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Abstract: Monte Carlo simulation (MCS) has been widely used for the uncertainty propagations
of building simulation tools. In general, most unknown inputs for the MCS are regarded as single
probability distributions based on experts’ subjective judgements and assumptions, when simulation
information and measured data are inaccurate and insufficient. However, this can lead to meaningless
and untrustworthy results, since the results are obtained using only single probability distributions
without considering reducible possibilities of some unknown inputs. This paper introduces a fuzzy
MCS for dealing with the aforementioned problems. In comparison with the MCS, the fuzzy MCS
has the advantage of considering the aleatory and epistemic uncertainty, and can provide a family
of probability distributions. This paper also discusses how fuzzy MCS could be effectively used for
uncertainty and global sensitivity analysis.

Keywords: Monte Carlo simulation; fuzzy Monte Carlo simulation; uncertainty; sensitivity;
building simulation

1. Introduction

Building performance simulation (BPS) tools, which transform physical phenomena in real
systems into mathematical equations in a building simulation domain, generate model risks caused by
inherent uncertainty sources. To draw upon the uncertainty sources in the BPS tools, techniques used
for the uncertainty propagation are as follows: direct evaluation for linearly parameterized methods;
Monte Carlo simulation (MCS) using sampling methods; perturbation methods using first-order or
second-order Taylor series expansion; and spectral representations [1]. In particular, the MCS has
been recognized as the most dominant approach in the area of building performance simulation
because it is easy to use. The uncertainty propagation for the first-principles-based BPS tools includes
complex nonlinear models and needs to deal with correlated or high-dimensional inputs; nevertheless,
it can provide probabilistic outputs with high performance qualities in spite of the vast computational
burdens. Burhenne et al. [2] showed a multi-criteria decision-making methodology (cost and benefit)
using the MCS-based uncertainty quantification as a robust design support tool. They indicated that
the stochastic multi-criteria decision-making design process should offer more significant insights than
the deterministic process. Almeida et al. [3] performed the MCS and life cycle cost (LCC) analysis
for a school building energy conservation project. They insisted on the necessity of uncertainty
and sensitivity analysis in terms of the effective renovation investment during a building life cycle.
Cheng et al. [4] proposed a stochastic approach using the MCS and Markov model for a robust optimal
design of chilled water systems.

The two types of uncertainty sources are (1) aleatory uncertainty (i.e., irreducible uncertainty)
and (2) epistemic uncertainty (i.e., reducible uncertainty) [1]. The aleatory uncertainty that cannot
be reduced by additional information or data includes nonphysical model inputs with random
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variability [1]. In contrast, the epistemic uncertainty incurred from inaccurate and insufficient
information can be significantly reduced if trustworthy information is available. However, the general
MCS was propagated using single probability distributions without regard for the reducible possibility
embedded in the epistemic uncertainty. In other words, the MCS has a treated limitation on the
condition that a priori probability distributions of all unknown inputs are definitely identified as single
probability distributions.

This study discusses a fuzzy MCS that can reflect two uncertainty sources (aleatory and epistemic).
The fuzzy MCS combines a probability theory of MCS with a possibility theory of fuzzy arithmetic
and can acquire a probabilistic output with a family of probability distributions, rather than a single
probability distribution. The family of probability distributions can represent the model risks as
a range between plausibility (lower limit) and belief (upper limit) [5,6]. The goal of this study is
to compare the MCS to the fuzzy MCS with the aim of finding influential design options. For this
study, an existing office building is selected and modeled using EnergyPlus 8.0. For this study,
uncertainty and global sensitivity analyses were implemented using a Gaussian process (GP) emulator
to alleviate the computational burdens of the uncertainty propagation. The GP emulator can be
regarded as a surrogate model of a BPS tool with a high-fidelity model such as ESP-r, EnergyPlus,
and TRNSYS [7,8].

