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Abstract: Selective catalytic reduction (SCR) is one of the most effective technologies used for
eliminating NOx from diesel engines. This paper presents a novel method based on a support
vector machine (SVM) and particle swarm optimization (PSO) with grid search (GS) to diagnose
the degree of aging of the V2O5/WO3–TiO2 catalyst in the SCR system. This study shows the aging
effect on the performance of a NH3 slip based closed-loop SCR control system under different aging
factors (α), which are defined by the SCR reaction rate (Rscr). A diagnosis of the performance of
GS–PSO–SVM has been presented as compared to SVM, GS–SVM and PSO–SVM to get reliable
results. The results show that the average prediction diagnosis accuracy of the degree of catalytic
aging is up to 93.8%, 93.1%, 92.9% and 92.0% for GS–PSO–SVM, PSO–SVM, GS–SVM and SVM
respectively. It is demonstrated that GS–PSO–SVM is able to identify the SCR catalyst’s degree of
aging, to ultimately assist with fault tolerance in the aging of the SCR catalyst.

Keywords: diesel engine; Urea–SCR; V2O5/WO3–TiO2 catalyst; hydrothermal aging; GS–PSO–SVM

1. Introduction

Diesel engines are widely used in most commercial vehicles owing to their high thermal efficiency
and considerable fuel economy. However, as one of the main pollutants from a diesel engine, emission
of nitrogen oxides (NOx) will give rise to photochemical smog, which is harmful to the environment
and human beings. Therefore, the reduction of NOx emissions from diesel engine becomes one of the
most important objectives for the after-treatment system. In order to solve this problem, a urea based
selective catalytic reduction (Urea–SCR) is regarded as the most promising and efficient technique for
NOx reduction [1–4], which can control the NOx emission through the SCR reaction between NH3

(decomposed from urea) and NOx. Nevertheless, owing to the fact that NH3 is also a kind of pollutant,
the trade-off between NOx conversion efficiency and NH3 leakage should be taken into consideration.

Researchers have proposed some effective control strategies to handle the trade-off issue,
including the open-loop control strategy [5,6] and the closed-loop control strategy [7–15]. The authors
in reference [5] propose an improved open-loop injection control strategy to make the NOx conversion
efficiency higher than 75% by taking into account the NH3 storage in the SCR system. Reference [6]
provides an open loop, non-sensor based fuzzy logic urea dosage controller, which can maximize
NOx emission reduction and limit the amount of ammonia slip. Nevertheless, under the proposed
stricter emission regulations Euro–V, the performance of the SCR system under the open-loop control
strategy can’t fulfill the requirement [8]. Thus, the closed-loop control strategy is developed to meet
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stricter standards. In reference [11], the control system based on NH3 sensor feedback is analyzed via
simulation by comparing it to a NOx sensor feedback control system. The results indicate they exhibit
similar performance on emission control. Reference [12] presents a model-based control system using
an embedded real-time SCR model and a NH3 sensor. The simulation and test results demonstrate the
advantages of this control approach for fulfilling both NOx emission requirements and NH3 leakage
limits. Reference [13] develops an NH3 coverage ratio observer based on NOx sensor measurements in a
feedback loop to achieve good performance of the SCR system. Reference [14] proposes a model-based
ammonia storage control strategy based on NOx sensor feedback to strike a better balance between high
NOx reduction efficiency and low ammonia slip. Reference [15] presents a catalyst-temperature-based
control strategy to control the average ammonia storage level. The results demonstrate that the control
strategy works reasonably well under the test cycle. As a result, the closed-loop control strategy has
remarkable performance in further reducing NOx emission without NH3 leakage exceeding the limit.
However, in recent years, researchers have focused on studying the control strategy based on NOx

sensor feedback but there are few reports about NH3-based closed-loop control strategy. In this study,
a NH3-based closed-loop control strategy is proposed to maximize the NOx conversion efficiency with
the NH3 leakage approaching the limits.

