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Abstract: Based on stochastic frontier analysis and translog input distance function, this paper examines
the total factor energy efficiency of China’s industry using input-output data of 30 sub-industries from
2002 to 2014, and decomposes the changes in estimated total factor energy efficiency into the effects of
technical change, technical efficiency change, scale efficiency change and input-mix effect. The results
show that during this period the total factor energy efficiency in China’s industry grew annually
at a rate of 3.63%; technical change, technical efficiency change and input-mix effect contributed
positively to the change in total factor energy efficiency; while scale efficiency change contributed
negatively to it.
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1. Introduction

China has to optimize its energy consumption structure and improve energy efficiency in order
to reduce environmental pressure, ensure energy security, and fulfil its international obligations of
dealing with global climate change. As the world’s largest energy consumer, China has a significantly
high proportion of fossil energy in primary energy consumption. Although it was gradually decreasing
due to the slowdown in economic growth and the rapid development of renewables in recent years, the
share of fossil energy consumption remained at 88% in 2015. The industry (especially manufacturing)
is the largest economic sector as well as the largest energy use sector in China. According to relevant
statistics, the value-added of the manufacturing accounts for one-third of China’s GDP, and the energy
consumption of the industrial sector accounts for 60% of China’s total energy consumption in 2015.
This situation implies that, for China, improving industrial energy efficiency should be the main means
of reducing its greenhouse gas (GHG) emissions related to energy consumption.

In order to assess the issue of energy efficiency, and propose assessment-based practical policy, it is
essential to determine how to define and measure energy efficiency. There is as of yet no widely accepted
definition of energy efficiency. Most definitions are contingent on the simple ratio of useful output of
a process and energy input into that process [1]. Patterson [2] identifies different ways to quantify the
outputs and inputs for calculating that ratio. One of these ways is to use economic-thermodynamic
indicators, in which output is measured in monetary values, and the energy input is measured in
thermodynamic units. The energy-GDP ratio commonly used in energy analysis at a macro level is
actually the inverse of this economic-thermodynamic indicator. However, this definition is considered

Sustainability 2017, 9, 646; doi:10.3390/su9040646 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://www.mdpi.com/journal/sustainability


Sustainability 2017, 9, 646 2 of 17

too simplistic. A better way to define energy efficiency is to resort to the microeconomic theory of
production. To understand this approach, it is necessary to recognize that the demand for energy
is a kind of derived demand, resulting from the demand for outputs, i.e., products and services.
Producers or households use energy, capital and labor to produce products and (energy) services.
What matters for producers is providing products and services in an efficient way. Under the given
productive technology, they minimize the production cost of a certain output quantity by choosing
the combinations of inputs. In reality, producers may choose a non-cost-minimization combination of
inputs or use obsolete technology to produce outputs. In these situations, possibly energy and other
inputs are used inefficiently. Under this circumstance, productive inefficiency could be discussed using
the microeconomic theory of production. What is more, the radial measure of technical, allocative and
overall productive efficiency introduced by Farell [3], and the non-radial measure of input-specific
technical efficiency introduced by Kopp [4] can help to understand the concept of energy efficiency.

Finippini and Hunt [5] present the differences between the radial and non-radial measure of
energy efficiency in Figure 1. Suppose a producer is using capital (C) and energy (E) to produce
a unit energy service (ES). In Figure 1, IS0 and IC0 represent a unit isoquant and an isocost line,
respectively. A technically efficient producer will use the combinations of inputs lying on the isoquant
IS0 to produce a unit of energy service. If the price ratio of capital and energy—represented by the
slope of the isocost line—is known, the producer can identify the cost-minimization-combination for
producing a unit of energy service, i.e., point X∗. If a producer uses combination X1 to provide one
unit of energy service, it appears to be technically inefficient. Using input-oriented radial measure, the
level of technical inefficiency θ can be measured as the ratio between the distance from the origin to
the technically efficient point θX1 and the distance from the origin to point X1. Although point θX1 is
technically efficient, it is allocatively inefficient. The allocative efficiency level can be measured as the
ratio between the distance from the origin to point αX1 and the distance from the origin to point θX1.
The overall productive efficiency α can be measured as the ratio between the distance from the origin
to point αX1 and the distance from the origin to point X1. Operating at point X1 is inefficient both
technically and allocatively; a producer could improve the overall productive efficiency by moving
towards the optimal input combination point X∗. During the process of movement, the energy input is
decreasing because of the substitution between capital and energy.
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In the above-mentioned input-oriented radial measure of energy efficiency, an efficiency
improvement in input utilization requires a reduction of energy and other inputs proportionally.
Of course, if researchers are more interested in measuring the technical efficiency of specific input,
such as energy input, they can turn to the non-radial concept of technical efficiency. Non-radial
technical efficiency, proposed by Kopp [4], can be expressed as the ratio between the distance from
the technically efficient point βX1 to point C1 on the horizontal axis and the distance from point X1 to
point C1. This means that under the non-radial technical efficiency framework energy efficiency can
be measured as the ratio of minimum feasible energy input (E2) to the observed use of energy (E1),
conditional on the output and other fixed inputs.