2. Uncertainty Sources

The uncertainties of the BPS tools mainly arise from a lack of definite physical or experimental
knowledge (e.g., thermal properties) incurred from inaccurate and insufficient information and random
variability (e.g., weather data, occupants’ behaviors). In such an uncertain simulation environment,
it is impossible to build an ideal model with flawless processes. However, even an imperfect model
could be an effective guide for decision support if appropriate uncertainty management is applied.
For example, stochastic results using the MCS indicate the limitations of current modelling levels.
In addition, risk-based design support tools can identify a best option from vast simulation design
spaces, even if it is not an optimal solution in reality.

BPS tools can obtain predicted outputs (y) using idealized mathematical models (η(θm, X)) and
model errors (δ(θm, X)) composed of various inputs (X) and parameters (θm) , as shown in Equation (1).
The real behaviors (yD) can then be obtained using the predicted outputs (y) as well as the sensor errors
(ε(xD)) of measured data (xD), as shown in Equation (2). In other words, the BPS tools will be able to
acquire trustworthy results if the simulation experts continue to attempt to reduce the uncertainties
inherited in the idealized mathematical models, model errors, and sensor errors. Among these,
the model and sensor errors might be able to reduce some of the uncertainties due to advances
in computing power, numerical methods, sensor devices, and sensor networks. In this sense, it is
important to handle the uncertainties in the idealized mathematical models (i.e., model uncertainty).

y = η(θm, X) + δ(θm, X) (1)

yD = y + ε(xD) (2)

Model uncertainties can be categorized as aleatory or epistemic uncertainties based on the degree
to which they were caused by random variability or lack of knowledge, respectively. However, it is
difficult to clearly distinguish between an aleatory and epistemic uncertainty due to relative gaps
of knowledge and the different physical or experimental capacities of each simulation user [5,6,9].
Nevertheless, Kiureghian [9] insisted that “distinction between aleatory and epistemic is useful
for identifying sources of uncertainty that can be reduced, and in developing sound risk and
reliability models”.

However, most uncertainty studies, reported in a recent building simulation conference [10],
focused mainly on predictions based on the probabilistic framework considering only aleatory
uncertainty. When considering only aleatory uncertainty, all unknown inputs can be regarded as
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single, a priori, probability distributions, and the predictions propagated by uncertainty techniques
(e.g., MCS) are represented as a single probability distribution. It would then be important to determine
whether or not a risk-based design with the single probability distribution is unbiased. However,
most simulation users might know that some of the unknown inputs cannot be regarded as single,
a priori, probability distributions due to epistemic uncertainties. In other words, it is necessary to
implement a joint propagation method for two uncertainty sources (aleatory and epistemic). To address
the aforementioned issue, this study introduces a fuzzy MCS for the joint propagation method.

3. Fuzzy Monte Carlo Simulation

The fuzzy MCS is a joint propagation method based on both the probability theory of MCS and
the possibility theory of fuzzy arithmetic. Fuzzy set theory introduced by Zadeh [11] is an effective
approach for representing epistemic uncertainty under imperfect knowledge. In the fuzzy set theory,
fuzzy numbers are defined as convex and normalized fuzzy sets over the universal set with their fuzzy
set membership functions that can be represented as a degree of likelihood between 0 and 1 [5,6,12–15].
In general, the triangular fuzzy number (TFN) has been widely used (Figure 1). A membership
function of the fuzzy set A is represented as µA(x) ∈ [0, 1]. Using a fuzzy a-cut technique of the
transformation method [9], a fuzzy interval assigns degrees of likelihood (possibility) to intervals
of values using presumption level (a). In other words, the unknown inputs with different types of
epistemic uncertainty are transformed into a crisp set representing minimum–maximum intervals using
the fuzzy set membership function and the fuzzy a-cut technique. For example, if the presumption
level (a) is set to 0.5, the crisp set of the fuzzy a-cut Aa = {x|µ(x) ≥ a} with the degree of possibility
higher than the presumption level can be represented as [5,10], as shown in Figure 1. To implement the
fuzzy MCS, an interval propagation can be performed using an optimization algorithm at the sampling
case in the uncertainty propagation. The optimization is used for finding a set of optimal values
(presumption level) minimizing or maximizing the given object function (MIN F(X) or MAX F(X))
subjected to the minimum–maximum intervals. Then, the uncertainty quantifications propagated using
the obtained optimal values are represented as a plausibility distribution and a belief distribution.
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Figure 1. Fuzzy set using triangular fuzzy number.

