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Abstract: Motorization and increased levels of car ownership have partly contributed to traffic
congestion and air pollution, which is a prime concern in the era of climate change. Therefore, vehicle
ownership-related topics have been extensively explored by transportation scholars, economists,
and planning researchers. However, relatively fewer scientists have investigated the spatial patterns
and socioeconomic factors of car ownership simultaneously within a large geographic scale. Thus,
the goal of this article is to illuminate how high levels of auto ownership may cluster spatially and
what factors relate to such phenomena by developing an integrative framework and applying it in
three counties in South Florida (US). Specifically, this study first evaluated whether vehicle ownership
is spatially autocorrelated using Global and Local Moran’s I statistics. It then justified significant
factors associated with car ownership by employing Poisson and Corrected Poisson regression models.
The findings, using raw data, show that there exist locally spatial clusters of the households with
high levels of automobile ownership, while globally the patterns of auto ownership are statistically
random. Furthermore, the results suggest that the number of drivers, the number of workers,
household income level, housing tenure, the proximity to schools, and net house density significantly
influence car ownership levels. The results can assist urban planners and local governments in
developing planning schemes that aim at transit, cycling, walking, and other non-motorized travel
modes, thereby furthering environmentally friendly communities.

Keywords: number of cars; autocorrelation; spatial distribution; regression; automobile; metropolitan
region; elderly

1. Introduction

Both academic and non-academic worlds are increasingly concerned about the rising popularity
of private cars, a known cause of exacerbated air pollution [1–3], greenhouse gas emissions [4],
traffic congestion [5,6], and risks to public health [7,8]. Admittedly, a growing level of private-car
dependence is beneficial to the auto industry and its deriving businesses [9]. The prosperity of the auto
industry considerably benefits local governments and communities by boosting employment rates
and overall economic conditions. It is evident that an excessive number of vehicles on roads results
in enormous environmental and social issues such as traffic congestion [10] and air pollution [11].
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The positive correlation between higher levels of auto ownership and aggravating traffic congestion
has been justified by numerous studies [2,12–14]. For instance, based on the travel survey conducted
in King County in the US, Frank et al. [15] (2006) found a significantly positive relationship between
vehicles per household and environmental indicators, including traffic-related pollutants and volatile
organic compounds.

Given the evident relationship between auto ownership and its detrimental impacts on the whole
society, studies have focused on the understanding of key factors, including household attributes,
built-environment characteristics, and life style indicators, on levels of automobile ownership. This line
of inquiry corresponds to the lasting interest in the land use-transportation connection, which is
“motivated by the possibility that design policies associated with the built environment can be used to
control, manage, and shape individual traveler behavior and aggregate travel demand” [16].

Additionally, it is also crucial to understand the spatial layout, including global and local spatial
clustering, of automobile ownership. The spatial patterns of car ownership are indispensable midpoints
of the pathways to investigate the travel behaviors of a person or a group of individuals [17,18],
city-level policies [19], regional-level travel demand [20], land use allocation [21], and many other
interrelated research themes. As mentioned above, high levels of car ownership are negatively
associated with societal well-being in terms of energy conservation, public health, and other social
benefits, though it may be also beneficial in some aspects (for example, cancer screening and job
accessibility) at the individual scale. Wang (2016) [22] stated that good access to private cars encouraged
individuals to have a frequent checkup for potential cancer risks. The author further added that the
travel preferences of a person may follow a similar pattern to that observed in his/her neighboring
communities. Therefore, using aggregated data or indicators (car ownership) of geographical references
is important to elucidate people’s travel behavior under a concrete context.

How car ownership may be spatially and globally aggregated facilitates planners and
governments in the process of developing specific transportation policies and land use planning
in response to various needs of practice and research. For instance, police makers may restrict the
use of private cars when high car ownership is spatially correlated with decreasing trends of physical
activity of citizens, increased road crashes, and higher levels of noise pollution [19]. By contrast, better
access to cars, partly represented by high auto ownership, contributes to household-level benefits such
as greater coverage of cancer screening uptake, necessitating that the parties with conflicting interests
ought to seek a compromised policy on private vehicle usage [22]. Consequently, the spatial clustering
of car ownership is a significant phenomenon in relation to policy making and the coordination of
conflicting interests from a broader perspective, demanding additional research endeavors.