It is important to consider the effects of relative price and technical change on the efficiencies
of energy and other inputs when analyzing a producer’s productive efficiency. When the relative
prices of inputs change, the cost-minimizing combination of inputs will change as well, subsequently
resulting in a change in allocative efficiency. If technical change allows a producer to produce the same
output level with less energy and capital input, the isoquant moves inward. As a result, the technical,
allocative and overall productive efficiency levels all change. In a word, the level of energy efficiency
could change due to the changes in relative price and technological progress over time.

China’s industrial economy has been growing rapidly since the 1990s. According to China Industry
Statistical Yearbook, at the 1990 constant price, the gross output value increased by 12 times from
1990–2011 with a yearly average growth rate of 12.75%. With the rapid growth of output and factors
demand, the relative prices of factor inputs have been changing over time. Figure 2 shows the trends in
price indices of labor, capital and energy (1990 = 100) from 1990–2015 (Here, the fixed assets investment
price index is used to approximate the capital goods price index, and the fuel and power price index
is used to measure the energy price index). These trends in factor price indices mean that, as the
relative price of labor to capital has been going up, labor has become more expensive relative to capital
factor, leading to a significant increase in capital-labor ratio. For example, the net fixed assets value
per worker in the industry sector was only 18.1 thousand yuan (at 1990 constant price) in 1991, but
it reached 106.7 thousand yuan (at 1990 constant price) in 2010, expanding 4.89 times during this
period with an average annual growth rate of 19.4%. This number illustrates how the pace of capital
deepening in China’s industry sector has been very high.
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Meanwhile, China’s industry sector has witnessed dramatic structural change since the 1990s.
In terms of output, the status of labor-intensive sectors such as food processing and textiles in
manufacturing has been dropping gradually, while capital-intensive sectors, such as machinery,
electrical and optical equipment etc., have become increasingly more important [7]; manufacturing is
gradually transforming into a more capital-intensive sector from a more labor-intensive one. The most
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significant change in China’s industry sector should be the change in ownership structure. Although the
state-owned enterprises still predominate in asset size, in terms of output and employment, private
and foreign investment enterprises have already surpassed the state-owned enterprises. For instance,
according to China Industrial Statistical Yearbook, the share of total assets held by state-owned and
state-holding enterprises was 68.64% in 1998, but it rapidly dropped to 40.29% in 2013; at the same
time, the share of private and foreign investment enterprises rose to 42.37% in 2013, where it was only
20.97% in 1998.

In sum, China’s industrial sector has experienced profound structural change over the past
few decades. Ownership structure has transformed from a predominantly state-owned economy
into a co-existing pattern of various ownership economies. The share of state capital has declined
dramatically, while private and foreign capital have increased substantially; output structure has
changed into a more capital-intensive sector from a more labor-intensive one. The factor prices and
capital-labor ratio have also been evolving along with the structural change of this sector, consequently
influencing the energy efficiency of China’s industrial sector. This paper aims to estimate and
decompose the total factor energy efficiency of that sector. Compared with the relevant literature,
this study examines the scale effects resulting from the change in input-mix and output combination
on productivity. We find that the scale effect associated with output changes is the key factor to
deteriorating productivity, while the scale effect linked to changes in input-mix makes a positive
contribution to productivity growth. This finding may provide some insight into how China can
improve its industrial energy efficiency in the future.

2. Literature Review

China has been the world’s fastest-growing economy over the past few decades, and its resulting
vast energy consumption and GHG emissions have led researchers to pay a great deal of attention to
China’s energy efficiency. Generally, the literature relating to China’s energy efficiency can be divided
into two thematic categories. One category mainly examines the regional differences of China’s energy
efficiency. The other focuses on identifying the sources of its energy-efficiency change. However, a few
studies intertwine both topics. Hu and Wang [8] define total factor energy efficiency as the ratio of target
energy input to actual energy input for a given output, and use nonparametric techniques to measure
it. They find eastern regions to have the highest rank of total factor energy efficiency, while central
regions have the lowest. It is worth pointing out that Hu and Wang’s definition is a radial measure of
technical efficiency under a multiple-inputs framework. Shi et al. [9] estimate the industrial energy
efficiency of China’s 28 provincially administrated districts using nonparametric data envelopment
analysis. Their results show that during 2000–2006, the industry sector of the eastern region had the
best energy efficiency. Similar conclusions are made by Wang et al. [10], Yao et al. [11], and Lin and
Zhao [12]. Based on directional distance function, Fujii et al. [13] estimate the productive efficiency in
relation to CO2 emissions using a dataset of 562 Chinese manufacturing firms. The results indicate
that there are different trends in productivity change and corporate performance across industries and
provinces. Fujii et al. [14] find that the Chinese industrial sector increased total factor productivity
(TFP) by nearly 40% from 1992 to 2008, and the main contributors are labor-saving, value-added
increases and environmental pollution management. It is worth pointing out that Johnstone et al. [15]
explore the relationship among the environmental policy design, innovation and efficiency gains in
electricity generation.

