
sustainability

Article

Relating Knowledge and Perceptions of Sustainable
Water Management to Preferences for Smart
Irrigation Technology

Dong Hee Suh 1, Hayk Khachatryan 2,3,*, Alicia Rihn 3 and Michael Dukes 4

1 Department of Food and Resource Economics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841,
Korea; dhsuh@korea.ac.kr

2 Food and Resource Economics Department, University of Florida, 2725 S. Binion Rd, Apopka,
FL 32703-8504, USA

3 Mid-Florida Research and Education Center, University of Florida, 2725 S. Binion Rd, Apopka,
FL 32703-8504, USA; arihn@ufl.edu

4 Department of Agricultural and Biological Engineering, University of Florida, 205 Frazier Rogers Hall,
P.O. Box 110570, Gainesville, FL 32611-0570, USA; mddukes@ufl.edu

* Correspondence: hayk@ufl.edu; Tel.: +1-407-410-6951

Academic Editor: Paul Opdam
Received: 20 February 2017; Accepted: 12 April 2017; Published: 14 April 2017

Abstract: Water quantity and quality concerns in urban environments have prompted conservation
groups, governmental agencies, and policy makers to develop and promote residential water
conservation programs, including restrictions on residential landscape irrigation practices and
incentives for the adoption of water-efficient appliances. Previous literature links household
characteristics, financial incentives, and demographic characteristics to the adoption of water-efficient
appliances and overall water use. However, relatively little attention has been given toward
understanding how homeowners’ perceptions and knowledge of smart irrigation technologies affect
their preferences or stated purchase likelihood of such irrigation equipment. To address this gap in
the literature, this paper identifies perception- and knowledge-related factors that are correlated with
the purchase likelihood of smart irrigation controllers. The generalized logit regression model results
suggest that knowledge about irrigation systems and residential landscaping are positively correlated
with purchase likelihood. Similarly, homeowners’ perceptions about conservation efforts, water
restrictions, and their neighbors’ irrigation habits all increase purchase likelihood. Combined with
statistically-significant correlations of several socio-demographic variables and purchase likelihood,
these results have theoretical and practical implications, which are summarized in this paper.
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1. Introduction and Background

Sustainable water management is becoming more imperative as population growth, climate
change, drought, water pollution, and economic growth have increased the demand for water [1,2].
In 2010, U.S. households accounted for 7.6% of all national water use at an average of 88 gallons per
capita per day [3]. Currently, the majority (75%) of residential water is being used for outdoor purposes,
including landscape irrigation [4,5]. The U.S. Environmental Protection Agency (EPA) estimates that
U.S. households use nine billion gallons of water daily to irrigate their landscapes [6]. Irrigation is often
necessary to maintain landscape aesthetics and health [2,5]. Thus, residential irrigation efficiency is
imperative when considering sustainable water management in urban areas. Well-managed residential
landscapes enhance the urban environment and provide economic, environmental and lifestyle/health
benefits including erosion/dust control, ground/surface water quality protection, urban heat/noise
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reduction, carbon sequestration, and psychological well-being benefits [7–11]. Although necessary
for plant health, irrigation can have negative environmental and economic consequences when used
excessively, including depleting water availability, increasing waterway pollution/contamination
due to fertilizer/nutrient runoff and leaching, deteriorating turfgrass/plant health, and increasing
homeowners’ utility bills [1,12–14]. This is concerning since homeowners often over-irrigate and
their irrigation schedules frequently deviate from local irrigation restrictions [15]. The issue is further
complicated by 28% of the continental U.S. experiencing moderate to exceptional drought in 2016 [16].

Water scarcity concerns have prompted conservation groups, governmental agencies, and policy
makers to develop and promote residential water conservation programs, restrictions, and products,
including water-efficient appliances and landscape irrigation practices [6,14,17–23]. For instance,
the EPA’s WaterSense® Program labels water-efficient products [6]. In Southern California, the
SoCal Water$mart Program provides rebates to homeowners who purchase water-efficient products
(including turf removal, clothes washers, toilets, rain barrels/cisterns, sprinkler nozzles, soil moisture
sensors, and irrigation controllers [21]). Similarly, the Oregon State University’s WaterWise Gardening
Program promotes using plants and products that use little-to-no water in the landscape [20]. Although
these programs offer different incentives and cover diverse products and regions with unique water
needs, they all have the same goal of increasing homeowners’ use of water-efficient technologies that
improve water quality and conserve water resources. In turn, homeowners receive environmental (less
water waste) and financial (lower water bills) benefits from installing water-efficient technologies and
products [14,24,25]. Previously, research demonstrated that several water conservation policies and
programs emphasizing long-term environmental improvement are effective [1] with 19–26% reductions
in water usage [26].

With the technological advancements in the past decade, the residential irrigation services industry
has gradually transitioned to smart technologies, which improve irrigation system usability while
decreasing over-irrigation [27]. Smart irrigation technology utilizes sensors to measure and regulate
irrigation based on ambient and soil moisture measures, which is very different from traditional
time-based controller systems [27,28]. This information is then available to the homeowner through an
in-home station, their smartphone or tablet. There are two main types of smart irrigation controllers:
soil moisture sensors (SMS) or evapotranspiration (ET) based controllers. SMS controllers use soil
moisture information to regulate/bypass irrigation events based on plant needs [29]. Conversely,
ET controllers obtain information from on-site weather stations or local/regional weather networks to
determine landscape irrigation requirements [27,28]. Because of local information integration, smart
irrigation controllers are generally more efficient than traditional time-based systems [27–30]. Davis
and Dukes (2012) estimate that using ET controllers reduces irrigation water use by 63% [27], while
Cárdenas-Lailhacar and Dukes (2012) state that SMS controllers reduce irrigation water by 42–72% [29].

However, it is natural to think that water savings will also depend on individual irrigation
practices. Admittedly, regional climatic factors are closely related to irrigation usage and ultimately
water savings. While some regions require less irrigation due to adequate rainfall and humid weather
patterns, others require more irrigation due to drier conditions. However, individual irrigation
behavior reflects regional weather patterns because homeowners apply irrigation water onto their
landscapes as needed. Due to heterogeneous subjective perceptions of the optimal irrigation level,
it is natural that water savings are dependent on individual behavior. In addition, this study
focuses on water management for lawns and landscapes in general. Since lawns and landscape
composition is controlled mainly by individual preferences, native vegetation was not considered in
this study. For instance, homeowners who under-irrigate their landscapes may actually start using
more irrigation water with sensor-based technologies. Conversely, those who excessively irrigate will
save a considerable amount of irrigation water. The savings of smart irrigation controllers is lower
than those of traditional irrigation controllers (typically less than 10%) due to the lack of knowledge by
contractors and homeowners [30]. Other studies have found low consumer knowledge about smart
irrigation controllers, which hinders their adoption rate [31]. To date, most smart irrigation controller
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studies focus on performance factors and their water saving potential [15,27,29,30]. In contrast, very
few studies have addressed consumers’ knowledge of smart irrigation technology and how that
influences their purchasing/implementation behavior.

Since consumers’ behavior directly affects household water use [14], it is useful to understand
what motivates their adoption of water-conserving technologies. Environmental concerns, financial
considerations, and household demographics are the main factors influencing consumers’ adoption of
water-efficient technologies [14,19,24,25,32,33]. Consumers who are more environmentally conscious
are more likely to take actions to conserve water, including purchasing water-efficient products [19,25].
In turn, reduced water usage/waste decreases consumers’ water bills [14,24]. Therefore, it is not
surprising that consumers with water bills based on actual water usage are more likely to adopt
water-efficient technologies [19,25]. Estimates indicate that households adopting water-efficient
appliances reduce their water usage by 26.6% [24]. Willis et al. (2013) estimate that many
water-efficient appliances pay for themselves within two years [14]. Regarding the relationship
between socio-demographic characteristics and water conservation technology adoption, studies
found that consumers are more likely to purchase water-efficient appliances if they own their home,
have a higher income, or a larger household [19,25]. The implications of these studies are that
consumers are willing to purchase items that reduce their household water usage and provide axillary
benefits. However, consumers’ preferences and adoption of new irrigation technologies (e.g., smart
irrigation controllers) to reduce water waste in the residential landscapes is not understood.

Previous studies also identify factors and household characteristics that affect water-efficient
equipment purchases [24,32] and increase residential irrigation use [14]. These studies suggest that
environmental concerns affect consumer preferences for water saving technologies [19,25]. However,
relatively little attention was paid to understand how homeowner’s knowledge and perceptions affect
their preferences or purchase likelihood of smart irrigation technologies. Since relevant irrigation
policies are formulated by understanding homeowner’s concerns on water-saving technologies, it is
necessary to examine the extent to which homeowner’s knowledge and perceptions are associated
with the purchase likelihood of smart irrigation equipment. Thus, the main purpose of this study was
to identify the factors that are correlated with the purchase likelihood of smart irrigation controllers
and compare the factors across three geographical areas/states (California, Florida and Texas).