Figure 2 shows a fuzzy MCS process considering aleatory and epistemic uncertainty. The selected
unknown inputs in the model need to be divided into probability distributions that have an aleatory
nature or possibility distributions that have an epistemic nature. Probability distributions are
propagated using the sampling methods—e.g., Latin hypercube sampling (LHS)—while possibility
distributions are represented as minimum–maximum intervals using the random fuzzy a-cut technique.
In addition, the optimization process is performed to estimate the presumption level (a). With the
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simulation cases and min–max values generated by sampling methods and the estimated presumption
levels, a family of probability distributions is calculated.
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4. Target Building and Unknown Inputs

An office building located in South Korea was chosen and modelled using EnergyPlus 8.0
(Figure 3). The EnergyPlus model using Bayesian calibration was calibrated and validated [16].
With the previous calibrated and validated EnergyPlus model, this study only focuses on the
uncertainty analysis and global sensitivity analysis using the MCS or fuzzy MCS.

Table 1 shows the probability distributions and preferred representations (probability or
possibility) regarding the design variables. The systems of the design variables were divided into
thermal zones, heating, ventilation and air conditioning (HVAC) systems, fans, pumps, and plants,
respectively. In addition, the predicted outputs were heating/cooling load, HVAC system load, fan
electricity energy consumption, pump electricity energy consumption, and gas energy consumption,
respectively. The reason is because the uncertainty and sensitivity results might be biased if it is only
performed toward the gas energy consumption with all possible design variables [16]. In the thermal
zones, the type and thickness of insulation and type of glass were selected as probability distributions
that have an aleatory nature because the type and thickness of the materials (insulation and glass)
derived from specific information of the related companies are less likely to reduce the uncertainties
in comparison with the other unknown inputs that have an epistemic nature. The indoor loads were
regarded as an important target for the future design, since the relocation of the interior space and
changes in the highly efficient lighting fixtures and low energy devices can significantly affect the
heating/cooling loads. In addition, the indoor set-point temperature was regarded as an adjustable
option within the ranges defined in the previous literature [17]. In the given building, the indoor
set-point temperatures were set to 20 ◦C for heating and 26 ◦C for cooling. The design inlet/outlet
temperatures and design flow rates for the HVAC systems are adjustable options. Moreover, the design
pressure head and motor efficiency for pumps and fans were chosen as the design variables. Finally,
the coefficient of performance (COP) of the Absorption Chiller/Heater and the design inlet/outlet
temperatures for the plant were chosen as important design variables. In particular, the COP is the
thermal efficiency of the equipment system that converts the gas or electric energy into potential and
kinetic energy. As the COP increases, the amount of gas or electric energy required to enhance the
system efficiency is reduced.
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Table 1. Unknown inputs.

No. Systems Design Variables Probability Distributions Preferred
Representations

x1

Zone

Insulation
Type Discrete U [1, 20] Probability

x2 Thickness Continuous U [0.005, 0.01] Probability

x3
Glass

Type Discrete U [1, 16] Probability
x4 Airtightness ratio T [0.5, 0.8, 1.0] Possibility

x5
Indoor loads

Fraction person per area T [0.8, 0.9, 1.0] Possibility
x6 Fraction internal gain for lights T [0.8, 0.9, 1.0] Possibility
x7 Fraction internal gain for equipment T [0.8, 0.9, 1.0] Possibility

x8 Indoor set-point
temperature

Heating set-point temperature T [20, 21.5, 23] Possibility
x9 Cooling set-point temperature T [26, 27, 28] Possibility