A growing body of the literature has highlighted the significance of employing spatial methods,
particularly those exceling in detecting spatial heterogeneity at a local level, into analyzing vehicle
count data [20,23]. Spatially explicit approaches have been increasingly advocated in recent years
because of their effectiveness in addressing spatial dependence, which has been a common yet
unavoidable issue in transportation research [24,25]. Ignorance of the spatial dimension may lead
to imprecise and inefficient estimators of regression coefficients [23,26] and unreliable inferences.
In addition, the delineation of local hot spots regarding high car ownership helps to better understand
bicyclists’ preferences [17], job accessibility [27], social equity [28], and other behavioral, economic,
and societal topics at a fine scale. In sum, it is equally consequential to pinpoint local spatial
autocorrelation of car ownership on top of global measures.

Despite the literature’s stressing of the spatial impacts on transportation simulations [20], there is
no rigorous attempt to incorporate spatial patterns as an explaining factor in addressing the causal
mechanism in land use-transportation interaction. In an effort to bridge such gaps, this study explicitly
incorporates spatial autocorrelation into the interpretation of spatial heterogeneity of automobile
ownership. It develops an integrative framework that aims at understanding (1) whether or not
automobile dependence is spatially clustered; (2) whether high levels of automobile ownership are
locally correlated; and (3) how the spatial mechanism of automobile ownership is partly explained
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by the factors associated with households, built-up environments, and the interacting terms of these
two categories.

The remainder of this paper is organized as follows. The next section outlines findings of previous
studies concerning the level of auto ownership and its driving factors. Following the literature review,
Section 3 advances two primary hypotheses of this work. Section 4 introduces study areas, data sources,
and approaches that were used to assess the hypotheses. Section 5 highlights several key findings of
the analysis. Finally, Section 6 summarizes the whole study, discusses policy implications of current
research, and directs future work.

2. Background

For years, the relationships between land use development and commuters’ travel patterns have
been under intensive debates [29–33]. Overall, the current literature focuses on two aspects; car
ownership as a mediating variable and the exploration of various factors affecting vehicle dependence.

First, studies have primarily explored the connection between a range of variables and vehicle
ownership, which is viewed as an intermediate link bridging different factors [34–38]. As early as the
1990s, for example, Golob (1990) [34] investigated a variety of interrelated factors, including vehicle
ownership and weekly commuting times by private vehicle, transit, cycling, and walking. Using panel
data, the author identified interconnected causal linkages between vehicle reliance and the remaining
three variables. It was found that there existed a bidirectional casual effect between travel time by
different modes and the number of cars per household. Furthermore, higher levels of car ownership
were motivated by the propensity or willingness of households to lower their time expenditure as
well as by people’s cost-and-benefit considerations. It was also noted by the author that, in the short
term, the shift to a more costly but less time-consuming mode would partly result in a rise in the
number of cars. In the long run, the adjustments on car ownership may become a driving force
behind the households’ choices regarding residential locations [34]. Likewise, Raphael et al. (2002) [35]
assessed whether car ownership substantively affects the employment characteristics of a household.
Using employment status, work hours, and wages as dependent variables, the authors stated that
the coefficients of auto ownership were significant and positive in all of three ordinary least squares
regression models. Specifically, obtaining access to a car serves as a crucial factor in affecting labor
market outcomes [35]. Nonetheless, these studies might chiefly concentrate on the interrelations
between auto ownership and households’ characteristics, possibly lacking a comprehensive account of
the effects of built environment.

Second, recent studies have focused efforts on exploring the factors associated with car ownership,
which is regarded as a dependent variable [39–44]. For instance, Cao et al. (2007) [43] evaluated the
linkages between vehicle ownership and built environment using ordered probit and static-score
models. They concluded that the number of vehicles of an examined family were prevalently
determined by demographical and social factors; however, the effects of built environment were
extremely limited. In the same year, Guo et al. (2007) [44] investigated the same issue, but a different
definition of the built environment was introduced to their discrete choice models. A whole spectrum
of measures, including land use types, urban forms, street networks, land use diversity index, and
so on, were considered as built-up attributes [44]. Their findings are in accordance with Cao et al.’s
findings [43]. Furthermore, not only do these attributes have impacts on the levels of car ownership
but on households’ decisions of residential choices as well. Unlike Cao et al. (2007), Guo et al.
(2007) [44] maintained that both socio-demographics and built environment attributes were important
determinants in car ownership decisions. However, a major limitation of these studies is that they might
inadequately consider the potentially spatial signature of car ownership. Such spatially unobserved
components may contain missing information from uncontrolled variables over space and time [26].