Hydrothermal aging of the catalyst, which is known as one of the negative impacts on catalytic
activity after considerable service time of the SCR catalyst, will significantly degrade emission reduction
capability of a SCR system. If the hydrothermal aging effect on the catalyst is not considered in an
SCR control strategy, NOx emission and NH3 leakage will obviously increase. Hence, a great deal
of studies regarding the hydrothermal aging of SCR catalysts have been conducted. The authors
in Reference [16] prepare the V2O5/WO3–TiO2 catalysts by conventional impregnation (VWTi-con)
and ultrasound-assisted impregnation methods (VWTi-HUST) respectively. After a hydrothermal
treatment, the results show that there is a significant loss of NO reduction activity for VWTi-con, while
VWTi-HUST still has good hydrothermal stability. The work in Reference [17] studies SCR activity
with the V2O5/WO3–TiO2 catalyst in different V2O5 loadings in a fresh state and a hydrothermal
aging state. Reference [18] investigates the hydrothermal stability of a V2O5/WO3–TiO2 catalyst.
After hydrothermal treatment at 670 ◦C in 5% H2O/air for 64 h, V2O5/WO3–TiO2 the catalyst shows
poor NH3–SCR activity especially in the high-temperature condition. Reference [19] investigates
the physicochemical characteristics according to hydrothermal aging of a V2O5/WO3–TiO2 catalyst.
The results show that after hydrothermal aging at 800 ◦C for 24 h, particles in the V2O5/WO3–TiO2

catalyst are agglomerated and the NOx conversion capability of the V2O5/WO3–TiO2 catalyst decreases
significantly. Liu et al. [20] prepare the V2O5/WO3–TiO2 catalyst by wetness impregnation method, and
it is hydrothermally aged at 750 ◦C in 10 vol % H2O/air for 24 h. The result shows that the NOx removal
ability of the V2O5/WO3–TiO2 catalyst is severely and negatively affected by hydrothermal aging
over the entire measured temperature range. From the above, the existing studies mainly focus on the
experimental investigation of aging effects on SCR performance with different catalysts. Nevertheless,
research on the quantitative identification of catalyst aging degree, which can be applied in the
modification of a SCR control strategy, remains scarce. Recently, Ma et al. [21] present two observers for
estimating the aging condition of a SCR system, which have good performance when estimating the
degree of aging under various aging conditions. However, it is a model-based diagnosis method for
identifying the degree of aging of a SCR system, which means the diagnosis accuracy partly relies on
the model precision. To resolve this issue, the numerical diagnosis method has been further developed
in recent years. The support vector machine (SVM), based on statistical learning theory, is one of the
high-accuracy numerical diagnosis methods [22]. Furthermore, to obtain better diagnosis accuracy,
the SVM combined with some optimization algorithms, such as SVM combined with grid search
(GS) [23,24], SVM combined with particle swarm optimization (PSO) [24,25] and etc., are proposed.
Reference [25] presents a PSO–SVM method for bearing fault diagnosis and it shows high classification
accuracy and less computing time in fault diagnosis. In Reference [23], authors present a GS–SVM
fault diagnosis method and it is demonstrated that GS–SVM shows advantage over PSO–SVM in
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both classification accuracy and computation efficiency. In this study, in order to further improve
the diagnosis accuracy, a numerical method on the basis of a SVM combined with both PSO and GS
algorithms is proposed to diagnose the aging condition of a SCR system.

Against the background given above, the objective of this paper is to propose a novel numerical
method called GS–PSO–SVM for diagnosing the degree of aging of the V2O5/WO3–TiO2 catalyst,
which can be utilized to reconfigure the control law of the SCR system for fault tolerance in future
work. Furthermore, the SVM, GS–SVM and PSO–SVM are proposed to give prominence to the good
performance of GS–PSO–SVM.