x10

HVAC

Water
Design water flow ratio T [0.8, 1.0, 1.2] Possibility

x11 Design water inlet/outlet temperature ratio T [0.8, 1.0, 1.2] Possibility

x12
Air

Design air flow ratio T [0.8, 1.0, 1.2] Possibility
x13 Design air inlet/outlet temperature ratio T [0.8, 1.0, 1.2] Possibility

x14

Fan

Supply fan
Fan efficiency ratio T [0.8, 1.0, 1.2] Possibility

x15 Pressure rise ratio T [0.8, 1.0, 1.2] Possibility
x16 Motor efficiency ratio T [0.8, 1.0, 1.2] Possibility

x17
Return fan

Fan efficiency ratio T [0.8, 1.0, 1.2] Possibility
x18 Pressure rise ratio T [0.8, 1.0, 1.2] Possibility
x19 Motor efficiency ratio T [0.8, 1.0, 1.2] Possibility
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Table 1. Cont.

No. Systems Design Variables Probability Distributions Preferred
Representations

x20

Pump

Chilled water
Pump head ratio T [0.8, 1.0, 1.2] Possibility

x21 Motor efficiency ratio T [0.8, 1.0, 1.2] Possibility

x22
Condenser

Pump head ratio T [0.8, 1.0, 1.2] Possibility
x23 Motor efficiency ratio T [0.8, 1.0, 1.2] Possibility

x24
Hot water

Pump head ratio T [0.8, 1.0, 1.2] Possibility
x25 Motor efficiency ratio T [0.8, 1.0, 1.2] Possibility

x26

Plant

COP
COP for cooling T [0.8, 1.0, 1.2] Possibility

x27 COP for heating T [0.8, 1.0, 1.2] Possibility

x28 Design
temperature

Design inlet temperature ratio T [0.8, 1.0, 1.2] Possibility
x29 Design outlet temperature ratio T [0.8, 1.0, 1.2] Possibility

U: Uniform distribution, T: Triangular distribution; HVAC: Heating, ventilation and air conditioning; COP:
Coefficient of performance.

5. Development and Validation of Gaussian Process Emulator

A GP emulator, which is regarded as the surrogate model of EnergyPlus, was used to obtain
accurate and reliable uncertainty and global sensitivity results with fast computational speed. In this
study, five GP emulators (thermal zones, HVAC systems, fans, pumps, and plants) were constructed.

To generate the training dataset, the number of inputs (p) x1:n = {x1, ..., xn} for thermal
zone, HVAC system, fan, pump, and plant are set as 9, 4, 6, 6, and 4, respectively. The output
dataset y includes heating/cooling load, HVAC system load, fan electricity energy consumption,
pump electricity energy consumption, and gas energy consumption. The number of samplings for
the LHS method was set at 200. A total of 150 training datasets for the GP emulator and 50 training
datasets for validation were employed. The Gaussian Process regression model with Gaussian noise
using the generated dataset represents a kernel matrix K(xi, xj) with zero mean function as shown
in Equations (3)–(6). The Gaussian noise εi is generally expressed as an independent identically
distributed (iid) normal distribution. In this study, a squared exponential covariance function C(xi, xj)
in the kernel matrix was used. A maximum a posteriori (MAP) estimator out of the Bayesian inference
was used to estimate three hyperparameters (scaling parameter σ2

se, length scales l1:p, and variance of
Gaussian noise vt).

yi = f (xi) + εi (3)

εi ∼ N(0, vt) (4)

K(xi, x′j) =

 C(x1, x1) ... C(x1, xp)

... ... ...
C(xp, x1) ... C(xp, xp)

 (5)

f (xi) ∼ gp(0, K(xi, x′j) (6)

Table 2 shows the difference in the stochastic predicted outputs between EnergyPlus and the GP
emulator using the separate validated dataset. The two-sample Kolmogorov–Smirnov (K–S) test was
used to find whether or not the populations of the two samples have the same probability distribution.
If p-value (0.0–1.0) is greater than 0.05, the populations of the two samples have the same probability
distribution. In the results, the two samples have very similar distributions. This means that the
outputs of the GP emulator are similar to those of EnergyPlus. In this study, the GP emulator can be
used for uncertainty and global sensitivity analysis.
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Table 2. EnergyPlus vs. Gaussian process (GP) emulator using stochastic results and the two-sample
Kolmogorov–Smirnov (K–S) test.