The use of individual perceptions and knowledge in our study can be linked to Ajzen’s theory
of planned behavior in psychology [34–36]. As Ajzen suggested, individual behavior should be
reflected in attitudes, subjective norms, knowledge and perceptions, and environmentally-friendly
behavior could be induced by individual beliefs on the importance of sustainable management of the
environment. Applying this general theoretical framework to urban landscape management practices,
our study tests hypotheses predicting households’ behavioral changes with respect to knowledge and
perceptions of sustainable water management. Incorporating socio-economic variables, our study uses
an econometric technique for discrete choice responses of households.

Based on the findings and research gaps from the previous literature summarized above, the
specific hypotheses that were tested are as follows. First, we hypothesize that consumer knowledge
about their lawns and landscapes will be positively correlated with their purchase likelihood of
smart irrigation controllers (Hypothesis 1). We also hypothesize that knowledge about smart
irrigation controllers will be positively correlated with homeowners’ purchase likelihood of smart
irrigation controllers (Hypothesis 2). The third and fourth hypotheses are that perceptions on water
conservation will be positively correlated with the purchase likelihood of smart irrigation controllers
(Hypothesis 3) and that perceptions on smart irrigation controllers will be positively correlated
with the purchase likelihood of smart irrigation controllers (Hypothesis 4). Further, we hypothesize
that demographic characteristics will be associated with the purchase likelihood of smart irrigation
controllers (Hypothesis 5) and that the factors that induce the purchase likelihood of smart irrigation
controllers will differ across states (i.e., California, Florida and Texas) (Hypothesis 6).



Sustainability 2017, 9, 607 4 of 21

2. Methodology

2.1. Survey and Summary Statistics

The survey was conducted by a third party contractor (Qualtrics Online Survey Software, LLC,
Provo, UT, USA) in May 2014 using an online questionnaire, which covered three states: California,
Florida and Texas. These three states were selected because they accounted for one-quarter of all U.S.
water withdrawals and had issues related to landscape irrigation water management. Moreover,
the U.S. Drought Monitor (2016) showed that California and Texas were under moderate, but
exceptional drought during 2014. At that time, Florida was not under extreme drought, but had
issues related to water shortages and degradation. In order to participate, respondents were screened
based on the following criteria: (1) live in a home with a lawn; (2) have an automated irrigation
system installed; and (3) do not use smart irrigation sensors (ET, SMS) in their irrigation system.
Individuals who met the screening criteria were asked to complete the questionnaire, which took
approximately 20 min. The survey was sent to 1000 randomly-selected homeowners in each state
(a total of 3000 homeowners). Due to incomplete responses, a total of 2641 homeowners (~88% response
rate) completed the questionnaire (873 in California, 881 in Florida and 887 in Texas). Admittedly,
the sample may not correspond to the U.S. population because this study targeted individuals with
automated lawn irrigation systems. However, the screening criteria were essential because individuals
with lawns and irrigation systems (but not smart irrigation) were of interest in the study because
the probability of them being concerned and familiar with their household’s irrigation water usage
was higher than those of people without lawns or irrigation systems. Therefore, the study results
correspond to consumers within the core “target market” of the smart irrigation industry.

The survey consisted of three sections. The first section included questions about respondents’
existing irrigation practices and general knowledge about characteristics of irrigation systems
and residential landscapes. The second section represented respondents’ overall knowledge and
perceptions about landscape irrigation, smart irrigation systems, and the environment. Lastly, the
third section included respondents’ socio-economic and demographic information.

Respondents’ socio-demographic variables are summarized in Table 1. Most respondents (68.2%)
were over 35 years old; 28.9% were 20–34 years old; and 2.8% were less than 20 years old. Similar
characteristics were found for California and Texas. Florida’s 20–34-year-old group had a slightly
higher percentage at 31.8%. Most respondents (87.5%) had obtained a college degree at the time of
the study. The majority of respondents were female (62.9%) and had less than one child (76.6%) with
“child” defined as less than 18 years old. The 76.6% of households with less than 1 child includes
both households without children and those with adult (>18 years) children. This is an important
point since a fair number of participants (31.12%) are over 55 years old and may have adult children.
Over one-third of the respondents (33.9%) were in the $20,000–$59,999 income category, followed
by the $60,000–$99,999 and $100,000–$139,999 category. California and Florida exhibited similar
income trends; however, Texas had slightly higher incomes with respondents primarily being in the
$60,000–$99,999 category, followed by the $20,000–$59,999 category (Table 1). Although different from
the U.S. population, the sample socio-demographics align with the core consumer of lawn and garden
purchases (i.e., older, female, married, more educated [37]).
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Table 1. Summary statistics of demographic characteristics.

Full Sample California Florida Texas

Age

Less than 20 2.84% 3.09% 2.72% 2.71%
20–34 28.93% 28.06% 31.78% 26.94%
35–54 37.11% 35.62% 37.57% 38.11%
More than 55 31.12% 33.22% 27.92% 32.24%

Education

Less than college degree 12.46% 13.29% 12.83% 11.27%
College degree or higher 87.54% 86.71% 87.17% 88.73%

Gender

Female 62.85% 62.77% 64.93% 60.88%
Male 37.15% 37.23% 35.07% 39.12%

Number of Kids (<18 years old)

Less than 1 76.56% 76.29% 77.19% 76.21%
2–3 20.60% 20.85% 19.75% 21.20%
4–5 2.69% 2.63% 2.95% 2.48%
More than 6 0.15% 0.23% 0.11% 0.11%

Household Income

Less than $19,999 5.04% 5.50% 6.36% 3.27%
$20,000–$59,999 33.85% 32.07% 41.88% 27.62%
$60,000–$99,999 31.16% 29.44% 32.58% 31.45%
$100,000–$139,999 15.98% 17.18% 11.92% 18.83%
$140,000–$179,999 6.47% 7.10% 4.20% 8.12%
$180,000–$299,999 5.64% 7.10% 2.38% 7.44%
More than $300,000 1.86% 1.60% 0.68% 3.27%

Table 2 summarizes respondents’ purchase likelihood, knowledge and perceptions regarding
smart irrigation technology. With an average score of 4.13 (1 = extremely unlikely; 7 = extremely likely),
most respondents were “undecided” on their purchase likelihood of a smart irrigation controller in the
next five years. Regarding knowledge about irrigation systems and lawns/landscapes, participants
reported relatively low knowledge levels with sprinkler application rates having the lowest level,
followed by soil type and then turfgrass/plant types. They were slightly more knowledgeable about
turfgrass/plant water needs. Texas respondents indicated a slightly higher level of knowledge for
turfgrass/plant types and their water needs. All respondents indicated very low knowledge of
smart irrigation controllers with ET-based controllers having the lowest knowledge level followed
by SMS-based controllers. Regarding water conservation perceptions, participants agreed with the
statement “my state has insufficient water resources and I need to conserve water” the most, followed
by “I feel my conservation of water affects the overall supply”, “I am aware of water restrictions in my
area”, and “I often see my neighbors over-irrigating.” Respondents were asked about their perceptions
of their neighbors’ irrigation habits to identify their perceptions of the neighborhood irrigation norms.
Californian respondents agreed with the state, conservation and neighbors’ statements slightly more
than the other states, while respondents from Florida and Texas agreed with the water restrictions
statement more than California respondents. When considering participants’ perceptions of smart
irrigation controllers, respondents indicated that smart irrigation controllers were easier to use and
more reliable than conventional controllers. However, smart irrigation controllers were perceived as
more expensive than conventional controllers.
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Table 2. Variable descriptions.

Variable Description Full (N = 2641) California (N = 873) Florida (N = 881) Texas (N = 887)

M SD M SD M SD M SD

Purchase likelihood
“When available, how likely is it that you will actually purchase smart
irrigation controllers in the next five years?” (1 = Extremely unlikely to
7 = Extremely likely)

PURCHASE Likert-type scale 4.13 1.49 4.14 1.48 4.13 1.50 4.11 1.48

Knowledge about
irrigation system and
lawn/landscape

“How knowledgeable are you about each of the following characteristics of
your irrigation system and lawn/landscape?” (1 = not at all knowledgeable to
7 = strongly knowledgeable)

RATE Sprinkler application rates 3.39 1.87 3.42 1.88 3.29 1.85 3.44 1.89
TURF Turfgrass/plant types 3.98 1.84 3.84 1.80 3.97 1.85 4.14 1.87
WATER Water needs of turfgrass/plants 4.13 1.78 4.12 1.76 4.07 1.82 4.20 1.75
SOIL Soil type 3.67 1.86 3.73 1.88 3.51 1.84 3.77 1.84

Knowledge about
smart irrigation
controllers

“How knowledgeable are you about each of the following irrigation
controllers?” (1 = not at all knowledgeable to 7 = strongly knowledgeable)

SMS Soil moisture sensor (SMS)-based controllers 2.23 1.59 2.29 1.63 2.20 1.56 2.21 1.58
ET Evapotranspiration (ET)-based controllers 1.97 1.46 2.00 1.48 1.95 1.44 1.95 1.46

Perception on water
conservation

“Please indicate your agreement with the following statements.” (1 = strongly
disagree to 5 = strongly agree)