To address this limitation, further research has applied Graphically Weighted Regression (GWR)
models that integrate the spatial autocorrelation of regression coefficients in analyzing the spatial
distribution of car ownership. Several publications have studied the factors associated with car
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ownership using the GWR approaches [41,45,46]. GWR technologies are promising in capturing local
patterns. These approaches may be further enhanced if future efforts could attempt to improve GWR’s
generalizable power.

In this respect, this study contributes to the current literature by developing a modeling framework
that targets the understanding of the spatial agglomeration of family’s car ownership levels and
the coupling effects of built environments and household attributes on the clustering phenomena.
This work also sheds light on the literature by synthesizing different global and local techniques of
spatial autocorrelation detection and corrected Poisson regression models. Such a synthesis is scarcely
observed in previous studies. Moreover, it adds to transportation planning practices with additional
insights by designing a straightforward procedure that planners find easy to implement for various
policy purposes. Under this overarching framework, two research hypotheses were posited and will
be specified in the next section.

3. Research Hypotheses

The goals of this article are to examine the following research hypotheses.

(1) Households with three or more private cars are globally and locally clustered in
a metropolitan region.

(2) Household attributes, built-environment characteristics, life style factors, and several interacting
terms collectively play a pivotal role in determining the level of a household’s car ownership.

4. Data Description and Model Specifications

4.1. Data Sources and Descriptive Statistics

Three counties in southern Florida, US: Broward, Palm-Beach, and Miami-Dade, were identified
as study areas in the empirical analysis because these counties are home to Miami, Fort Lauderdale,
and other coastal megacities with enormous populations and exceptionally high levels of automobile
reliance (Figure 1). Three data sources were used in this research. First, the National Household
Travel Survey (NHTS) created by Federal Highway Administration represents a foundation of our
data structures. There exist multiple versions of the NHTS [47]. This study opted to use the 2009
one, which is the most recent version with comprehensive information. The survey was conducted
from March 2008 through May 2009 in the majority of the states in the USA. The NHTS provides such
information as the travel patterns and socio-demographics of responding households. Specifically,
NHTS’s focus groups are the civilian and non-institutionalized populations, which denote households
in this article. Second, the data concerning built environments stemmed from the parcel data
downloaded from the Florida Department of Revenue [48] and were processed by the Institute
of Transportation Engineers at the University of Florida. This data set primarily offered knowledge
regarding land use types and transit accessibility. Third, the Tiger 2010 Census Tract Files collected
from the Geospatial Data Gateway [49] were used to ameliorate the presentation quality. After data
preprocessing and the mapping of the numerical data onto census tract maps, a sample comprising
3980 households was identified. The following section will discuss the main procedures for data
processing and the model specifications in detail.
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(three or more cars) is non-random. Second, the Poisson regression accounting for spatial 
autocorrelation was used to recognize the factors influencing vehicle ownership. Poisson regression 
has been proved to be powerful in modeling count data [50]. Finally, the Global Moran’s I statistics 
were used to validate the results of the quadrat count analysis regarding the point patterns of 
automobile ownership. We also employed the local version of the Moran’s I to identify hot spots or 
cool zones. The model specifications are introduced in the next few sub sections. 

Figure 1. The case region for this work.

4.2. Model Specifications

Figure 2 exhibits an overall outline for this study. A quadrat count analysis was first conducted to
examine whether or not the spatial pattern of households with high levels of car ownership (three or
more cars) is non-random. Second, the Poisson regression accounting for spatial autocorrelation was
used to recognize the factors influencing vehicle ownership. Poisson regression has been proved
to be powerful in modeling count data [50]. Finally, the Global Moran’s I statistics were used to
validate the results of the quadrat count analysis regarding the point patterns of automobile ownership.
We also employed the local version of the Moran’s I to identify hot spots or cool zones. The model
specifications are introduced in the next few sub sections.
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Figure 2. An overall research outline (top) and a technical roadmap (bottom).