2. Experimental Setup and Data Processing

The schematic of the experimental setup is shown in Figure 1. The experimental setup
mainly consists of an AVL PUMA OPEN test bench, 6-cylinder YC6J-42 diesel engine, a 13.5 L
commercial V2O5–WO3/TiO2 catalyst (active phase V2O5–WO3/TiO2, cell density 400 cpsi, surface
area 61.67 m2/g), the electronic control unit, the urea dosing control unit, and related measuring
equipment. The main specifications of the diesel engine and the measuring equipment are presented
in Tables 1 and 2 respectively. Moreover, the test is on the basis of the NH3-based closed-loop control
strategy (Figure 2), which can keep the NH3 leakage around a constant to improve the NOx conversion
efficiency as far as possible. However, emissions regulations limit the mean NH3 leakage to under
10 ppm. Hence, to be conservative, the NH3 leakage is kept about 9 ppm in the NH3 closed-loop
control strategy.
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Table 1. Engine information.

Features Parameters

Engine model Inline 6-cylinder, YC6J-42
Displacement 6.6 L
Rated power 132 kW

Maximum torque 660 Nm (1200–1700 rpm)
Idle speed 650 ± 50 rpm
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Table 2. Measuring and monitoring equipment.

Equipment Application

AVL PUMA
OPEN test

bench

AC electrical dynamometer Measuring engine speed and torque

dynamometer control system Controlling speed or torque of dynamometer to change the
engine load

throttle actuator Regulating the operating condition of engine

thermal measurement system Monitoring thermodynamic parameters such as cooling water
temperature, intake and exhaust pressure and etc.

SEMTECH-EFM2 Measuring exhaust mass flow

AVL DiGas 4000 light (Port 1) Measuring NOx concentration at upstream pipe

AVL DiGas 4000 light (Port 2) Measuring NOx concentration at downstream pipe

LDS6 Measuring NH3 Leakage

Temperature sensor (Upstream) Measuring upstream temperature

Temperature sensor (Downstream) Measuring downstream temperature

The test data was obtained by running the diesel engine on an AC electrical dynamometer.
The after-treatment system is equipped with SEMTECH-EFM2, temperature sensors and AVL DiGas
4000 light and LDS6. SEMTECH-EFM2 was used to measure the exhaust mass flow. The temperature
sensors and AVL DiGas 4000 light, which were used for measuring the exhaust temperature and
NOx respectively, were located both upstream and downstream of the catalyst converter. Meanwhile,
LDS6 ammonia analyzer was used for measurement of NH3 leakage at the tailpipe. In addition,
other parameters, including urea dosage, fuel supply per cycle and etc., were obtained from the CAN
bus directly.

Generally, there are some numerical discrepancies among the measurable variables mentioned
above, which can be collected in the test. In order to eliminate the negative effect caused by the
dimension difference among variables, the normalization of test data is conducted, which can be
described as follow:

x′i =
xi − xi,min

xi,max − xi,min
(1)

where xi is one of the original variables, xi,min and xi,max are the minimum and maximum in xi
respectively. x′i is one of the normalized variables, which varies from 0 to 1.
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3. Modeling

3.1. SCR Modeling

In this section the main operating principle of the SCR system and related reactions will be
described. Based on the mass conservation law of the major reactions, a SCR model is constructed to
study of the performance of the SCR system with effects of aging.

3.1.1. SCR Operation Principles

The main operating principle of the urea–SCR system is described as follows [26]: (1) the urea
is injected into the exhaust tailpipe; (2) the aqueous urea is decomposed into gaseous NH3 when
temperature is suitable; (3) the gaseous NH3 is adsorbed on the catalyst site; (4) the adsorbed NH3

reacts with NOx to form N2 and H2O.
As mentioned above, after the urea-to-NH3 conversion process, the gaseous NH3 will be adsorbed

on the catalyst site and the desorption of NH3 from the catalyst site will occur simultaneously [27].
This reversible reaction can be described by Reaction (2):

