed. The
spatial extent in this time interval could be expressed as a minimum bounding box containing all of
the related locations, i.e., (xmin = 104.50, ymin = 19.92, xmax = 116.70, ymax = 26.53), and the time
interval was (2015-10-04 23:50–2015-10-04 23:55).

For the typhoon event, its related thematic data concepts were achieved by retrieving the
hasDataTheme property based on the ontology, e.g., Wind, Rainfall and Temperature. Meanwhile,
a geospatial service on the rainfall was just used as a candidate service for semantic similarity matching.
The metadata of the service was obtained by using the GetCapabilities function. In the metadata,
the layer’s description was “2015年10月4日由台风造成的累积降雨量” (Translation: Accumulated
rainfall on 4 October 2015 caused by typhoon), and the spatial extent of the layer was (xmin = 102.38,
ymin = 17.85, xmax = 122.00, ymax = 26.98). The layer’s description was also processed using an
NLPIR package, and the noun word “rainfall” extracted was used in the thematic similarity matching.
The time words extracted were used as the temporal attributes of the geospatial service. However,
if time words did not exist in the description, the published time of the service would be used, or the
temporal similarity was just zero.

Obviously, the thematic similarity between the geospatial service and Rainfall concept related
to the geo-event was 1.0. However, for the similarity between the geospatial service and Wind
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concept, the semantic distance weight was calculated first according to Table 1. In Figure 4, the
weight calculation could be regarded as a multi-operation, i.e., g > g > s (Rainfall > Precipitation >
OceanMeteorology > Wind); thus, the weight value was 7. Then, the distance between Rainfall and
Wind concepts was 2.61 based on Equation (1), and the final thematic similarity was 0.38 based on
Equations (2) and (3). For the spatial similarity, the spatial extents of the geo-event and geospatial
service were used, and the spatial similarity was 1 based on Equation (4). For the temporal similarity,
the temporal attributes of the geo-event and geospatial service were used, and the temporal similarity
was 1 based on Equation (5). Finally, for the rainfall topic, the final similarity was 1 and, for the wind
topic, the final similarity was 0.75 based on Equation (6). Thereafter, the results were ranked and
organized according to data theme.
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Ultimately, when a geo-event occurs, related services are automatically retrieved and organized
according to the aforementioned processes, and the candidates are delivered to users.

3. Results

To verify the GEGIS approach, a geospatial information service prototype system was designed
and implemented. Geo-events are obtained and processed from the web, and related geospatial
resources are provided on the fly. We consider here a typhoon hazard case study of the South
China Sea.

In order to collect messages from Sina Weibo in a timely manner, a web crawler, based on the Sina
Weibo API [53], is implemented. As for a message crawled from Sina Weibo, its category should be
identified first, as previously discussed. In order to reduce the interference of other messages to the
typhoon-related messages in the situational awareness and assessment, a supervised classification
algorithm is adopted. A corpus, containing 22 categories (e.g., travel, food, hazard (typhoon), and
society), is constructed with the crawled messages to provide support for classification, and the total
document number is 38,899. The document number of “typhoon” is 612 and is about 1.6% of the total
number. The classified documents are divided into two sets: a training set and a test set, and the
ratio of them is set to be 1:1. Based on the corpus, an SVM algorithm using LibSVM is implemented.
For the purpose of the study, the test set labeled “typhoon” is illustrated in the experiment. Moreover,
the SVM algorithm utilized demonstrates its ability to classify documents, so not all of the conditions
are tested in the experiment: a linear kernel and a C-SVC method are set to be invariants, under the
condition of which the cost factor reflecting the importance of outliers is tested (Table 2).
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Table 2. Classification precision of typhoon.

Condition Retrieved Number Right Number Precision

c = 0.1 207 182 60.5%
c = 1 349 247 82.0%
c = 2 367 247 82.0%
c = 5 362 246 81.7%

c = 10 370 248 82.4%

In Table 2, obvious changes of precision exist from c = 0.1 to c = 10. When c = 0.1, the precision
is just 60.5%. However, precision increases and remains stable status afterward once c = 1. Under
all conditions, the precision cannot reach 90%, which means that some noise and errors exist in each
category. Some possible reasons include the heterogeneous distribution of samples in each category
and word frequencies in each document. Taking everything into consideration, the condition of c = 1 is
adopted to identify the geo-event.

The Rainbow typhoon first occurred in the Philippine Sea and then moved towards China. More
messages occurred on Sina Weibo after 3 October 2015 and were crawled and processed in the system.
The typhoon trajectory extracted from the message is shown as a green line in Figure 5, and the pink
line is the actual trajectory. Round dots are typhoon locations at a given time. As the figure shows, the
difference between the aforementioned two trajectories is smaller near land, but is otherwise larger.
The reason for this is that, when the typhoon was near land, its location and spatial relationship were
expressed in greater detail, and the simulation was more accurate. Another reason is the ambiguity
caused by the vague description of the spatial location. For example, from a description of the
actual typhoon location—“Typhoon is located in 340 km east by south of Wenchang City, Hainan
Province”—locations and their spatial relationships can be extracted. However, the spatial relationship
“east by south” indicates any location from east to southeast and cannot be accurately expressed.