4.2.1. Quadrat Count Analysis

The analysis was used to examine if spatial autocorrelation exists at a global level. First,
the optimal quadrat size Q∗ was determined by [51]:

Q∗ = 2(A/N) (1)

where A is the total area of the study region and N is the total number of events, namely households
with three or more private vehicles.

Specifically, a total number of 661 households was first selected over a grid of 10,311 square
kilometers, which was calculated according to the coordinates of the outermost households. Thus,
the optimal quadrat size was approximately 34.89 square kilometers using Equation (1). Consequently,
the suggested number of quadrats was 10,311/34.89, namely, 295.5. After adjustments, the finalized
quadrat number was 308 (Figure 3).
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Using the Geo-Spatial Modeling Environment Tool [52], this work next generated the frequency
counts of quadrats that contained different numbers of events (e.g., 0, 1, 2, 3, etc.). Under the null
hypothesis, the point pattern was random, complying with a Poisson distribution. Accordingly,
the probability of observing X (X = 0, 1, 2, 3, and so on) events in a randomly selected quadrat was
calculated by the following equation:

P(X = j|λ|) = e−λ(λ)X

X!
(2)

where λ is the ratio of the sum of the events to the number of quadrats and denotes the average number
of points in a given quadrat, namely 1.92 in this study, and j = 0, 1, 2, . . . , 12 and more, where the last
category accounts for the possibility of 12 or more events in a given quadrat.

Therefore, the expected number of quadrats that included a given number of points, i.e., X = 0, 1,
2, . . . , 12 and more, was calculated by:

Ej = P(X = j
∣∣λ∣∣) ∗K (3)

where K refers to the total number of quadrats.
Third, several tests were conducted to identify whether the observed probability distribution

of households with three or more cars was significantly different from a benchmark distribution,
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the Poisson distribution. Finally, the observed frequency of households with high levels of auto
numbers were compared with their expected counterparts using the Chi-square test, described by:

χ2 =

12
∑

j=0

(
Oj − Ej

)2

Ej
(4)

where Oj is the observed number of quadrats with a given number j of the households with
three or more vehicles and Ej denotes the expected number of quadrats with a given number j
of the households.

4.2.2. Poisson Regression Analysis

Poisson regression was selected to justify the proposed variables that may explain the variation
of the number of vehicles per household for the whole 3980 units of analysis. Specifically, it was
utilized to model the associations between a wide range of explanatory variables and the count
data. Based on the literature and data availability, the model calibrated three categories of factors,
household characteristics, built environment, and life style, simultaneously taking into account the
interactive effects between households and built environment [34,35] (Table 1). It has been justified
that residential locations are associated with auto ownership levels [35,53], and the preferences of
households’ residential sites are argued to be partly reflected by an index describing the degree of
land use mix [44]. Accordingly, this paper employed such an index as a potential explanatory variable.
It adopted the paradigm of land use diversity designed by Guo (2007) [44], while minor modifications
were made to accommodate the data structures of this empirical work. The modified measure of land
use mix has a potential to be generalizable to similar studies that lack a rich and well-structured data
source for the land use configurations. Specifically, it was defined by:

LUXs = 1− |Rs− 0.25|+ |Cs− 0.25|+ |Is− 0.25|+ |Os− 0.25|
1.5

(5)

where Rs, Cs, Is, and Os are the area percentages that correspond to residential, commercial, industrial,
and other land use types surrounding a specific household in a 0.25-mile buffer area, respectively.
According to Bhat and Guo (2004) [54], the indexes may range from 0 to 1, where 1 refers to an entirely
diversified land use structure and 0 indicates zero land use mix.

Next, standard and corrected regression models were described by:

ln(Ui) = β0 + β1Xi1 + ... + βkXik (6)

where Ui is the number of vehicles of the i-th household, Xi1, ..., Xik represent k explanatory variables,
and β0, ..., βk denote the estimated coefficients corresponding to different independent variables.
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Table 1. Description of possible explanatory variables for the Poisson Regression.