NH3 + Sfree ↔ NH∗3 (2)

where Sfree represents the free catalyst sites.
The major deNOx reactions in the catalyst convertor are presented as follows [28]:

4NH∗3 + 4NO + O2 → 4N2 + 6H2O (3)

2NH∗3 + NO + NO2 → 2N2 + 3H2O (4)

4NH∗3 + 3NO2 → 3.5N2 + 6H2O (5)

Reaction (3) is regarded as the standard SCR reaction, since the reaction rate is relatively fast in a
conventional V2O5/WO3–TiO2 SCR catalyst and NO makes up 90% of NOx emissions in typical diesel
exhaust [29]. Meanwhile, Reaction (4) is known as the fast SCR reaction, in which the reaction rate is
approximately 10 times faster than that of standard SCR reaction.

Meanwhile, NH3 will react with O2 in the catalyst converter, which will lead to more urea
consumption. The major NH3 oxidation reaction can be described as follow [30]:

4NH∗3 + 3O2 → 2N2 + 6H2O (6)

3.1.2. SCR Modeling

It’s well known that the SCR catalyst convertor is a complex chemical reactor. For simplifying the
SCR model, the following assumptions are made [31,32]:

1. The components of exhaust gasses are regarded as homogeneous and incompressible ideal gas.
2. The effect of variations in the water and oxygen concentration of the exhaust gas is negligible.
3. The catalyst convertor can be divided into limited cells along the flow axis.
4. All variables are homogeneous in each cell and only vary in the axis of catalyst convertor.
5. The dynamic of adsorption/desorption reaction rate is much slower than other reactions.
6. Only adsorbed NH3 will be involved in NOx removal reaction.

According to Arrhenius law, the rate of the main reaction can be modeled by following equations:

1. Adsorption reaction

Rads = CsScαprob

√
RT

2πMNH3

CNH3(1− θ) (7)
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2. Desorption reaction

Rdes = Cskdese−
Edes
RT θ (8)

3. SCR reaction

Rscr = CsRTkscre−
Escr
RT θCNOx (9)

4. NH3 oxidation reaction

Rox = Cskoxe−
Eox
RT θ (10)

For convenience, defining:
a1 = REG

pamb
, a2 = ncell

εVc
,

a3 = CsScαprob

√
RT

2πMNH3
, a4 = Cskdese−

Edes
RT ,

a5 = CsRTkscre−
Escr
RT , a6 = Cskoxe−

Eox
RT .

(11)

Based on the mass conservation law, the NOx mass conservation equation, NH3 mass conservation
equation and NH3 storage conservation equation can be can be represented in the following form [31]:

.
CNOx = a2nNOx,in − CNOx(a1a2mEGT + a5θ)
.
CNH3 = a2nNH3,in + a4θ − CNH3 [a1a2mEGT + a3(1− θ)]
.
θ = [a3(1− θ)CNH3 − a4θ − a5CNOx θ − a6θ]/Cs

(12)

Reference [32] reports that the dynamics of the storage of components in the exhaust gas have
been observed to be much faster than those of the storage of adsorbed NH3. Hence, the dynamic
description of NOx and NH3 can be replaced by static elements. The simplified NOx and NH3 mass
conservation equations are represented below. Meanwhile, in this study, the SCR is split into two cells
because of its great balance between model complexity and model quality. CNOx =

a2nNOx,in
a1a2mEGT+a5θ

CNH3 =
a2nNH3,in+a4θ

a1a2mEGT+a3(1−θ)

(13)

Based on the SCR model established above, the SCR aging effect model can be established as well
to investigate the effect of a hydrothermally aged catalyst on SCR performance. There is no doubt
that the NOx reduction activity of the SCR catalyst will significantly decrease after hydrothermal
treatment [16–20]. NOx reduction activity of the SCR catalyst is a crucial index that can evaluate the
degree of hydrothermal aging of the SCR catalyst. Obviously, the activity of the SCR reaction is the
main factor that affects NOx conversion efficiency. Thus, the SCR reaction rate (Rscr) is selected to
reflect the degree of hydrothermal aging of the SCR catalyst in this paper and the aging factor (α) can
be defined as below. Simultaneously, the SCR aging model can be described by Equation (15).