CONSERVE I feel my conservation of water affects the overall supply 3.71 1.05 3.74 1.05 3.70 1.07 3.68 1.04
RESTRICT I am aware of water restrictions in my area 3.58 1.35 3.32 1.33 3.67 1.31 3.74 1.37
NEIGH I often see my neighbors over-irrigating 3.23 1.18 3.31 1.18 3.18 1.19 3.20 1.17
STATE My state has insufficient water resources and I need to conserve water 4.32 0.92 4.53 0.87 4.12 0.95 4.32 0.88

Perception on smart
irrigation controllers

“What is your perception of the advantages and disadvantages of conventional
vs. smart irrigation controllers?” (1 = conventional controller is better to
7 = smart irrigation controller is better)

PRICE Price 3.43 1.76 3.33 1.75 3.53 1.79 3.43 1.74
EASE Ease of use 4.50 1.70 4.38 1.64 4.54 1.77 4.56 1.68
RELIABLE Reliability 4.54 1.65 4.45 1.56 4.62 1.69 4.55 1.68
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2.2. Generalized Ordered Logit Model

The ordered-response (dependent) variable represents respondents’ purchase likelihood of smart
irrigation controllers using a seven-point Likert scale (1 = extremely unlikely; 7 = extremely likely).
Since the response variable has an ordinal nature, the ordered logit model was used to explore
the influence of other factors on homeowners’ purchase likelihood of smart irrigation controllers.
Previously, the ordered logit model has been used to identify the influence of different variables
on consumers’ preference and/or purchase likelihood for different products [38–44]. Following the
approach used in Suh et al. (2016), the ordered logit model estimates the probability that homeowner i.
takes on the value (Yi) when homeowner i faces the j-th ordered-category for j = 1, · · · , M where M
is the number of categories of the ordinal responses [43]. The ordered logit model is written as follows:

P(YI > j) = f (Xiβ) =
exp

(
αj + Xiβ

)
1 + exp

(
αj + Xiβ

) for j = 1, · · · , M − 1 (1)

where P(·) is the probability, f (·) is the probability density function of the standard logistic distribution,
Xi is a vector of explanatory variables for homeowner i and α and β represent cut-off and slope
parameters, respectively [45,46]. The ordered logit model assumes that the slope parameters (β) do
not vary over different alternatives, but the cut-off parameters

(
αj
)

vary over j = 1, · · · , M − 1. This is
known as the proportional-odds or parallel-lines assumption, which implies that parameters do not
change for different categories. That is, the correlation between independent and dependent variables
does not vary over the variable categories. However, empirical applications of the ordered logit model
frequently violate the parallel-lines assumption [23,47,48]. To relax the parallel-lines assumption, the
generalized ordered logit model was developed by Williams (2006), which is written as:

P(Yi > j) = f
(
Xiβ j

)
=

exp
(
αj + Xiβ j

)
1 + exp

(
αj + Xiβ j

) for j = 1, . . . , M − 1. (2)

This allows the slope parameters
(

β j
)

to vary over each category of the dependent variable. That
is, this model allows variations for the slope parameters, as well as the cut-off parameters of different
categories. In the generalized ordered logit model, the probabilities are expressed as:

P(Yi = 1) = 1 − F(Xiβ1)

P(Yi = j) = F
(
Xiβ j−1

)
− F

(
Xiβ j

)
for j = 2, . . . , M − 1

P(Yi = M) = F(XiβM−1)

(3)

where F(·) indicates the cumulative density function of the standard logistic distribution.
The parameters specified in this model are relevant to the likelihood of the dependent variable [23].
Positive parameters indicate that the explanatory value is likely to increase the probability that the
respondents belong to the current or a higher category defined in the dependent variable. On the
other hand, negative parameters indicate that the explanatory variable increases the likelihood of the
respondent being in the current or a lower category.

3. Results and Discussion

The ordered logit model estimation results were tested for the parallel-lines assumption. Brant’s
(1990) Wald test was used to check the null hypothesis that all of the estimated coefficients satisfy the
parallel-lines assumption, which determines whether the ordered logit model is appropriate for the
data [49]. If the null hypothesis is not rejected, the ordered logit model can be used for the analysis.
Alternatively, if the null hypothesis is rejected, the generalized ordered logit model is preferred to the
ordered logit model [47]. Table 3 summarizes the test results for the parallel-lines assumption. For the
full sample, the results show that the null is rejected at the 1% significance level, suggesting that the
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generalized ordered logit model should be used due to the violation of the parallel-lines assumption.
The null hypothesis is rejected for the state-level sub-samples. The test rejects the parallel-lines
assumption for the sample of California and Texas at the 1% significance level and 10% significance
level for Florida’s sample. The results indicate that the generalized ordered logit model is preferred to
the ordered logit model. Thus, the generalized ordered logit model is estimated using the maximum
likelihood method [45].

The estimated coefficients of the generalized ordered logit model representing the relationships
between knowledge levels, perceptions, demographic measures and purchase likelihood of smart
irrigation controllers are shown in Tables 4–7. In each table, the first six columns represent the log odds
of choosing each category relative to the rest of the categories. The first column shows the log odds of
selecting the first category (i.e., category = 1) versus the other categories (i.e., category = 2, 3, 4, 5, 6, 7),
and the second column shows the log odds of selecting the first and second categories (i.e., category
= 1, 2) versus the other categories (i.e., category = 3, 4, 5, 6, 7). The other columns represent similar
comparisons between the categories. The estimates in the first six columns measure the effects of the
explanatory variables on homeowners’ purchase likelihood of smart irrigation controllers. Only the
signs of the estimates are meaningful. The marginal effects are also presented in each table (the last
seven columns), which indicate the change in homeowners’ possible purchase likelihood with respect
to a change in each explanatory variable. The marginal effects provide direct implications of the
respondents’ knowledge and perceptions on their purchase likelihood of smart irrigation controllers.
In the next section, we discuss the marginal effects for the entire sample (H1–H5) and individual
states (H6).

Table 3. Brant test for parallel-lines assumption.

Variable a
Full Sample California Florida Texas

χ2 p > χ2 b d.f. c χ2 p > χ2 d.f. χ2 p > χ2 d.f. χ2 p > χ2 d.f.

ALL 173.62 0.000 85 150.4 0.000 85 108.90 0.085 85 150.05 0.000 85
RATE 6.98 0.222 5 10.73 0.057 5 5.07 0.407 5 3.93 0.559 5
TURF 4.06 0.540 5 9.83 0.080 5 5.03 0.412 5 11.77 0.038 5
WATER 1.69 0.890 5 3 0.700 5 6 0.306 5 3.43 0.633 5
SOIL 7.46 0.189 5 3.73 0.589 5 4.57 0.471 5 19.44 0.002 5
SMS 3.95 0.556 5 12.7 0.026 5 0.98 0.964 5 4.23 0.517 5
ET 4.98 0.418 5 13.87 0.016 5 6.22 0.286 5 4.95 0.422 5
CONSERVE 8.6 0.126 5 6.49 0.262 5 8.98 0.110 5 9.06 0.107 5
RESTRICT 8.78 0.118 5 7.5 0.186 5 4.14 0.530 5 8.74 0.120 5
NEIGH 3.69 0.595 5 5.81 0.325 5 3.76 0.585 5 8.21 0.145 5
STATE 10.85 0.054 5 14.55 0.012 5 13.17 0.022 5 4.13 0.531 5
PRICE 10.36 0.066 5 8.61 0.126 5 6.45 0.265 5 3.73 0.589 5
EASE 7.57 0.182 5 1.24 0.941 5 1.56 0.906 5 8.51 0.130 5
RELIABLE 7.47 0.188 5 9.96 0.076 5 1.4 0.925 5 9.18 0.102 5
INCOME 7.87 0.164 5 2.15 0.828 5 1.93 0.859 5 9.54 0.089 5
AGE 23.28 0.000 5 17.55 0.004 5 13.32 0.021 5 1.82 0.873 5
KIDS 15.59 0.008 5 7.93 0.160 5 10.18 0.070 5 8.77 0.119 5
EDUC 4.82 0.439 5 5.51 0.357 5 1.55 0.908 5 4.69 0.455 5
GENDER 11.96 0.035 5 10.52 0.062 5 10.49 0.062 5 7.17 0.209 5

a See Table 1 for variable definitions; b a significant test statistic indicates that the parallel regression assumption has
been violated; c d. f . indicates degree of freedom.
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Table 4. Estimation results of the generalized ordered linear logit model: full sample.