Variable Name and Description Variable Type Code Definition Min. Mean Max. Data Source

Household
characteristics

HHFAMINCx (Derived total household income) Category 1 = low income, 2 = medium income,
and 3 = high income - - -

NHTS [47]

NUMADLT (Count of adult household members at least 18 years old) Interval - 1 1.88 10

HOMEOWN (Housing unit owned or rented) Dummy 1 = rent and 0 = own - - -

DRVRCNT (Number of drivers in household) Interval - 0 1.72 7

HHSIZE (Count of household members) Interval - 1 2.22 10

HH_RACEx (Race of household respondent) Dummy 1 = white and 0 = other races - - -

WORKER (Number of workers in household) Interval - 0 0.83 4

CLWORK (Close to work) Dummy 1 = yes and 0 = no - - -

FDOR [48] and UFIT

Built
environments

DISTAC (Distance to nearest activity center in miles) Continuous - 0.69 11.24 42.51

DISTRES (Distance to nearest residential center in miles) Continuous - 0.60 9.21 47.10

MIX_25 (Land use mix index of a 0.25-mile buffer area of a household) Continuous - 0 0.43 0.93

BUS1MILE (Number of bus stops within one mile of a household) Interval - 0 36.01 259

DISTBS (Distance to the nearest bus stop in meters) Continuous - 2.89 1394.13 15,629

FDOR [48] and UFIT
POPDENTRCT (Population density at census tract level (sq mile)) Continuous - 0.03 5615.03 41,911.28

JOBDENTRCT (Job density at census tract level (sq mile)) Continuous - 2.54 2280.93 15,213.78

HOSDENTRCT (House density at census tract level (sq mile)) Continuous - 0.01 3026.96 38,555.15

URBAN (Category of Urban area) Category 1 = city core, 2 = inner city, 3 = suburbs,
and 4 = not in urban area - - - NHTS [47]

Life style

CLFRIEND (Close to friends) Dummy 1 = yes and 0 = no - - -

FDOR [48] and UFIT

CLSCHOOL (Close to schools) Dummy 1 = yes and 0 = no - - -

CLRETAIL (Close to retail services) Dummy 1 = yes and 0 = no - - -

Interactions

HHFAMINCx*BUS1MILE - - - - -

HHFAMINCx*DISTBS - - - - -

HHFAMINCx*MIX_5 - - - - -

HHFAMINCx*URBAN - - - - -

HOMEOWN*BUS1MILE - - - - -

HOMEOWN*DISTBS - - - - -

Note: NHTS: National Household Travel Survey; FDOR: Florida Department of Revenue; UFIT: Institute of Transportation Engineers, University of Florida.
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4.2.3. Spatial Clustering Analysis

The third part of this work was to detect any local clusters of the households with a high level of
automobile ownership. Census tracts overlaid with the counts of households with three or more cars
served as basic units of analysis. Additionally, the study area was adjusted by excluding those census
tracts such as national parks and beaches, which are not considered residential locations. A total of
661 points of interest were overlaid with 1214 polygons, using the Geospatial Modeling Environment
software, an open-source platform built upon the R language [52]. We then assessed if there are any ‘hot
spots’ or ‘cool zones’ using the Global and Local Moran’s I statistics, two crucial functions in GeoDa,
a freeware widely used among geographers [55]. Specifically, the Global Moran’s I is represented as:

I = (
n
C
)

n
∑

i=1

n
∑

j=1
cij(Xi − X)(Xj − X)

n
∑

i=1
(Xi − X)

2
(7)

where Xi and Xj are the number of households with three or more cars in the i-th and j-th census tracts,

respectively, and C =
n
∑

i=1

n
∑

j=1
cij, and cij is a typical element from a pre-defined n-th order connectivity

matrix, with C describing the connectivity between the i-th and j-th census tracts.
Additionally, the Local Moran’s I can be defined (for a given i-th census tract) as [56]:

Ii =

n(yi − y)
n
∑

j=1
wij(yj − y)

n
∑

j=1
(yj − y)2

(8)

where yi and yj denote the number of households with three or more cars in the i-th and j-th census
tract, respectively, and wij is an element of the spatial weight matrixes that correspond to distinct
connectivity definitions; Rook’s, Queen’s, and k-th Nearest Neighbor measures. The application of
three connectivity concepts helped the reliability of hypothesis testing. Another layer of the credibility
was further secured by the utilization of both raw data and standardized data in the ratio of events to
the population at risk.