α =
Rscr,aged

Rscr,fresh
(14)


CNOx =

a2nNOx,in
a1a2mEGT+a5θ

CNH3 =
a2nNH3,in+a4θ

a1a2mEGT+a3(1−θ).
θ = [a3(1− θ)CNH3 − a4θ − a5CNOx θ − a6θ]/Cs

(15)
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3.2. SVM Modeling and Optimization Method

As mentioned in Section 1, the support vector machine (SVM) is used in this study to diagnose
the degree of aging of the catalyst. As an advanced machine learning method, SVM is widely used
due to its remarkable features. A brief description of SVM theory is given next, and more details can
be found in reference [33].

A support vector machine takes advantage of the kernel function to map the input data onto a
high-dimensional feature space [34]. Therefore, the non-linear classification issue can be converted
into a linear classification issue through non-linear feature mapping. After it has been trained by data
samples, the SVM classifiers can be used to diagnose the degree of aging of a catalyst according to the
measurable variables mentioned in Section 2.

The final optimal classification function used by SVM is:

f (x) = sgn(
n

∑
i=1

αiyiK(xi, x) + b) 0 < αi < C (16)

where αi is the Lagrange multiplier, and xi is a feature vector corresponding to a training object.
The element of feature vector xi and the constant b will be updated during the process of training.
C is a penalty factor which indicates the degree of attention paid to outliers and determines the range
of αi. K(xi, x) is the kernel function, which mainly have four species. Among them, the Gaussian
radial basis function is the most commonly used kernel function owing to its high efficiency in the
modeling process.

The Gaussian radial basis function is:

K(xi, x) = exp(−g‖x− xi‖2) (17)

where g is the parameter of the kernel function, which is as important as the penalty factor C.
In addition, x and xi represent independent variables.

Based on the preceding discussion, there is no doubt that g and C are vital parameters in the
SVM model, the selection of which can directly affect the performance of the SVM model. Hence,
a multi-algorithm combined method is put forward to optimize the model parameters in this study.

Particulate swarm optimization (PSO) is a population-based stochastic optimization algorithm,
which is initialized with a group of random particles and then searches for an optimum by updating
the generations [35]. At each generation, each particle is updated by the personal best value (Pbest) and
global best value (Gbest). The personal best value is the best solution obtained so far and the global
best value is the best value gained so far by any particle in whole population. After that, the velocity
and the position of a particle may be updated [35], which are calculated as follows:

xi(t) = xi(t− 1) + vi(t) (18)

vi(t) = wvi(t− 1) + C1r1[Pbest− xi(t)] + C2r2[Gbest− xi(t)] (19)

where xi is the position of a particle and vi is the velocity of a particle. w (set as 1) is the inertia
weight, which controls the effect of the previous particle’s velocity on the current one. C1 and C2

(set as 1.6 and 1.5 respectively) are the cognitive learning factor and social learning factor respectively,
which are both defined as positive constants generally. C1 represents the attraction for a particle that
approaches toward its own success; C2 represents attraction for a particle that moves toward the best
of its neighbors. In addition, r1 and r2 are random number between 0 and 1, which are used to keep
away from getting into the local optima [36].

Due to the high efficiency of the PSO algorithm in solving the optimization problem, it has been
used to optimize the parameters (C and g) in the SVM model. Moreover, the k-fold cross-validated
classification accuracy is selected as the fitness for PSO to verify the classification accuracy in the
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SVM model. The main objective of PSO is searching for the optimal C and g for the SVM model to
achieve the maxima of the k-fold cross-validated classification accuracy of the training data. But, first
of all, the ranges of each parameter need to be determined, which are almost set empirically so far.
If the ranges are too wide, the optimization process may consume too much time. On the contrary,
if the ranges are too narrow, the optimal parameters may be out of the ranges. Hence, a grid search is
proposed to roughly determine the scope of parameters for the SVM model.