Thresholds between Purchase Likelihood Marginal Effects on Purchase Likelihood

1 vs. 2, 3, 4,
5, 6, 7 ab

1, 2 vs. 3, 4,
5, 6, 7

1, 2, 3 vs. 4,
5, 6, 7

1, 2, 3, 4 vs.
5, 6, 7

1, 2, 3, 4, 5
vs. 6, 7

1, 2, 3, 4, 5,
6 vs. 7 1 2 3 4 5 6 7

RATE
0.094 0.138 *** 0.084 ** 0.071 ** 0.145 *** 0.217 ** −0.003 −0.011 *** 0 −0.003 0.003 0.011 ** 0.004 **

(0.064) b (0.045) (0.038) (0.034) (0.045) (0.087) (0.002) (0.004) (0.005) (0.008) (0.007) (0.004) (0.002)

TURF
0.035 −0.011 −0.037 0.029 0.068 0.071 −0.001 0.002 0.005 −0.014 0 0.006 0.001

(0.073) (0.053) (0.045) (0.041) (0.057) (0.106) (0.003) (0.005) (0.006) (0.009) (0.009) (0.005) (0.002)

WATER
0.024 0.051 0.022 0.062 0.018 0.019 −0.001 −0.004 0.001 −0.011 0.013 0.001 0

(0.079) (0.055) (0.047) (0.043) (0.059) (0.113) (0.003) (0.005) (0.006) (0.010) (0.010) (0.005) (0.002)

SOIL
0.102 0.134 *** 0.139 *** 0.071 * 0.143 *** −0.033 −0.004 −0.010 ** −0.011 ** 0.007 0.003 0.015 *** −0.001

(0.070) (0.049) (0.040) (0.037) (0.051) (0.100) (0.003) (0.004) (0.005) (0.008) (0.008) (0.005) (0.002)

SMS
0.16 0.185 ** 0.213 *** 0.159 *** 0.067 0.103 −0.006 −0.014 ** −0.018 ** −0.001 0.032 *** 0.005 0.002

(0.110) (0.078) (0.065) (0.050) (0.060) (0.103) (0.004) (0.006) (0.008) (0.013) (0.011) (0.006) (0.002)

ET
0.248 * 0.15 0.105 0.047 0.099 −0.002 −0.009 * −0.007 −0.003 0.007 0.001 0.010 * 0
(0.146) (0.096) (0.076) (0.056) (0.064) (0.104) (0.005) (0.008) (0.010) (0.015) (0.013) (0.006) (0.002)

CONSERVE
0.068 0.018 0.105 ** 0.145 *** 0.072 0.301 *** −0.003 0.001 −0.017 ** −0.017 0.028 *** 0.002 0.006 ***

(0.083) (0.059) (0.050) (0.046) (0.057) (0.106) (0.003) (0.005) (0.007) (0.011) (0.010) (0.005) (0.002)

RESTRICT
0.049 −0.008 −0.022 −0.013 0.036 0.200 ** −0.002 0.003 0.003 −0.001 −0.007 0 0.004 **

(0.059) (0.043) (0.037) (0.034) (0.048) (0.090) (0.002) (0.004) (0.005) (0.008) (0.008) (0.004) (0.002)

NEIGH
0.02 0.067 0.086 ** 0.127 *** 0.108 *** 0.133 −0.001 −0.006 −0.008 −0.016 * 0.020 ** 0.008 * 0.002

(0.067) (0.047) (0.040) (0.038) (0.050) (0.090) (0.002) (0.004) (0.005) (0.009) (0.008) (0.005) (0.002)

STATE
0.016 −0.032 −0.071 −0.052 −0.088 −0.369 *** −0.001 0.004 0.009 0.000 −0.004 −0.002 −0.007 ***

(0.095) (0.069) (0.060) (0.055) (0.070) (0.109) (0.004) (0.006) (0.008) (0.013) (0.013) (0.006) (0.002)

PRICE
0.148 *** 0.197 *** 0.192 *** 0.111 *** 0.143 *** 0.143 ** −0.005 *** −0.015 *** −0.013 *** 0.007 0.012 ** 0.012 *** 0.003 **
(0.052) (0.036) (0.030) (0.027) (0.036) (0.066) (0.002) (0.003) (0.004) (0.006) (0.006) (0.003) (0.001)

EASE
0.124 ** 0.060 0.073 ** 0.107 *** 0.119 ** 0.296 *** −0.005 ** −0.002 −0.007 −0.013 * 0.014 * 0.007 0.005 ***
(0.057) (0.039) (0.034) (0.033) (0.048) (0.092) (0.002) (0.003) (0.004) (0.007) (0.008) (0.004) (0.002)

RELIABLE
0.113 * 0.150 *** 0.115 *** 0.189 *** 0.222 *** 0.192 ** −0.004 * −0.012 *** −0.005 −0.026 *** 0.024 *** 0.019 *** 0.004 **
(0.058) (0.040) (0.035) (0.034) (0.049) (0.090) (0.002) (0.004) (0.004) (0.008) (0.008) (0.004) (0.002)

INCOME
0.258 *** 0.099 ** 0.109 *** 0.100 *** 0.085 * 0.053 −0.010 *** −0.001 −0.009 ** −0.005 0.016 ** 0.008 * 0.001
(0.067) (0.042) (0.036) (0.033) (0.045) (0.084) (0.002) (0.004) (0.005) (0.007) (0.007) (0.004) (0.002)

AGE
−0.603 *** −0.314 *** −0.279 *** −0.205 *** −0.138 * 0.095 0.022 *** 0.011 * 0.016 ** 0.001 −0.036 *** −0.016 ** 0.002

(0.109) (0.070) (0.061) (0.057) (0.076) (0.147) (0.004) (0.006) (0.007) (0.013) (0.013) (0.007) (0.003)

KIDS
0.020 0.223 * 0.348 *** 0.383 *** 0.179 * 0.710 *** −0.001 −0.023 ** −0.038 *** −0.032 0.075 *** 0.005 0.013 ***

(0.193) (0.129) (0.106) (0.087) (0.108) (0.174) (0.007) (0.011) (0.013) (0.021) (0.020) (0.010) (0.004)

EDUC
0.030 0.139 0.098 0.170 −0.076 0.097 −0.001 −0.014 −0.002 −0.023 0.049 * −0.010 0.002

(0.249) (0.165) (0.142) (0.134) (0.175) (0.358) (0.009) (0.016) (0.019) (0.031) (0.028) (0.017) (0.006)
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Table 4. Cont.

Thresholds between Purchase Likelihood Marginal Effects on Purchase Likelihood

1 vs. 2, 3, 4,
5, 6, 7 ab

1, 2 vs. 3, 4,
5, 6, 7

1, 2, 3 vs. 4,
5, 6, 7

1, 2, 3, 4 vs.
5, 6, 7

1, 2, 3, 4, 5
vs. 6, 7

1, 2, 3, 4, 5,
6 vs. 7 1 2 3 4 5 6 7

GENDER
0.014 0.134 *** 0.134 −0.180 *** −0.299 ** −0.069 −0.001 −0.014 −0.010 0.068 *** −0.013 −0.030 * −0.001

(0.176) (0.120) (0.102) (0.092) (0.119) (0.216) (0.007) (0.011) (0.013) (0.021) (0.021) (0.012) (0.004)

Constant
0.232 −1.438 −2.115 *** −4.255 *** −5.973 *** −9.888 *** - - - - - - -

(0.705) (0.491) (0.415) (0.381) (0.500) (0.959)

Observation = 2641
Log likelihood = −4163.120

Log likelihood ratio χ2 (108) = 910.490
Pseudo R2 = 0.099

Notes: Bold font indicates significant coefficients with *, ** and *** denoting statistical significance at the 10%, 5% and 1% level, respectively; a 1 = extremely unlikely; 2 = very unlikely;
3 = moderately unlikely; 4 = neutral; 5 = moderately likely; 6 = very likely; 7 = extremely likely; b standard errors are in parentheses.

Table 5. Estimation results of generalized ordered linear logit model: California.

Thresholds between Purchase Likelihood Marginal Effects on Purchase Likelihood

1 vs. 2, 3, 4,
5, 6, 7 a,b

1, 2 vs. 3, 4,
5, 6, 7

1, 2, 3 vs. 4,
5, 6, 7

1, 2, 3, 4 vs.
5, 6, 7

1, 2, 3, 4, 5
vs. 6, 7

1, 2, 3, 4, 5, 6
vs. 7 1 2 3 4 5 6 7

RATE
0.055 0.197 ** 0.175 * 0.017 0.104 0.553 ** −0.002 −0.016 −0.012 0.025 * −0.007 0.007 0.004 **

(0.185) b (0.085) (0.070) (0.062) (0.086) (0.214) (0.005) (0.008) (0.009) (0.015) (0.014) (0.009) (0.002)

TURF
0.232 −0.124 −0.051 0.080 0.078 −0.274 −0.007 0.018 ** −0.002 −0.028 * 0.011 0.010 −0.002

(0.176) (0.098) (0.082) (0.071) (0.104) (0.262) (0.005) (0.008) (0.010) (0.016) (0.016) (0.010) (0.002)

WATER
0.130 0.098 0.009 0.080 −0.082 0.208 −0.004 −0.005 0.007 −0.018 0.028 * −0.010 0.002

(0.162) (0.097) (0.079) (0.071) (0.103) (0.223) (0.005) (0.008) (0.009) (0.016) (0.016) (0.010) (0.002)

SOIL
0.046 0.158 * 0.078 0.076 0.156 * 0.107 −0.001 −0.012 0.001 −0.005 0.002 0.015 * 0.001

(0.192) (0.089) (0.070) (0.063) (0.093) (0.239) (0.006) (0.008) (0.009) (0.014) (0.014) (0.009) (0.002)

SMS
0.856 * 0.444 ** 0.337 *** 0.207 ** −0.076 −0.188 −0.025 ** −0.014 −0.017 0.006 0.058 *** −0.007 −0.001
(0.483) (0.181) (0.126) (0.083) (0.104) (0.246) (0.012) (0.016) (0.017) (0.023) (0.018) (0.010) (0.002)

ET
−0.588 −0.026 −0.077 −0.082 0.267 ** 0.14 0.017 −0.015 0.011 0.007 −0.047 ** 0.027 ** 0.001
(0.500) (0.205) (0.148) (0.097) (0.114) (0.233) (0.014) (0.018) (0.019) (0.027) (0.021) (0.012) (0.002)

CONSERVE
0.061 −0.159 0.049 0.138 0.280 ** 0.07 −0.002 0.016 * −0.022 * −0.025 0.004 0.029 ** 0.001

(0.163) (0.113) (0.096) (0.086) (0.115) (0.246) (0.005) (0.008) (0.012) (0.021) (0.019) (0.011) (0.002)
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Table 5. Cont.