5. Empirical Results

5.1. Quadrat Count Analysis

Table 2 indicates that at the 95% and 99% confidence levels, the observed spatial pattern of
households with three or more vehicles is other than random, exhibiting a tendency of clustering.
Accordingly, it is critical to explore whether the clustering of households with high rates of vehicle
ownership can be explained by the demographic and life style characteristics of households as well as
their surrounding built environments. The findings will be presented in the Section 5.2.

5.2. Poisson Regression Results

Table 3 displays the results of the standard Poisson procedure, and the lack of fit tests show that
we fail to reject the null hypothesis that the model provides adequate model fit. In other words, at the
99% and 95% confident levels, this best-fit model sufficiently explains the variation of the number of
cars per household. Nevertheless, the value of Dispersion Phi, 0.2865, implies an under-dispersion
issue of this current model, which may affect the efficiency of independent variables. This issue
may potentially relate to the distribution of the dependent variable and spatial autocorrelation of the
error terms.
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Table 2. Goodness of fit test for the Quadrat Count Analysis.

Number of Households with Three and
More Vehicles per Quadrat

Observed Number
of Quadrats

The Probability of Events under a Completely
Random Poisson Distribution

Expected Number
of Quadrats

Chi-Square
Statistics

0 191 0.1468 45.2078 470.1711
1 15 0.2816 86.7460 59.3398
2 16 0.2702 83.2255 54.3015

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
10 5 0.0000 0.0084 2955.6760
11 3 0.0000 0.0015 6114.4168

12 and more 8 0.0000 0.0003 232,467.0013
Total 308 1 308 242,658.76 *

Lambda: point density 1.9188

* significant at a 95% and 99% confidence level with a degree of freedom of 12.

Table 3. The results of standard Poisson regression.

Significant Explanatory Variables Coefficients Wald’s Chi Square

DRVRCNT 0.35 ** 129.38
HHFAMINCx 0.12 * 3.1
HOWNOWN −0.19 ** 5.06

HOSDENTRCT −0.00 ** 4.95
WORKER 0.06 ** 10.03

Dispersion Phi 0.29
Pseudo R Square 0.49

Final log likelihood −4357.11
Intercept-only likelihood −4833.37

Lack-of-Fit Test DF Chi Square

Pearson 3300 945.45
G statistics 3300 990.58

n = 3980; DF = Degree of Freedom; ** significant at 95% confident level; * significant at 90% confident level.
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To address the under-dispersion problem, we reran the regression using Dispersion Phi to correct
standard errors. Table 4 displays the model results, indicating an enhancement of the significance
of explanatory variables. Surprisingly, six variables are found to be significant at a 95% confidence
level. Specifically, the number of licensed drivers, household income, and the number of workers
have a significantly positive association with the household’s vehicle ownership level. Such statistical
inferences are intuitively reasonable since rich families have more purchasing power than poor ones
and therefore are more eager to obtain driving licenses to fulfill their flexible travel needs. Further
a household having more workers is more inclined to own more cars to commute to varying working
sites than one with fewer workers. These findings are largely in accordance with similar research
conducted in other metropolitan regions across the world [57,58].

Table 4. The results of the corrected Poisson regression.

Significant Explanatory Variables Coefficients Wald’s Chi Square

CLSCHOOL −0.16 ** 5.88
DRVRCNT 0.35 ** 451.60

HHFAMINCx 0.12 ** 10.82
HOWNOWN −0.19 ** 17.67

HOSDENTRCT −0.00 ** 17.27
WORKER 0.06 ** 35.02

Dispersion Phi 0.29
Pseudo R2 0.49

Final log likelihood −4357.11
Intercept-only likelihood −4833.37

Lack-of-Fit Test DF Chi2

Pearson 3300 945.45
G statistics 3300 990.58

n = 3980; DF = Degree of Freedom; ** significant at 95% confident level.