The procedure for optimizing the parameters for the SVM model by grid search and PSO was
presented as follow:

Step 1: Grid search in the range of C ∈ [2−5, 215] and g ∈ [2−10, 210] is conducted according to
the exponential sequences. The k-fold cross-validated classification accuracy of the training data for
all pairs of C and g is evaluated for the SVM model, the rough scope of parameters for the SVM will
be determined.

Step 2: A two-dimensional random initial population is created with each dimension representing
C and g respectively. Additionally, the particles’ position and velocity are initialized as well.

Step 3: The fitness (the k-fold cross-validated classification accuracy of the training data) value
of all populations is calculated, and then the personal best value and global best value at present
are obtained.

Step 4: Based on the fitness level, the position and velocity of particles are updated to approach
toward the optimal particle.

Step 5: Step 3 and Step 4 are repeated over and over again until one of the stopping criteria
(obtaining a good enough fitness or reaching the maximal generation) is satisfied.

After these steps, the optimal parameters for the SVM model are obtained, which implies that the
training process of the SVM model is completed.

4. Results and Discussion

4.1. SCR Model Validation

For the sake of verifying the SCR model, a transient state test of the diesel engine was conducted.
This transient state test cycle, which is proposed on the basis of standard ETC (European Transient
Cycle), contains both urban and suburban driving cycles. Owing to the fact that the operating condition
of an engine in these two driving cycles will fluctuate wildly, it is difficult to predict the NOx and NH3

emission in such transient condition of engine. Hence, the prediction ability of the SCR model can be
validated convincingly under the proposed transient state test cycle. Figure 3 shows the speed and
torque in the transient state test. Furthermore, some major variables including exhaust mass flow, urea
dosage, NOx emission upstream of the catalyst convertor, and temperature at the outlet of the catalyst
convertor are illustrated in Figure 3 as well.
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A comparison between the experimental and simulation results for NOx and NH3 concentration
at the tailpipe is given in Figure 4. The simulation results can roughly match the experimental results,
and the mean relative prediction error of NOx emission is 65% as shown in Figure 4a. It can be found,
however, that the relative prediction errors of NOx emission at a few operating conditions, which only
made up 9% of the total, are more than 100%. Apart from these large relative prediction errors, the
mean relative prediction error of NOx emission is only 17.8%. As shown in Figure 4b, the SCR model
can roughly predict NH3 leakage, and its mean relative prediction error is 11.2%. Overall, prediction
errors of NOx and NH3 emission by the SCR model are relatively large due to the following reasons:
(1) For ease of modeling several assumptions were proposed to simplify the SCR model, which will
lead to prediction errors; (2) The operating conditions fluctuate violently over a period of time, which
may cause the emissions to be unstable and difficult to predict.
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NOx (a) and NH3 concentration (b).

In conclusion, the mean relative prediction error of NOx and NH3 emissions is a little bit large,
but fortunately the trend of NOx and NH3 emissions in the simulation corresponds to that in the
experiment. Therefore, this SCR model can be used to research the effect of aging on the performance
of the SCR catalyst.
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4.2. Simulation Study