Sustainability 2017, 9, 534  12 of 18 

In Table 2, obvious changes of precision exist from c = 0.1 to c = 10. When c = 0.1, the precision is 
just 60.5%. However, precision increases and remains stable status afterward once c = 1. Under all 
conditions, the precision cannot reach 90%, which means that some noise and errors exist in each 
category. Some possible reasons include the heterogeneous distribution of samples in each category 
and word frequencies in each document. Taking everything into consideration, the condition of c = 1 
is adopted to identify the geo-event.  

The Rainbow typhoon first occurred in the Philippine Sea and then moved towards China. 
More messages occurred on Sina Weibo after 3 October 2015 and were crawled and processed in the 
system. The typhoon trajectory extracted from the message is shown as a green line in Figure 5, and 
the pink line is the actual trajectory. Round dots are typhoon locations at a given time. As the figure 
shows, the difference between the aforementioned two trajectories is smaller near land, but is 
otherwise larger. The reason for this is that, when the typhoon was near land, its location and spatial 
relationship were expressed in greater detail, and the simulation was more accurate. Another reason 
is the ambiguity caused by the vague description of the spatial location. For example, from a 
description of the actual typhoon location—“Typhoon is located in 340 km east by south of 
Wenchang City, Hainan Province”—locations and their spatial relationships can be extracted. 
However, the spatial relationship “east by south” indicates any location from east to southeast and 
cannot be accurately expressed. 

 

Figure 5. Prototype system of the GEGIS. 

The retrieval and organization results of the services are shown in Figure 6. Depending on the 
weighted sum of thematic, spatial, and temporal similarities, the final similarity was obtained and 
ordered according to the scores. When a message crawled and processed from the web contained a 
typhoon event, related services were retrieved and organized for immediate response. Figure 6 
presents a rainstorm produced by a typhoon. The data service shown is accumulated rainfall on 4 
October 2015 (the data are interpolated results from related observation sites at [54] and published 
on the web manually). Darker colors indicate greater rainfall amounts. 

Figure 5. Prototype system of the GEGIS.

The retrieval and organization results of the services are shown in Figure 6. Depending on the
weighted sum of thematic, spatial, and temporal similarities, the final similarity was obtained and
ordered according to the scores. When a message crawled and processed from the web contained
a typhoon event, related services were retrieved and organized for immediate response. Figure 6
presents a rainstorm produced by a typhoon. The data service shown is accumulated rainfall on 4
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October 2015 (the data are interpolated results from related observation sites at [54] and published on
the web manually). Darker colors indicate greater rainfall amounts.Sustainability 2017, 9, 534  13 of 18 
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Words about the 4 October typhoon impacts are extracted using a regex based on
attribute extraction templates. Taking advantage of the kernel density function in calculating a
magnitude-per-unit area from point features to fit a smoothly tapered surface to each point, a tool
implementing the function from the ArcGIS toolbox was adopted to estimate the impact regions.
Finally, the thematic map of hazard impacts was made using ArcGIS and published as a map service.
The result is shown in Figure 7. The worst situation was in Zhanjiang City, Guangdong Province,
because its location was in the typhoon path where more hazard-related data were released. Hazard
impacts extracted from the messages included traffic gridlock, power outages, and passengers stranded.
Surrounding regions, such as Beihai, Haikou, and Maoming, were also seriously impacted.
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4. Discussion

Considering the real-time impacts of a disaster, immediate information is needed to evaluate the
situation and the damage so that corresponding relief measures can be undertaken. Most importantly,
data quality is the primary consideration and is normally guaranteed by following rigorously defined
procedures from authorities. There is no doubt that the authoritative data is slower than the social
data. Nonetheless, for abundant social data provided by different users or departments without
verification, extra work is still needed to enhance data quality, and manual verification is widely used
on most occasions.

Trust and credibility are crucial for a disaster system to provide useful information. However,
due to the lack of limitations and standards, the arbitrary expression of social data would increase
the difficulties in extracting useful information. Generally, social data from government agencies
are regarded as primary trustworthy resources that have since been assessed and verified by certain
people, e.g., a typhoon forecast from a weather station, but they cannot satisfy users’ urgent needs
for information due to latency. Moreover, some credible data can be obtained from people who
are creditable for having certain types of information, such as police officers and local media
personalities [55], which can complement a timely disaster service.