In addition, those households without properties have less cars than families living in their own
houses or apartments, all else being equal, which was echoed by a similar study done by Li et al.
(2010) [58]. Likewise, the variables of the distance to school and house density at the census tract level
have similar impacts on car ownership. In other words, shrunken levels of automobile ownership are
linked with higher densities of residential units and educational institutions, as also substantiated
by a couple of studies (see, for example, [26,58,59]). However, only six out of twenty-seven variables
add significantly explanatory powers in the current model. The majority of the measures of built
environment are insignificant. Particularly, car ownership levels in three counties appear to be
irrelevant to land use diversity, transit proximity, and job density; these variables have yet been argued
to affect vehicle ownership [60]. Such inconsistency may be partially ascribed to three reasons. First,
some other variables (such as housing densities) used in this work may already possess sufficient
information regarding the land use characteristics, thereby rendering similar ones insignificant. Second,
the interpretations are contingent upon concrete empirical locations. The USA has a long history of
prioritizing auto oriented developments. Under such developmental strategies, therefore, her citizens
may consider private cars favorably as a fundamental commuting alternative, even if recent years
have witnessed a burgeoning advancement of transit-oriented development in this nation.

Third, the current model may inefficiently capture additional unobserved factors, such as spatial
autocorrelation (Figure 4). Hence, the following sections will focus on exploring the spatial patterns of
auto ownership.
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5.3. Spatial Clustering Results

5.3.1. ‘Hot spot’ Detection Using the Global/Local Moran I Statistics

Global Moran’s I Statistics Based on Raw Data and Standardized Data

(1) Global Moran’s I statistics with raw data

Using the GeoDa software developed by the Center for Spatially Integrated Social Science,
we calculate the Global Moran’s I statistics based on various orders of nearest neighbors (Table 5).
The results show that, at the 95% confidence level, there exists globally spatial autocorrelation among
raw data (cases) at the nearest neighbors of different degrees.

Table 5. Global Moran’s I results for raw data at various scales of nearest neighbors (NN).

Moran’s I Results NN (2) NN (3) NN (4) NN (5) NN (6)

Moran’s Index 0.1725 0.1784 0.1744 0.1721 0.1639
Pseudo p value (99 permutations) 0.01 0.01 0.01 0.01 0.01

(2) Global Moran’s I statistics with standardized data

Next, raw data were standardized through dividing case data by population data, taking into
account the different size of the population at each polygon. Figure 5 shows that outliers were
eliminated after the standardization process.

Using the standardized data, the Global Moran’s I statistics for k nearest neighbors was generated
through GeoDa (Table 6). Interestingly, with 99 permutations of the Global Moran’s I statistics, there is
no evidence of global spatial autocorrelation even at a 90% confident level. In other words, the total
population of each location heavily impacts the results of global autocorrelation. This result may also
suggest that high auto ownership levels are correlated with population.
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Table 6. Global Moran’s I results for standardized data at various scales of nearest neighbors.

Moran’s I Results NN (2) NN (3) NN (4) NN (5) NN (6)

Moran’s Index 0.0355 0.0239 0.0026 - -
Pseudo p value (99 permutations) 0.11 (around) 0.19 (around) 0.40 (around) - -

Pseudo p value (999 permutations) 0.10 (around) 0.14 (around) 0.40 (around) - -

Local Moran’ I Statistics Based on Raw and Standardized Data

All tests were conducted in 999 permutations through GeoDa at the 0.05 significance level. Figure 6
indicates an obvious disparity of results between the raw and standardized data. As for the raw data,
the largest census tract in the north-west study area exhibits a trend of hotspots both under Rook’s
and Queen’s weighting schemes. However, this phenomenon is not intuitively reasonable in that this
census tract is not a populated area. In other words, the results would be biased if the population at
risk in each census tract is not considered. Furthermore, the results of the raw data are more similar to
the outcomes of the standardized data under the 2nd Nearest Neighbor weighting scheme than they
are under the other two. The results seem intuitively reasonable if the testing procedures take into
consideration the households with high levels of car ownership in neighboring tracts. Consequently,
there do exist several hot-spots and cool zones if the local test is based on raw data.
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With respect to standardized data, Figure 6 suggests a more consistent pattern than raw data
concerning hotspots and cool zones; ‘high-high’ areas and ‘low-low’ regions. For instance, there appear
only marginal differences of the sum and locations of the hotspots among three weighting schemes:
Rook’s (24), Queen’s (32), and two Nearest Neighbors (25). When it comes to raw data, though,
the number of hotspots (‘high-high’ areas) under boundary-based weighting schemes substantially
differs from the number of hotspots under distance-based weighting schemes. Such discrepancies
suggest that local hotspots and cool zones are randomly distributed over the study area. It seems that
the three countries have an even distribution of high levels of auto ownership.
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6. Discussion and Conclusions