Systems EnergyPlus (kWh) GP Emulator (kWh) p-Values
Mean STDEV Mean SD

Zone 767,414 13,369 767,436 13,325 0.789
HVAC 592,080 11,533 591,832 9568 0.117

Fan 102,834 12,150 102,834 12,150 0.258
Pump 376,135 53,641 376,150 53,603 0.979
Plant 722,908 27,363 722,908 27,364 0.282

SD: Standard Deviation.

6. Monte Carlo Simulation vs. Fuzzy Monte Carlo Simulation

6.1. Uncertainty Results

Figure 4 shows some sampling results propagated using the LHS method. In the results,
uncertainty propagations for the plausibility and belief functions of fuzzy MCS were biased in
comparison with those of MCS. These biased propagations were caused by reflecting the epistemic
uncertainties incurred from inaccurate and insufficient information.
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system (x10: Design water flow rate, x11: Design water inlet/outlet temperature ratio, x12: Design air 
flow ratio); (c) Sampling results of fan (x14: Fan efficiency ratio, x15: Pressure rise ratio, x16: Motor 
efficiency ratio); (d) Sampling results of pump (x20: Pump head ratio of chilled water, x21: Motor 
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Figure 4. Sampling results using the Latin hypercube sampling (LHS) method. (a) Sampling results of
thermal zone (x5: Fraction person per area, x6: Fraction internal gain for lights, x7: Fraction internal gain
for equipment); (b) Sampling results of the heating, ventilation and air conditioning (HVAC) system
(x10: Design water flow rate, x11: Design water inlet/outlet temperature ratio, x12: Design air flow
ratio); (c) Sampling results of fan (x14: Fan efficiency ratio, x15: Pressure rise ratio, x16: Motor efficiency
ratio); (d) Sampling results of pump (x20: Pump head ratio of chilled water, x21: Motor efficiency ratio
of chilled water, x22: Pump head ratio of condenser); (e) Sampling results of plant (x26: Coefficient of
performance (COP) for cooling, x27: COP of heating, x28: Design inlet temperature ratio).
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Table 3 and Figure 5 show the uncertainty results of the fuzzy MCS compared with those of the
MCS. In the case of the fuzzy MCS, the uncertainty results were represented as a family of probability
distributions with a range between plausibility and belief distribution. On the other hand, the results
of the MCS are located between the plausibility and belief distribution.

The difference in distance between the plausibility and belief distribution is closely connected with
a lack of definite physical or experimental knowledge. A large difference in the distance implies that
the predicted outputs are strongly influenced by unknown inputs that have an epistemic nature.
In addition, the plausibility and belief distribution denote optimistic and pessimistic outcomes,
respectively [5,6]. If the building stakeholders (e.g., architect, owner, engineer, and occupants) have
optimistic preferences about the model risks, the plausibility distribution should be used for risk-based
decision support. Otherwise, the belief distribution should be used. In the results, the uncertainty
results of the thermal zone showed that the epistemic uncertainties have a decisive effect on the
heating/cooling load since a strong difference was shown in the distance between the plausibility and
belief distribution.
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plausibility and belief distribution. 
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Table 3. Uncertainty results: Monte Carlo simulation (MCS) vs. fuzzy MCS.