4.2.1. Effect of Aging on SCR Performance

In order to investigate SCR performance of the V2O5/WO3–TiO2 catalyst under different degrees
of aging, NOx concentration and NH3 leakage at the tailpipe, as well as NH3 coverage ratio, were
simulated in different aging factors by Matlab/Simulink. Figure 5 indicates the SCR performance at
different degrees of aging, which range from 0.5 to 1 at a step of 0.1. It is evident that the NOx

conversion efficiency decreases with the decrease of α, as shown in Figure 5a. The mean NOx

conversion efficiency at different aging factors is presented in Table 3. It can be found that the
mean NOx conversion efficiency decreases faster with the aging of the catalyst. This may be due to the
specific surface area of the catalyst decreasing faster with the aging of the catalyst, which will lead
to faster reduction of surface density of vanadyl species. As shown in Figure 5b, it is obvious that
the overall NH3 leakage increases with aging. Additionally, the evaluation indexes of NH3 leakage
are shown in Table 3 as well. It can be found that the mean NH3 leakage and peak NH3 leakage
increase with decreasing the aging factor. Due to emissions legislation which limits NH3 leakage and
peak NH3 leakage to 10 and 25 ppm respectively, it is evident that NH3 emissions cannot meet the
emissions regulations when the aging factor is less than 0.8. Moreover, the variance of NH3 leakage
increases with the reduction of the aging factor as well; that is, the aging of the catalyst will make the
closed-loop control system unstable. As shown in Figure 5c,d, θ1 is greater than θ2 totally, that is, NH3

is mainly stored at the first cell of catalyst. Meanwhile, with the aging of the catalyst, θ1 decreases
larger and faster, but, in contrast, the variation of θ2 is not obvious relatively. It may be due to the fact
that hydrothermal aging has a major effect on the first cell of the catalyst and a minor effect on the
second cell of the catalyst.
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Table 3. SCR performance at different aging factors.

Aging Factor Mean NOx
Conversion Efficiency

Mean NH3
Leakage/ppm

Peak NH3
Leakage/ppm

Variance of NH3
Leakage

1 79.7% 9.28 22.24 15.31
0.9 77.0% 9.86 23.81 18.46
0.8 73.7% 10.56 25.64 22.62
0.7 69.6% 11.39 27.97 28.22
0.6 64.7% 12.41 31.57 35.83
0.5 58.4% 13.67 35.65 46.31

4.2.2. Diagnosis of Aging of the Catalyst

As discussed above, aging of the catalyst has a significant effect on SCR performance. Accurate
identification of the degree of aging of the catalyst will contribute to fault tolerance of SCR control
system or replacement of an aged catalyst. Hence, GS–PSO–SVM is utilized to diagnose the degree of
aging of the catalyst. According to the procedures of SVM modeling and optimization, the first half of
data samples and the second half of data samples (including urea dosage, NOx conversion efficiency,
NH3 leakage, exhaust mass flow, upstream NOx concentration, and downstream temperature) at each
aging factor (0.5 to 1 at step of 0.1) are selected as the training data and the test data respectively.
Figure 6 shows the flow chart of processes for designing the GS–PSO–SVM model.
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Figure 7 illustrates the rough selection results of the main parameters in a SVM classifier (C and g)
through the GS method. It is obvious that in the range of C ∈ [24, 211] and g ∈ [2−1, 23], as well as
C ∈ [210, 214] and g ∈ [20, 22], the classification accuracy of training data samples can be more than
98%; that is, the optimal c and g are probably to be located within these two ranges. Hence, as in
the procedure mentioned above, the PSO algorithm is utilized to search precisely in the range of
C ∈ [24, 211] and g ∈ [2−1, 23], as well as C ∈ [210, 214] and g ∈ [20, 22]. Then, the optimal c and g,
which are obtained through PSO, will be applied in the SVM model to verify the diagnosis effect on
hydrothermal aging of the SCR catalyst by testing the data samples.