The current paper illuminates the global and spatial patterns of vehicle ownership levels and
explored the factors associated with households’ vehicle counts. It develops a framework that can
be used to visualize and explain the spatial heterogeneity of auto ownership at the county level.
It validates this framework in Broward, Palm-Beach, and Miami-Dade Counties, southern Florida,
USA. This research indicates that the global pattern of households with high rates of vehicle ownership
is non-random if population at risk is not taken as a reference. Nevertheless, there is no statistical
evidence that households with three or more cars were globally clustered based on standardized data.
Moreover, this paper does not find robust evidence that those households with high levels of vehicle
ownership were locally clustered if the conclusion is made based on standardized data. In addition,
six variables are found to significantly affect car ownership, as shown by the regression results of
the Standard and Corrected Poisson models. The most substantial factors are the number of drivers
in households, housing tenure, and the number of workers in households. These findings are in
accordance with earlier studies [35,45,53]. The contributions of this work to the literature are twofold.
First, this paper establishes a refined index to characterize land use diversity based on the approach
of Guo et al. [44], and the measure appears to be scientifically sound to address those data sets with
limited information on land use. Second, the application of distinct connectivity models boosts the
robustness of hypothesis testing.

This paper also adds additional insights into planning practice. Whilst the socio-demographics of
households considerably impact their selection of travel modes, optimizing land use is beneficial to
mitigate car dependency [61]. Compact urban forms and mixed land use structures may counteract
households’ propensity to own a car. However, transportation policies and the regulations of private
vehicles should be tuned toward specific contexts. As stated in the introduction, regulators should
make distinct car usage policies based on different needs. Figure 6 might indicate that a tendency of
high car ownership is observed both in the downtown and rural regions, as represented by the red color.
Imposing a strict tax on car use (such as road pricing) over the whole region may cause concerns about
social inequity at the individual level. An elderly person with an apparent healthcare need may live in
suburban areas, as suggested by previous studies regarding the transportation accessibility of people
aged 65 or over [62,63]. These people residing in city peripheries may rely on private cars more heavily
in order to make more frequent health checkups and cancer screenings than citizens in metropolitan
regions. Thus, car ownership and its external consequences should be addressed in a way whereby
flexible polices can accommodate the voices of different social groups. For example, when examining
those areas of potentially high levels of car ownership, we need to be familiar with their demographic
information and land use patterns before arbitrarily discouraging car dependence. For example,
in download areas and central business districts, a variety of measures such as congestion pricing,
the increase of parking fees, and restrictions on parking space can be deployed to deter people’s desire
to own a private car, thereby promoting mass transit, cycling, walking, and other environmentally
friendly travel modes. Meanwhile, the elderly, disabled people, and those with frequent healthcare
needs can be exempt from those regulations of car usage with free parking space and discounted
congestion tolls [22]. The methods and outcomes of this work can be applied to formulate flexible
transportation policies.

Several limitations of this study deserve further investigation. First, this study does not conduct
a sensitivity analysis of the quadrat size, which may bias the results. Moreover, the quadrat analysis
and the spatial autocorrelation tests fail to consider edge or boundary effects of the study area. This may
hamper the testing statistics. Second, the study is based on sample data, limiting its ability to model or
predict human behaviors, and the statistical implications are unbiased only when the population at
risk is explicitly integrated in the correlation analysis. Third, the under-dispersion issue of the Poisson
model requires further scrutiny.

This paper opens several promising avenues for follow up work and future research. First,
prospective efforts can improve the techniques of the spatial autocorrelation of car ownership levels by
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developing innovative ways for edge or boundary corrections. In addition, future studies may employ
other types of generalized models, including spatial error, spatial lag, multilevel ordered-response,
and system dynamics models, for better revealing the impacts of land use patterns on vehicle
ownership. With the rapid development of hardware and computers’ computational capacities,
major auto manufacturers expand their investment in electric, hybrid-energy, and autonomous vehicles.
Hence, the spatial patterns of the ownership levels of those vehicle types will be a fruitful direction in
the near future.
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