Systems Functions Mean
(kWh)

Standard
Deviation (kWh)

Min
(kWh)

Max
(kWh)

Coefficient of Variation
(Dimensionless)

Zone
Belief 779,778 5825 767,679 792,771 0.00747

Monte Carlo 765,544 8397 742,917 785,540 0.01097
Plausibility 751,651 5679 739,364 763,286 0.00756

HVAC
Belief 601,325 1697 597,029 605,535 0.00282

Monte Carlo 594,505 6451 573,222 604,237 0.01085
Plausibility 581,836 8052 567,116 593,879 0.01384

Fan
Belief 122,051 6346 109,277 140,152 0.05199

Monte Carlo 103,184 7806 81,917 128,638 0.07565
Plausibility 86,851 4263 76,277 96,126 0.04908

Pump
Belief 452,561 31,453 383,288 532,293 0.06950

Monte Carlo 376,932 37,474 298,143 514,584 0.09942
Plausibility 309,587 18,422 276,177 357,096 0.05951

Plant
Belief 716,927 28,764 659,183 778,085 0.04012

Monte Carlo 659,598 37,264 566,242 752,066 0.05650
Plausibility 593,222 28,599 532,686 650,750 0.04821
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6.2. Global Sensitivity Results

The sensitivity analysis quantifies the influence of unknown inputs on the outputs with probability
distributions. The sensitivity analysis should lead to (1) ranking unknown inputs in order of
importance; (2) identifying influential and non-influential inputs; (3) reducing the variance of the
outputs, and (4) finding influential inputs and their subset in a given probability range. In this study,
the standardized rank regression coefficient (SRRC) method for the global sensitivity analysis was
used; the SRRC method uses a rank transformation and is suitable for a nonlinear model [18–20].

Table 4 shows the sensitivity results (sensitivity index and rank) for finding optimal design
solutions among possible design variables. In the case of the thermal zones (x1–x9), lights (x6) and
equipment (x7) were chosen as influential design variables. In terms of heating/cooling load, the lights
and equipment were more sensitive than the type (x1) and thickness (x2) of the insulation boards;
the type (x3) and airtightness (x4) of the glass; the number of occupants (x5); and the indoor set-point
temperatures (x8 and x9). In particular, the sensitivity result of the equipment was higher than that of
lights because some light fixtures were replaced with high efficient LED lamps, while the equipment
(PC, copy machine, TV, etc.) had not been replaced. The results showed that the ranks, except for
the lights and equipment, should be changed according to the preferred distributions (plausibility or
belief distribution).

Table 4. Global sensitivity results.

No.
Plausibility Belief Monte Carlo

SI Rank SI Rank SI Rank

x1 0.008 6 −0.004 8 0.039 3
x2 0.006 7 −0.006 6 −0.015 6
x3 −0.021 3 0.0001 9 −0.025 5
x4 0.011 4 0.007 5 0.009 7
x5 0.003 9 0.004 7 −0.006 8
x6 0.357 2 0.350 2 0.374 2
x7 0.951 1 0.946 1 0.948 1
x8 −0.004 8 −0.008 4 0.035 4
x9 −0.008 5 −0.009 3 0.004 9
x10 0.168 2 0.664 1 0.264 2
x11 −0.984 1 −0.541 2 −0.913 1
x12 −0.113 3 −0.445 3 −0.177 3
x13 −0.003 4 0.025 4 0.040 4
x14 −0.590 2 −0.744 1 −0.659 2
x15 0.748 1 0.606 2 0.659 1
x16 −0.008 5 0.0001 6 0.008 6
x17 −0.295 4 −0.363 3 −0.277 3
x18 0.347 3 0.283 4 0.268 4
x19 −0.003 6 0.011 5 0.014 5
x20 0.023 5 0.042 5 0.015 6
x21 −0.004 6 −0.032 6 −0.025 5
x22 0.935 1 0.595 2 0.659 2
x23 −0.395 2 −0.803 1 −0.699 1
x24 0.087 3 0.069 4 0.067 3
x25 −0.031 4 −0.083 3 −0.066 4
x26 0.360 2 0.364 2 0.440 2
x27 0.942 1 0.942 1 0.919 1
x28 −0.021 4 0.010 4 0.004 3
x29 0.012 3 −0.020 3 0.002 4

SI: Sensitivity index.