Thresholds between Purchase Likelihood Marginal Effects on Purchase Likelihood

1 vs. 2, 3, 4,
5, 6, 7 a,b

1, 2 vs. 3, 4,
5, 6, 7

1, 2, 3 vs. 4,
5, 6, 7

1, 2, 3, 4 vs.
5, 6, 7

1, 2, 3, 4, 5
vs. 6, 7

1, 2, 3, 4, 5, 6
vs. 7 1 2 3 4 5 6 7

RESTRICT
−0.056 −0.038 −0.003 0.015 0.085 0.777 *** 0.002 0.002 −0.003 −0.004 −0.005 0.003 0.006 **
(0.111) (0.078) (0.066) (0.062) (0.091) (0.267) (0.003) (0.006) (0.008) (0.014) (0.014) (0.009) (0.002)

NEIGH
0.120 0.067 0.051 0.136 ** 0.144 −0.313 −0.003 −0.002 −0.003 −0.024 0.018 0.017 ** −0.002

(0.137) (0.088) (0.074) (0.066) (0.088) (0.198) (0.004) (0.007) (0.009) (0.016) (0.014) (0.009) (0.002)

STATE
0.143 0.145 0.111 −0.087 −0.227 −0.670 ** −0.004 −0.009 −0.006 0.040 0.002 −0.019 −0.005 **

(0.193) (0.141) (0.115) (0.110) (0.147) (0.268) (0.006) (0.010) (0.016) (0.024) (0.026) (0.015) (0.002)

PRICE
0.150 0.302 *** 0.236 *** 0.163 *** 0.167 ** 0.186 −0.004 −0.022 *** −0.013 * 0.000 0.022 * 0.016 ** 0.001

(0.095) (0.072) (0.057) (0.050) (0.070) (0.147) (0.003) (0.005) (0.008) (0.012) (0.011) (0.007) (0.001)

EASE
0.024 0.057 0.082 0.118 ** 0.129 0.231 −0.001 −0.004 −0.009 −0.015 0.015 0.012 0.002

(0.105) (0.078) (0.062) (0.059) (0.087) (0.212) (0.003) (0.006) (0.009) (0.013) (0.013) (0.009) (0.002)

RELIABLE
0.155 0.108 −0.030 0.083 0.174 * 0.407 * −0.004 −0.005 0.014 −0.025 * 0.002 0.015 * 0.003 *

(0.115) (0.084) (0.069) (0.064) (0.090) (0.225) (0.003) (0.006) (0.009) (0.015) (0.014) (0.009) (0.002)

INCOME
0.229 * 0.176 ** 0.107 * 0.175 *** 0.167 ** 0.144 −0.007 * −0.009 −0.002 −0.025 * 0.025 ** 0.016 ** 0.001
(0.127) (0.086) (0.065) (0.056) (0.078) (0.196) (0.004) (0.006) (0.009) (0.013) (0.013) (0.008) (0.001)

AGE
−0.814 *** −0.290 ** −0.306 *** −0.173 * 0.040 0.369 0.024 *** 0.002 0.026 * −0.009 −0.046 ** 0.002 0.003

(0.207) (0.133) (0.108) (0.097) (0.129) (0.299) (0.007) (0.010) (0.014) (0.023) (0.021) (0.013) (0.002)

KIDS
0.004 0.394 0.678 *** 0.581 *** 0.242 0.35 0.000 −0.034 * −0.079 *** −0.028 0.116 *** 0.023 0.003

(0.429) (0.272) (0.210) (0.154) (0.191) (0.419) (0.012) (0.020) (0.027) (0.039) (0.036) (0.019) (0.003)

EDUC
−0.431 −0.002 0.257 0.178 −0.015 0.685 0.011 −0.011 −0.045 0.003 0.044 −0.005 0.004
(0.509) (0.303) (0.256) (0.238) (0.311) (0.888) (0.011) (0.024) (0.036) (0.057) (0.049) (0.032) (0.004)

GENDER
−0.406 0.113 0.327 * −0.023 −0.322 0.880 * 0.011 −0.021 −0.046 * 0.061 0.029 −0.040 * 0.006 *
(0.342) (0.220) (0.184) (0.161) (0.209) (0.472) (0.010) (0.017) (0.024) (0.038) (0.035) (0.023) (0.003)

Constant
0.853 −2.074 ** −2.597 *** −4.594 *** −6.694 *** −12.219 *** - - - - - - -

(1.366) (0.940) (0.783) (0.714) (0.969) (2.195)

Observation = 873
Log likelihood = −1303.323
Log likelihood ratio χ2 (108) = 416.710
Pseudo R2 = 0.138

Notes: Bold font indicates significant coefficients with *, ** and *** denoting statistical significance at the 10%, 5% and 1% level, respectively; a 1 = extremely unlikely; 2 = very
unlikely; 3 = moderately unlikely; 4 = neutral; 5 = moderately likely; 6 = very likely; 7 = extremely likely; b standard errors are in parentheses.
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Table 6. Estimation results of generalized ordered linear logit model: Florida.

Thresholds between Purchase Likelihood Marginal Effects on Purchase Likelihood

1 vs. 2, 3, 4,
5, 6, 7 ab

1, 2 vs. 3, 4,
5, 6, 7

1, 2, 3 vs. 4,
5, 6, 7

1, 2, 3, 4 vs.
5, 6, 7

1, 2, 3, 4, 5
vs. 6, 7

1, 2, 3, 4, 5, 6
vs. 7 1 2 3 4 5 6 7

RATE
0.209 0.153 * 0.059 0.159 *** 0.192 ** 0.141 −0.005 −0.011 0.005 −0.028 ** 0.018 0.018 ** 0.003

(0.128) (0.086) (0.070) (0.062) (0.079) (0.151) (0.003) (0.008) (0.010) (0.014) (0.014) (0.008) (0.003)

TURF
0.174 0.002 −0.052 −0.133 * −0.090 −0.183 −0.004 0.004 0.010 0.023 −0.023 −0.006 −0.004

(0.159) (0.097) (0.082) (0.076) (0.100) (0.168) (0.004) (0.010) (0.011) (0.017) (0.017) (0.010) (0.003)

WATER
−0.222 −0.059 0.028 0.177 ** 0.165 0.202 0.005 0.001 −0.011 −0.038 ** 0.026 0.014 0.004
(0.170) (0.101) (0.090) (0.081) (0.104) (0.197) (0.004) (0.010) (0.011) (0.019) (0.018) (0.010) (0.004)

SOIL
0.038 0.214 ** 0.154 0.040 0.077 0.003 −0.001 −0.022 ** −0.006 0.019 0.001 0.008 0.000

(0.132) (0.090) (0.074) (0.065) (0.083) (0.185) (0.003) (0.009) (0.011) (0.015) (0.014) (0.009) (0.004)

SMS
0.150 0.096 0.176 0.129 0.201 * 0.125 −0.004 −0.006 −0.022 0.001 0.010 0.019 * 0.002

(0.180) (0.139) (0.120) (0.096) (0.107) (0.213) (0.004) (0.012) (0.018) (0.025) (0.021) (0.011) (0.004)

ET
0.704 ** 0.306 * 0.149 0.039 −0.059 −0.082 −0.017 ** −0.015 0.005 0.018 0.016 −0.005 −0.002
(0.337) (0.177) (0.141) (0.108) (0.117) (0.224) (0.007) (0.016) (0.021) (0.029) (0.024) (0.012) (0.004)

CONSERVE
0.048 0.080 0.184 ** 0.173 ** 0.082 0.583 *** −0.001 −0.007 −0.026 ** −0.008 0.034 ** −0.002 0.011 **

(0.165) (0.102) (0.083) (0.076) (0.096) (0.224) (0.004) (0.009) (0.012) (0.017) (0.016) (0.010) (0.005)

RESTRICT
0.007 −0.003 −0.004 −0.109 * −0.002 −0.057 0.000 0.000 0.000 0.026 * −0.027 * 0.001 −0.001

(0.142) (0.083) (0.069) (0.064) (0.084) (0.149) (0.003) (0.008) (0.010) (0.015) (0.015) (0.008) (0.003)