Other data without direct demonstration to prove their trust and credibility, however, should
require extra work to be used properly. Although many approaches proposed by Palen et al. [55] have
emphasized the verification of the data, an automatic procedure to verify the data quality and exclude
all the non-credible data is still lacking. On most occasions, an interactive verification between users
and computers is necessary, which is the weakness of the proposed framework. The study adopts an
approach combining both geographic and similarity approaches based on the spatial location to reduce
the unreliable data: places extracted from the social data are mapped into the spatial extent based
on the gazetteer, and spatial similarity is then calculated using the spatial extent to determine spatial
correlations of messages to places where the disaster occurs. Some unreliable data outside the impact
region will thereby be excluded. To further reduce the unreliable data, extra work is still needed.

In order to retrieve related geospatial resources other than the social data, some
similarity-matching algorithms are adopted based on the established ontology. The study compares
the thematic, spatial, and temporal similarities between query conditions and the related description
of geospatial resources, and the final similarity is calculated through the weighted sum of the previous
similarities. The weight value assigned is used to highlight, relatively, the thematic importance over
spatial and temporal factors, but is subjective for the manual intervention. In order to assign a credible
weight to the similarity function, some quantitative and qualitative evaluations should be considered
to determine the proper weight value in the future. Another issue concerning the effectiveness of
the similarity matching is the semantic distance calculation in the thematic similarity. The approach
adopted considers the relation between two nodes, so directions along the shortest path between them
are emphasized and regarded as a primary part to determine the weight. However, the weight value
assigned needs further consideration to properly measure their differences. Meanwhile, other semantic
distance calculation approaches should also be verified to adopt a better one.

Finally, traditional works generally organize geospatial resources from the perspective of the
spatial location, which indicates that the geo-event-related data are implied in the data categories and
organized based on location. All disaster-related data around the impact regions need to be retrieved
when a disaster occurs. However, the GEGIS organizes geospatial resources from the perspective of
the geo-event, which indicates that each geo-event will contain a series of related topical, classified,
geospatial resources based on the ontology, and the spatial extent of the event will cover all of the
impact regions. Therefore, the dynamic analysis of the event and effective response to the event change
can be easily achieved. The GEGIS is especially useful for people who are interested in the disaster
but are geographically remote, and it provides valuable data for making decisions. For example,
more vulnerable regions may be discovered by analyzing the historical traces of a given geo-event.
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The GEGIS is also helpful for the use of existing resources to implement analysis and mining for
a geo-event.

5. Conclusions

In this study, the integrated technologies of NLP, NER, and the semantic web were introduced to
support the GEGIS, which can respond to the geo-event and trigger timely related geospatial resource
retrieval and organization from the perspective of the event based on its spatiotemporal attributes
extracted from the web by means of the established ontology. As verification for the GEGIS framework,
a geospatial information service prototype system was implemented, and a typhoon hazard case study
was examined.

The framework proposed herein provides a new method for an intelligent geospatial information
service, but there are still some areas that require strengthening. Future work mainly includes the
following aspects:

First, accuracy of geo-event classification is a precondition for the selection of appropriate
services. The SVM algorithm was used to identify the geo-event crawled and processed from the
web. The accuracy mainly depends on impact factors, such as the setting of SVM parameters and
the thematic distribution in the training corpus. Poor choice typically reduces the accuracy such that
returned services would fail to match the user’s purpose. Although SVM shows good performance in
the experiment, the training corpus built requires much effort to be correctly classified and updated
regularly [56]. Thus, its usefulness, extendibility, and flexibility are limited. Other machine learning
algorithms should be tested to determine the best one.

Second, ambiguous and uncertain locations related to the geo-event should be further considered
and expressed. Location descriptions are sometimes ambiguous and generally expressed as “location
+ spatial relation”. In this case, an ontology containing place names and spatial relationships is
generally used to reason the actual meaning of the location. The present approach can only recognize
simple spatial relationships (e.g., around Beijing) and was used in the simulation of a typhoon path.
For complex spatial relationships, extra work is necessary to enhance their discovery. However,
the representation of an ambiguous spatial extent simply uses the minimum bounding box containing
all place names mentioned in the geo-event, without any consideration of their spatial relationships.
This coarse representation of the spatial extent has poor accuracy and will be improved in the future.

Third, extra work should be made to improve the data quality; thus, users can directly utilize the
data for their purposes. Social media can provide timely information for users when a disaster occurs,
compared with the information obtained from authorities, which are generally slow, but with high
trust and credibility. The approach used in the study has excluded some unreliable and redundant
data, but is still ineffective in processing data in some occasions, where manual verification is still
needed. Therefore, an interactive user interface should be designed to verify the data. Moreover,
a user scoring mechanism can be adopted to assess the data as well as the data providers to evaluate
the provider. Thus, the published data can be regarded as a credible source.
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