In the case of the HVAC system (x10–x13), the design water inlet/outlet temperature (x11)
and water flow (x10) for cooling and heating were more sensitive than the design air inlet/outlet
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temperature (x13) and air flow (x12) due to the difference between the thermal capacities of the air and
those of the water. In other words, it is more advantageous to change the design water inlet/outlet
temperature and water flow than to change the design air inlet/outlet temperature and air flow for
efficient heat exchange between the heating and cooling coils and the returned air. In the case of
sensitivity results using the plausibility distribution, the design water inlet/outlet temperature was
chosen as the first priority. If the belief distribution is used, the design water flow rate should be
chosen. In other words, the first priority for the HVAC system should also be identified, depending on
whether the preferences of the stakeholders are optimistic or pessimistic.

In the case of the fan (x14–x19), the efficiency (x14) and pressure rise (x15) of the supply fan
were chosen as more influential design variables than those of the return fans. These design variables
were selected because the supply fan has an additional pressure drop for heat exchange inside the
air-conditioner (heating and cooling coils) and air filter. In the case of the pump (x20–x25), the pump
head (x22) and the motor efficiency (x23) of the condenser pump (primary pump) were chosen as more
influential design variables than those of the chilled water and hot water pump (secondary pump).
It can be inferred that the pump electricity energy consumption needs to be reduced by improving
the primary pump rather than the secondary pump. Finally, for the absorption chiller/heater of
the plant (x26–x29), the COPs (x26–x27) for the cooling and heating were chosen as more influential
design variables than the design inlet/outlet temperature (x28–x29). In addition, the COP for heating
was selected as a more influential design variable than the COP for cooling. To reach an efficient
design, improving the heating efficiency is the preferred approach. However, it should be noted
that the sensitivity index or ranks for fan, pump, and plant should be changed depending on the
preferred distributions.

In summary, the influential inputs in the given target building are determined as follows: (1) lights
and equipment for the cooling and heating load; (2) design water inlet/outlet temperature and water
flow for the HVAC system load; (3) fan efficiency and pressure rise of the supply fan for the fan
energy electricity consumption; (4) pump head and motor efficiency of the condenser pump for the
pump energy electricity consumption; and (5) COPs of the absorption chiller/heater for the gas energy
consumption. However, it should be noted that different design variables could be selected according
to the preferred distributions of the stakeholders.

7. Conclusions

This study presents a comparison between the fuzzy MCS and the MCS for uncertainty and global
sensitivity analysis in a given building. A global sensitivity analysis using the meta-model-based
uncertainty results was conducted for finding influential inputs among all possible design variables in
the existing office building. The SRRC method, which can provide the sensitivity measures that enable
the quantitative identification of influential and non-influential inputs, was chosen.

Comparing the fuzzy MCS with the MCS, this study showed that the fuzzy MCS provides decision
makers with more meaningful and trustworthy information than the MCS, since the MCS-based
uncertainty propagation has trouble in dealing with the epistemic uncertainties (i.e., reducible
uncertainties). Such trouble is caused by all the unknown inputs that were assigned as single probability
distributions depending on the subjective knowledge and experiences of the simulationists. If each
single probability distribution is biased, then the uncertainty and sensitivity analysis should fail to
fulfil its role for the risk-based design support management.

On the other hand, the fuzzy MCS, which is a joint propagation method (probability theory of
MCS and possibility theory of fuzzy arithmetic), can reflect aleatory as well as epistemic uncertainties,
and obtain a family of probability distributions including plausibility and belief distribution. As shown
in the global sensitivity results (refer to Section 5.2), such a probabilistic framework using the fuzzy
MCS should offer stakeholders more chances to identify influential inputs by considering the factors
behind the risks in a given range of the family of the distributions. In terms of the risk-based design
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support management considering decision makers’ preferences (optimistic or pessimistic), the fuzzy
MCS performs better than the MCS. Future works will include the following:

• Bayesian calibration based on the fuzzy MCS: the fuzzy MCS will be used to estimate posterior
distributions of unknown inputs in the BPS tools

• Stochastic multi-criteria design based on the fuzzy MCS: by coupling between uncertainty
results propagated using the fuzzy MCS and optimization techniques (e.g., genetic algorithm,
particle swarm optimization), the multi-criteria design problems will be treated under uncertainty
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