NEIGH
0.012 0.001 0.044 0.147 ** 0.058 0.150 0.000 0.000 −0.008 −0.028 * 0.030 ** 0.003 0.003

(0.116) (0.080) (0.069) (0.065) (0.085) (0.160) (0.003) (0.007) (0.010) (0.015) (0.015) (0.008) (0.003)

STATE
0.206 0.007 −0.086 0.095 0.112 −0.226 −0.005 0.004 0.017 −0.039 * 0.011 0.017 −0.004

(0.176) (0.117) (0.100) (0.095) (0.124) (0.206) (0.004) (0.011) (0.014) (0.022) (0.022) (0.012) (0.004)

PRICE
0.229 ** 0.177 *** 0.198 *** 0.118 *** 0.201 *** 0.227 * −0.006 ** −0.013 ** −0.018 ** 0.008 0.007 0.017 *** 0.004
(0.099) (0.061) (0.050) (0.045) (0.061) (0.130) (0.003) (0.006) (0.007) (0.010) (0.010) (0.006) (0.003)

EASE
0.136 0.001 0.015 0.053 0.047 0.155 −0.003 0.003 −0.003 −0.010 0.008 0.002 0.003

(0.121) (0.064) (0.054) (0.053) (0.079) (0.183) (0.003) (0.006) (0.007) (0.011) (0.012) (0.008) (0.004)

RELIABLE
0.061 0.126 * 0.140 ** 0.126 ** 0.193 ** 0.179 −0.001 −0.012 * −0.013 ** −0.005 0.010 0.017 ** 0.003

(0.119) (0.066) (0.057) (0.057) (0.084) (0.177) (0.003) (0.006) (0.008) (0.012) (0.013) (0.008) (0.003)

INCOME
0.291 ** 0.118 0.103 0.137 ** 0.049 0.137 −0.007 * −0.005 −0.007 −0.015 0.028 * 0.003 0.003
(0.142) (0.093) (0.074) (0.069) (0.094) (0.173) (0.004) (0.009) (0.011) (0.015) (0.016) (0.009) (0.003)

AGE
−0.733 *** −0.360 *** −0.385 *** −0.271 *** −0.137 0.200 0.018 *** 0.020 * 0.033 *** −0.005 −0.052 ** −0.019 0.004

(0.227) (0.121) (0.105) (0.098) (0.134) (0.274) (0.006) (0.012) (0.014) (0.022) (0.023) (0.014) (0.005)

KIDS
−0.527 0.109 0.126 0.216 0.199 0.942 *** 0.013 −0.024 −0.012 −0.030 0.032 0.003 0.018 ***
(0.394) (0.229) (0.182) (0.152) (0.187) (0.320) (0.009) (0.021) (0.025) (0.036) (0.034) (0.018) (0.007)

EDUC
−0.107 0.182 0.078 0.150 0.118 −0.240 0.002 −0.023 0.006 −0.022 0.024 0.018 −0.005
(0.463) (0.286) (0.234) (0.226) (0.319) (0.631) (0.010) (0.030) (0.036) (0.050) (0.049) (0.030) (0.015)
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Table 6. Cont.

Thresholds between Purchase Likelihood Marginal Effects on Purchase Likelihood

1 vs. 2, 3, 4,
5, 6, 7 ab

1, 2 vs. 3, 4,
5, 6, 7

1, 2, 3 vs. 4,
5, 6, 7

1, 2, 3, 4 vs.
5, 6, 7

1, 2, 3, 4, 5
vs. 6, 7

1, 2, 3, 4, 5, 6
vs. 7 1 2 3 4 5 6 7

GENDER
0.607 * 0.323 0.263 −0.066 −0.429 ** −0.58 −0.016 −0.019 −0.014 0.066 * 0.033 −0.036 −0.012
(0.355) (0.212) (0.173) (0.161) (0.210) (0.405) (0.010) (0.021) (0.025) (0.035) (0.036) (0.023) (0.010)

Constant
0.252 −1.149 −1.614 ** −3.764 *** −6.070 *** −9.970 *** - - - - - - -

(1.323) (0.838) (0.680) (0.627) (0.843) (1.831)

Observation = 881
Log likelihood = −1391.790
Log likelihood ratio χ2 (108) = 335.730
Pseudo R2 = 0.108

Notes: Bold font indicates significant coefficients with *, ** and *** denoting statistical significance at the 10%, 5% and 1% level, respectively; a 1 = extremely unlikely; 2 = very unlikely;
3 = moderately unlikely; 4 = neutral; 5 = moderately likely; 6 = very likely; 7 = extremely likely; b standard errors are in parentheses.

Table 7. Estimation results of generalized ordered linear logit model: Texas.

Thresholds between Purchase Likelihood Marginal Effects on Purchase Likelihood

1 vs. 2, 3, 4,
5, 6, 7 ab

1, 2 vs. 3, 4,
5, 6, 7

1, 2, 3 vs. 4,
5, 6, 7

1, 2, 3, 4 vs.
5, 6, 7

1, 2, 3, 4, 5
vs. 6, 7

1, 2, 3, 4, 5, 6
vs. 7 1 2 3 4 5 6 7

RATE
0.095 0.066 0.034 0.046 0.169 ** 0.334 * −0.004 −0.004 0.001 −0.005 −0.002 0.008 0.005 *

(0.118) (0.076) (0.064) (0.058) (0.081) (0.172) (0.005) (0.008) (0.009) (0.014) (0.013) (0.006) (0.003)

TURF
−0.280 ** 0.102 0.015 0.132 * 0.257 ** 0.839 *** 0.011 ** −0.022 ** 0.009 −0.029 * 0.012 0.008 0.012 ***

(0.127) (0.093) (0.079) (0.074) (0.107) (0.248) (0.005) (0.009) (0.011) (0.017) (0.017) (0.008) (0.004)

WATER
0.121 0.106 −0.006 −0.041 −0.140 −0.304 −0.005 −0.007 0.013 0.009 0.001 −0.007 −0.005

(0.141) (0.101) (0.083) (0.078) (0.115) (0.216) (0.005) (0.009) (0.012) (0.018) (0.018) (0.009) (0.004)

SOIL
0.098 0.023 0.173 ** 0.092 0.224 ** −0.965 *** −0.004 0.001 −0.027 *** 0.008 0.005 0.032 *** −0.014 ***

(0.133) (0.090) (0.073) (0.067) (0.099) (0.242) (0.005) (0.008) (0.010) (0.015) (0.015) (0.008) (0.005)

SMS
−0.006 0.193 0.186 * 0.202 ** 0.129 0.486 ** 0.000 −0.021 * −0.011 −0.017 0.039 * 0.003 0.007 **
(0.185) (0.132) (0.106) (0.091) (0.115) (0.227) (0.007) (0.012) (0.014) (0.020) (0.021) (0.008) (0.003)

ET
0.345 0.030 0.171 0.103 0.040 −0.213 −0.013 0.010 −0.026 0.004 0.022 0.006 −0.003

(0.286) (0.160) (0.124) (0.097) (0.115) (0.214) (0.010) (0.016) (0.016) (0.023) (0.022) (0.008) (0.003)

CONSERVE
0.261 0.027 0.047 0.121 −0.085 0.659 *** −0.010 0.007 −0.005 −0.021 0.036 * −0.017 ** 0.010 **

(0.173) (0.106) (0.092) (0.083) (0.106) (0.237) (0.007) (0.011) (0.011) (0.020) (0.019) (0.008) (0.004)
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Table 7. Cont.

Thresholds between Purchase Likelihood Marginal Effects on Purchase Likelihood

1 vs. 2, 3, 4,
5, 6, 7 ab

1, 2 vs. 3, 4,
5, 6, 7

1, 2, 3 vs. 4,
5, 6, 7

1, 2, 3, 4 vs.
5, 6, 7

1, 2, 3, 4, 5
vs. 6, 7

1, 2, 3, 4, 5, 6
vs. 7 1 2 3 4 5 6 7

RESTRICT
0.247 ** 0.036 0.000 0.056 0.018 0.307 * −0.009 ** 0.005 0.004 −0.014 0.012 −0.003 0.005
(0.120) (0.081) (0.069) (0.064) (0.090) (0.179) (0.005) (0.008) (0.009) (0.015) (0.015) (0.007) (0.003)

NEIGH
−0.318 ** 0.076 0.188 ** 0.131 * 0.131 0.675 *** 0.012 ** −0.020 ** −0.024 ** 0.000 0.021 0.000 0.010 ***

(0.145) (0.092) (0.075) (0.069) (0.094) (0.185) (0.006) (0.009) (0.011) (0.016) (0.016) (0.007) (0.004)

STATE
−0.513 ** −0.240 * −0.280 ** −0.174 * −0.248 ** −0.748 *** 0.019 ** 0.007 0.022 −0.006 −0.023 −0.008 −0.011 **

(0.239) (0.134) (0.118) (0.105) (0.124) (0.250) (0.009) (0.013) (0.014) (0.026) (0.023) (0.010) (0.004)