In this study, the SVM, GS–SVM and PSO–SVM are proposed as well to highlight the good
diagnosis performance of GS–PSO–SVM. Figure 8 shows the performance of four different methods on
diagnosing hydrothermal aging of the SCR catalyst. The diagnosis accuracy of the four algorithms in
each degree of hydrothermal aging are given in Figure 8. It is evident that GS–PSO–SVM shows the
best diagnosis performance in almost all of the hydrothermal aging factors. In contrast, SVM exhibits
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the worst classification accuracy in almost all of the degrees of hydrothermal aging. Meanwhile, it is
obvious that PSO–SVM and GS–SVM have similar diagnosis performance in each of the hydrothermal
aging factors. Furthermore, it can be found that with the decrease of the aging factor the diagnosis
performance of the four algorithms on the degree of aging of the SCR catalyst has roughly a raising
trend. As discussed in Section 4.2.1, the performance of the SCR system will reduce faster due to
the hydrothermal aging of the SCR catalyst. When the degree of aging of the SCR catalyst is high,
it may cause the obvious difference between the data samples under two adjacent aging factors. In this
case, it may be easier for the algorithms to distinguish them. In addition, the average diagnosis
accuracy of the four algorithms are illustrated in Figure 8 as well. As shown in Figure 8, the average
diagnosis accuracy of GS–PSO–SVM, PSO–SVM, GS–SVM and SVM are 93.8%, 93.1%, 92.9% and
92.0% respectively, which indicates that GS–PSO–SVM exhibits better performance on diagnosing
hydrothermal aging of the SCR catalyst than the others.
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5. Conclusions

In this paper, a novel ensemble methodology involving the use of GS, PSO, and SVM, implemented
in MATLAB, is presented for diagnosing the degree of hydrothermal aging of a V2O5/WO3–TiO2

catalyst in a SCR system. The various aspects of modeling and optimization have been discussed in
detail. It can be concluded that:

1. The SCR model has been built for the investigation, in a simulation, of the effect of an aging
catalyst on SCR performance. It was validated under a NH3 based closed-loop control strategy
by transient test data and the results show that this SCR model can roughly predict NOx emission
and NH3 leakage at the outlet of a catalyst convertor.

2. Considering that the activity of the SCR reaction is the main factor affecting NOx conversion
efficiency, the SCR reaction rate (Rscr) was selected as the major parameter affected by the
hydrothermal aging and the aging factor (α) was defined simultaneously.

3. The aging effect on the performance of a NH3 closed-loop SCR control system was studied by
changing the aging factor (α). The result indicates that the aging of the SCR catalyst has significant
negative impact on the performance of the SCR control system.

4. To highlight the advantages of GS–PSO–SVM, this system was compared with PSO–SVM,
GS–SVM and SVM. The results show that the diagnosis accuracy of GS–PSO–SVM, PSO–SVM,
GS–SVM and SVM are 93.8%, 93.1%, 92.9% and 92.0% respectively. It indicates that GS–PSO–SVM
exhibits better performance in the diagnosis of catalytic aging than PSO–SVM, GS–SVM or SVM.
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Definitions/Abbreviations

NOx Nitrogen oxide and dioxide
NH3 Ammonia
REG Exhaust Gas specific constant
R Universal gas constant
T Temperature in catalyst convertor
mEG Exhaust mass flow
pamb Ambient pressure
ncell Number of SCR cell in the model
ε Ratio of gas to total convertor volume
Vc Converter volume
Cs Concentration of active atoms with respect to converter volume
Sc Area of 1 mol of active surface atoms
αprob Sticking probability
MNH3 NH3 molar mass
kdes Pre-exponential factor of desorption
kscr Pre-exponential factor of SCR
kox Pre-exponential factor of NH3 oxidation
Edes Activation energy of desorption
Escr Activation energy of SCR
Eox Activation energy of NH3 oxidation
θ Ammonia surface coverage
θ1 Ammonia surface coverage in first cell of catalyst convertor
θ2 Ammonia surface coverage in second cell of catalyst convertor
CNOx NOx concentration
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CNH3 NH3 concentration
Rads Reaction rate of adsorption
Rdes Reaction rate of desorption
Rscr Reaction rate of SCR
Rox Reaction rate of NH3 oxidation
nNOx,in NOx molar flow at inlet of catalyst convertor
nNH3,in NH3 molar flow at inlet of catalyst convertor
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