PRICE
0.079 0.126 * 0.153 *** 0.059 0.062 0.001 −0.003 −0.011 * −0.012 * 0.012 0.009 0.005 0.000

(0.106) (0.067) (0.055) (0.048) (0.065) (0.128) (0.004) (0.006) (0.007) (0.011) (0.011) (0.005) (0.002)

EASE
0.246 ** 0.149 ** 0.154 ** 0.158 ** 0.231 ** 0.494 *** −0.009 ** −0.007 −0.010 −0.012 0.020 0.011 0.007 ***
(0.104) (0.074) (0.067) (0.065) (0.091) (0.169) (0.004) (0.007) (0.009) (0.015) (0.015) (0.007) (0.003)

RELIABLE
0.110 0.228 *** 0.160 ** 0.322 *** 0.270 ** 0.190 −0.004 −0.021 *** −0.002 −0.051 *** 0.057 *** 0.019 *** 0.003

(0.108) (0.078) (0.067) (0.064) (0.088) (0.139) (0.004) (0.007) (0.009) (0.015) (0.014) (0.006) (0.002)

INCOME
0.468 *** 0.046 0.050 0.002 0.085 −0.147 −0.018 *** 0.013 * −0.003 0.008 −0.006 0.009 −0.002
(0.128) (0.068) (0.060) (0.056) (0.081) (0.154) (0.005) (0.007) (0.007) (0.013) (0.013) (0.006) (0.002)

AGE
−0.327 * −0.225 * −0.167 −0.170 −0.267 * 0.330 0.012 * 0.012 0.004 0.012 −0.020 −0.026 ** 0.005
(0.178) (0.125) (0.109) (0.105) (0.147) (0.332) (0.007) (0.011) (0.013) (0.025) (0.024) (0.011) (0.005)

KIDS
0.004 0.074 0.324 * 0.415 *** 0.245 0.926 ** 0.000 −0.008 −0.048 ** −0.045 0.081 ** 0.006 0.014 **

(0.329) (0.224) (0.187) (0.159) (0.205) (0.377) (0.012) (0.020) (0.023) (0.038) (0.037) (0.015) (0.007)

EDUC
1.028 ** 0.345 −0.125 0.114 −0.145 0.621 −0.057 0.015 0.063 * −0.048 0.039 −0.019 0.007
(0.453) (0.333) (0.283) (0.256) (0.322) (0.713) (0.036) (0.038) (0.037) (0.061) (0.055) (0.027) (0.007)

GENDER
−0.415 −0.062 0.014 −0.437 *** −0.177 0.865 * 0.015 −0.008 −0.009 0.109 *** −0.092 ** −0.026 0.012 *
(0.347) (0.222) (0.186) (0.165) (0.219) (0.469) (0.012) (0.021) (0.024) (0.039) (0.037) (0.017) (0.007)

Constant
0.687 −1.146 −1.771 ** −4.448 *** −5.775 *** −12.903 *** - - - - - - -

(1.424) (0.931) (0.772) (0.705) (0.948) (2.140)

Observation = 887
Log likelihood = −1308.848
Log likelihood ratio χ2 (108) = 466.650
Pseudo R2 = 0.151

Notes: Bold font indicates significant coefficients with *, ** and *** denoting statistical significance at the 10%, 5% and 1% level, respectively; a 1 = extremely unlikely; 2 = very unlikely;
3 = moderately unlikely; 4 = neutral; 5 = moderately likely; 6 = very likely; 7 = extremely likely; b standard errors are in parentheses.
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3.1. Knowledge and Smart Irrigation

Cumulatively, marginal effect estimates support the first hypothesis (H1) that higher knowledge
levels are associated with increased purchase likelihood (Table 4). Respondents’ knowledge levels
of sprinkler application rates and soil types are positively correlated with purchase likelihood for
smart irrigation controllers. Specifically, higher knowledge about sprinkler system irrigation rates
reduces the probability of selecting “very unlikely” to purchase smart irrigation controllers by 1.1%,
while increasing the probability of selecting “very/extremely likely” to purchase the controllers by
1.1% and 0.4%, respectively. Furthermore, soil type-related knowledge increases smart irrigation
controller purchase likelihood, while reducing the probability of respondents’ selecting “very unlikely”
and “moderately unlikely” by 1.0% and 1.1%, respectively. Higher levels of knowledge for sprinkler
systems increases the probability of choosing “very likely” to purchase by 1.5%.

The differences in knowledge and purchase likelihood between the three states (in support of
Hypothesis 6) are also evaluated in Tables 5–7. Marginal effect estimates for California indicate
that sprinkler application rate knowledge increases the probability of selecting “extremely likely” to
purchase the controllers by 0.4% (Table 5). Similarly, respondents’ knowledge about water needs of
turfgrass and plants increases the “moderate” purchase likelihood by 2.8%. Knowledge about soil type
also increases the probability of “very likely” purchasing the controllers by 1.5%. Respondents from
Florida and Texas exhibit slightly different results, with respondents having an increased probability
(1.8% for Florida, 0.5% for Texas) of purchasing smart irrigation controllers if they are knowledgeable
about sprinkler application rates (Tables 6 and 7). The probability of Florida respondent’s selecting
“very unlikely” to purchase decrease by 2.2% if they are knowledgeable about soil type. Interestingly,
Texas respondents’ knowledge about soil type reduces the probability of “extremely likely” to purchase
by 1.4% while increasing the probability of “very likely” to purchase by 3.2%. In addition, knowledge
about lawns and landscape is associated with the purchase likelihood, but the marginal effects vary
across the states (H6). An increased knowledge level tends to increase the purchase likelihood, showing
that homeowners utilize their understanding of the unique characteristics of their lawns/landscapes
when determining their purchase likelihood of smart irrigation controllers.

Smart irrigation controller knowledge-related results support Hypothesis 2 (Tables 4–7). In the
full sample, greater SMS and ET controller knowledge is associated with higher purchase likelihood.
Greater SMS controller knowledge reduces the probability of “very/moderately unlikely” to purchase
smart irrigation controllers by 1.4% and 1.8%, respectively. Additionally, it increases the “moderately
likely” to purchase probability by 3.2%. In addition, greater ET controller knowledge reduces
the probability of “extremely unlikely” to purchase by 0.9%, whereas it increases the “very likely”
purchasing probability by 1.0%.

When comparing the different states, in general, greater knowledge levels about the SMS and
ET controllers are associated with higher purchase likelihood, but their relevance varies across the
states, supporting Hypothesis 6 (Tables 5–7). In California, higher SMS controller knowledge reduces
the probability of selecting “extremely unlikely” to purchase smart irrigation controllers by 2.5%, but
it increases the “moderately likely” to purchase probability by 5.8% (Table 5). Conversely, greater
knowledge about the ET controller decreases the probability of “moderately likely” to purchase smart
irrigation controllers, while increasing the probability of being “very likely” to purchase them. For
Florida homeowners, greater knowledge about SMS controllers increases the probability of being “very
likely” to purchase by 1.9%, whereas greater knowledge about ET controllers decreases the probability
of “extremely unlikely” to purchase by 1.7% (Table 6). Similarly, in Texas, more SMS controller
knowledge reduces their probability of “very unlikely” to purchase smart irrigation controllers by
2.1%; however, it increases their probability of “moderately/extremely likely” to purchase a smart
controller by 3.9% and 0.7%, respectively (Table 7). Overall, across the states, homeowners’ SMS and ET
controller knowledge positively influences their likelihood of purchasing smart irrigation controllers.
Knowledge about the SMS controller, in particular, is more relevant to their purchase likelihood than
the ET controller knowledge.
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3.2. Perceptions, Smart Irrigation, and Demographics

The results in Table 4 support Hypothesis 3 that higher water-related perceptions increase
homeowners’ smart irrigation controller purchase likelihood. Overall, homeowners with positive
perceptions about water conservation, who are aware of regional water restrictions and believe
their neighbors over-irrigate are more likely to purchase smart irrigation controllers. Specifically,
homeowners with perceptions that their water conservation efforts affect the total supply lower
their probability of “moderately unlikely” to purchase smart irrigation controllers by 1.7% while
increasing the probability of selecting “moderately likely” and “extremely likely” to purchase by 2.8%
and 0.6%, respectively. Homeowners with greater awareness of their area’s water restrictions are
0.4% more probable to select “extremely likely” to purchase smart irrigation controllers. Regarding
neighbor effects, homeowners with perceptions that their neighbors over-irrigating have an increased
probability of selecting “moderately/very likely” to purchase smart irrigation controllers by 2.0% and
0.8%, respectively. Perceptions that there are insufficient state water resources reduces homeowners’
“extremely likely” rating to purchase smart irrigation technology by 0.7%. Overall, these results indicate
that homeowners are aware of the need for water conservation and local water-usage restrictions, but
they question if there are insufficient water resources within their state.

Since different states have various environmental conditions that contribute to water needs
(i.e., drought, temperature, rainfall, etc.), we assessed consumer perceptions by state. Overall,
homeowners’ perceptions about water availability are positively associated with their purchase
likelihood, but variations occur across the states (Tables 5–7). If California homeowners’ reported a
higher level of agreement with the statements on water conservation and neighbors over-irrigating,
the homeowners had an increased probability of “very likely” purchasing smart irrigation controllers
by 2.9% and 1.7%, respectively (Table 5). California homeowners’ perception about water restrictions
raised the probability of “extremely likely” purchasing smart irrigation controllers by 0.6%. However,
their perceptions about the state’s water resources reduces the probability of selecting “extremely
likely” to purchase by 0.5%. In Table 6, the marginal effects of Florida homeowners’ water conservation
perceptions also increases the probability of “moderately/extremely likely” purchasing smart irrigation
controllers by 3.4% and 1.1%. Their perceptions about neighbors’ over-irrigation increases the
probability of “moderately likely” to purchase them by 3.0%, but the purchase probability decreases
if the homeowner had perceptions about water restrictions in their area (2.7%). Lastly, for Texas
homeowners, Table 7 shows that water conservation perceptions had mixed results. Homeowners
with water conservation beliefs have an increased probability of being “moderately likely” and
“extremely likely” to purchase (3.6% and 1.0%, respectively), but a reduced probability of being
“very likely” to purchase smart irrigation controllers (1.7%). In addition, a higher perception that
their neighbors over-irrigate increases the extremely likely purchase probability by 1.0%, whereas
it decreases the “moderately unlikely/very unlikely” purchasing probabilities by 2.0% and 2.4%,
respectively. Statewide water availability results indicate that Texas homeowners with this perception
are less likely to purchase smart irrigation controllers.

Respondents’ perceptions about smart irrigation controllers relative to conventional irrigation
controllers are positively associated with their purchase likelihood, supporting Hypothesis 4. In Table 4,
purchase likelihood increases when homeowners perceive smart irrigation controllers as more
advantageous (i.e., better priced, ease of use and reliable) than conventional irrigation controllers.
The probability of selecting “moderately likely”, “very likely” and “extremely likely” to purchase
categories increases by 1.2%, 1.2% and 0.3%, respectively, when homeowners perceived smart
irrigation controllers as better priced. Unsurprisingly, the same three categories (moderate, very and
extremely likely) to purchase conventional irrigation controllers decrease when homeowners perceive
conventional irrigation controllers as better priced. Homeowners who perceive smart irrigation
controllers as easy to use have an increased probability of selecting “moderately/extremely” likely
to purchase (1.4% and 0.5%, respectively). Perceptions about the reliability of the controllers also
are significant predictors of purchase likelihood. While higher perceptions about the reliability
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of conventional irrigation controllers decreases the probability of “extremely/very unlikely” to
purchase smart irrigation controllers by 0.4% and 1.2%, a higher reliability perception for smart
irrigation controllers increases the “moderately/very/extremely likely” to purchase by 2.4%, 1.9%,
and 0.4%, respectively. As the perceived reliability of smart irrigation controllers becomes greater
than that of conventional irrigation controllers, homeowners are more willing to purchase smart
irrigation controllers.

Across the states, perceptions about smart irrigation controllers relative to conventional irrigation
controllers are also associated positively with purchase likelihood. In Table 5, California homeowners’
better price perceptions about smart irrigation controllers increase the “moderately likely” (2.2%) and
“very likely” (1.6%) to purchase probability, while decreasing the “moderately unlikely” (1.3%) and
“very unlikely” (2.2%) to purchase probability. The perceptions on ease of use are not significant,
but higher perceptions about reliability increase the “extremely/very likely” to purchase probability
by 1.5% and 0.3%, respectively. For Florida homeowners, better price perceptions decrease the
probability of “extremely/very/moderately unlikely” to purchase smart irrigation controllers by
1.8%, 1.3% and 0.6%, respectively (Table 6). Perceptions about ease of use are insignificant for
Florida homeowners. Higher reliability perceptions increase the “very likely” (1.7%) to purchase
probability, but decrease the “moderately/very unlikely” (1.3% and 1.2%) to purchase probability. For
Texas homeowners, perceptions about price, ease of use and reliability are associated with purchase
likelihood (Table 7). Better price perceptions reduce the “moderately unlikely” (1.2%) and “very
unlikely” (1.1%) to purchase probability. A higher ease of use perception reduces the “extremely
unlikely” purchasing probability (0.9%) while raising the “extremely likely” to purchase probability
(0.7%). In addition, higher reliability perceptions decrease the probability of “very unlikely” to
purchase smart irrigation controllers (2.1%) and increase the “moderately/very likely” to purchase by
5.7% and 1.9%, respectively.

Finally, socio-demographic variables influence homeowners’ likelihood of purchasing smart
irrigation controllers, supporting Hypothesis 5. Older homeowners are less likely to purchase smart
irrigation controllers (Table 4). Homeowners with higher incomes, more children or higher education
levels are more likely to purchase smart irrigation controllers. Female homeowners are less likely to
purchase smart irrigation controllers than male homeowners. The socio-demographic characteristics
are also relevant to the purchase likelihood across the states. In particular, younger homeowners or
those who have higher incomes, more children or higher education levels were more likely to purchase
smart irrigation controllers (Tables 5–7).

4. Conclusions

As water scarcity becomes an increasingly important environmental issue, understanding
consumer adoption and interest in water-efficient technologies is essential when determining the
best policies, regulations and marketing/promotional strategies to encourage consumers to implement
these products. In an effort to contribute to water conservation efforts in urban environments (where
areas devoted to heavily maintained landscapes rapidly expand), irrigation equipment manufacturers
and service providers offer “smart” irrigation controllers to environmentally-conscious homeowners.
In contrast to conventional irrigation equipment, smart controller-based systems reduce water
waste using sensors to regulate irrigation based on plant/turfgrass needs. While previous studies
investigated human dimensions in water conservation practices, many focus on practices within
households by linking individuals’ environmental attitudes [25], characteristics of the dwelling [50],
and home ownership [51] with the probability of the adoption of water-efficient household
appliances. With technological advancements in the main household appliances (e.g., washing machine,
dishwasher, shower and toilet), the adoption of such equipment is (relatively) not cost-prohibitive, as
most modern appliances are manufactured to meet water-saving requirements/standards. However,
factors that influence outdoor/landscape irrigation, which can represent the majority of water use
(and waste), are still poorly understood. In an attempt to address this shortcoming in the literature,
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this paper used an online survey of California, Florida and Texas homeowners to determine how
their knowledge, perceptions and demographics influence their probability of purchasing smart
irrigation controllers.

The first contribution of this paper is centered on identifying the effects of knowledge about smart
irrigation and purchase likelihood, and its implications for stakeholders involved in related policy
decisions. Results based on responses from 2641 homeowners show that higher levels of knowledge
(related to sprinkler application rates, soil type, SMS and ET controllers) positively influence their
likelihood of switching to smart irrigation systems (H1, H2). Although differences exist across the
states, the impact of sprinkler application rate-related knowledge is consistent, which indicates that
consumers who are generally more knowledgeable about irrigation systems are more interested in
purchasing smart irrigation technology. Additionally, homeowners’ knowledge about SMS controllers
consistently increased purchase likelihood. This suggests that SMS-based controllers are slightly
preferred to the ET-based controllers. Future studies can evaluate this preference further, specifically
focusing on the differences of SMS- and ET-based controllers. In general, results indicate that it is
important to educate (and advertise to) homeowners about the characteristics of smart irrigation
controllers, which will, in turn, contribute to an increase in their purchase likelihood.

The second contribution to the extant literature is that individuals’ perceptions are found
to influence purchase likelihood of smart irrigation systems. Homeowners’ perceptions about
conservation efforts, water restrictions, and their neighbors’ irrigation habits increase purchase
likelihood (H3). Regardless of state, homeowners’ beliefs that water conservation efforts directly
influence overall water supply positively influence their purchase likelihood of a smart irrigation
system. Additionally, homeowners’ purchase likelihood increases if they perceived smart irrigation
controllers as better priced, easier to use, or more reliable when compared to conventional irrigation
systems (H4). State-level differences indicate that perceptions about the reliability (as opposed to price
or ease of use) of smart systems are the most influential. Policy makers and educators can utilize this
information to influence consumer behavior and promote installation/use of smart irrigation systems.

Finally, our results demonstrate that several socio-demographic variables influence homeowners’
purchase likelihood for smart irrigation controllers (H5). Specifically, younger homeowners, having
children (under 18 years old), a higher level of education, being male, or those with higher incomes are
more likely to purchase smart irrigation controllers. The larger households and higher income results
are consistent with other studies investigating the adoption of water-efficient appliances indicating
the robustness of results [19,25]. Lastly, it is important to note that differences exist across the states
with regards to knowledge, perceptions and demographics (supporting H6; Tables 5–7), likely due to
state-specific water availability concerns and climatic differences.

In addition to the contributions of this paper, there are several limitations that are worth
mentioning. Although the sample size was considerably large and the survey was conducted in states
with large populations (representing one third of the U.S. total population) and water quantity/quality
issues, our estimations are based on hypothetical questions (i.e., stated preference data). Further,
the target respondents in our survey are only residents living in single-family homes with lawn and
automated (but not smart) irrigation systems. Thus, the screening questions excluded households that
(at the time of the survey) did not have automated irrigation, but could be potential adapters of smart
irrigation systems in the future.
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