Different from the above studies using the nonparametric method, some authors employ parametric
techniques to estimate the energy efficiency of the Chinese economy. Zhou et al. [16] propose a parametric
frontier method to measure China’s energy efficiency. Lin and Du [17] use a parametric meta-frontier
approach to estimate total factor energy efficiency for China’s 30 provincial units. Again, it is worth
noting that the definition of total factor energy efficiency in Lin and Du [17] is a non-radial measure of
technical efficiency. Lin and Wang [18] explore energy efficiency in China’s iron and steel sector using
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stochastic frontier analysis (SFA). Similarly, Hu [19], Ouyang and Sun [20], and Li et al. [21] also use SFA
to measure the total factor energy efficiency or energy-saving potentials of China’s industrial sector.

In terms of measuring improvement in energy efficiency, European Standard EN 16212 [22]
provides a general approach for energy efficiency and energy-savings calculation that encompasses
the structural, autonomous and price-induced effects on energy savings. In this document,
energy-efficiency improvement is defined as an increase in energy efficiency as a result of technological,
behavioral and economic changes. Generally, the final energy use depends on growth in activities
and number of energy-using devices. The structural effects refer to the impact of changes in the type
of activities on energy use. They may limit the growth in energy use or may result in its stimulation.
Energy savings due to autonomous effects occur without a deliberate effort focused on energy savings
alone. Often autonomous savings are driven by competitive pressure to save running costs or natural
technological progress. The autonomous progress depends on the rhythm of economic growth: high
growth implies faster turnover of energy equipment, thus more possibilities for savings. Price-induced
energy efficiency progress is linked to the increase in the price of crude oil and imported natural gas.
In addition, policy-induced energy efficiency progress refers to the impact of policy changes such as
tax hikes.

Although the European Standard EN 16212 [22] provides a detailed guideline for EU member
states to calculate energy efficiency and savings, thus providing insight into how energy-efficiency
improvement occurs, it is difficult to distinguish the contribution of each effect. The Malmquist
productivity index introduced by Caves et al. [23] is the commonly used method to identify the sources
of TFP. Fare et al. [24] developed a nonparametric method to estimate TFP, further decomposing it into
technical change and technical efficiency change. In contrast, Coelli et al. [25], Rossi [26], Balk [27],
Fuentes et al. [28], Orea [29], and Pantzios et al. [30] use alternative parametric techniques to estimate the
Malmquist productivity index. We note that Pantzios et al. [30] extend the framework of Fuentes et al. [28],
and decompose the Malmquist productivity index into technical change, technical efficiency change, scale
efficiency change and input-mix effect. He et al. [31] use data envelopment analysis (DEA)-Malmquist
productivity index techniques to measure the energy efficiency and productivity change for 50 iron
and steel enterprises from 2001 to 2008. The results show that the annual growth rate of total factor
productivity averages 7.96% during this period, and that technical change is the main source of this
growth. Similarly, Shao et al. [32] also find that technical change is the largest contributor to the growth
of TFP for China’s nonferrous metal industry, followed by the improvement in scale efficiency. Li and
Lin [33], and Li and Lin [34] measure green productivity growth in China’s industrial sector and
manufacturing using an improved Malmquist-Luenberger productivity index.

We find that most relevant literature uses nonparametric techniques to estimate the non-radial
total factor energy efficiency in the Chinese economy. Measuring the level of non-radial total factor
energy efficiency is meaningful, since producers occasionally do not want or have no way to reduce
other inputs of the production process, only caring about saving energy. In some cases, however, the
radial total factor energy efficiency is more reasonable. First, output is produced using labor, capital
and energy. Producers not only need to take responsibility for energy saving, but they also need
to consider other ways for input saving. Second, there is a complicated economical and technical
relationship between capital and energy use in the production process. The relationship can be either
a substitute or complementary one. If the relationship is substitute, in order to produce a certain
level of output, reducing capital input would require an increase in energy use; conversely, if it is
complementary, reducing energy input needs to reduce capital input at the same time. China’s industry
has been suffering from severe overcapacity in recent years. Removing excess capacity therefore needs
to reduce both capital and energy input. Hence, for China, the radial measure of total factor energy
efficiency is more suitable than non-radial one.

In summary, the majority of previous studies relating to China’s energy efficiency estimates the
non-radial measure of total factor energy efficiency using nonparametric techniques. Following the
method proposed by Pantzios et al. [30], this paper will use parametric techniques to estimate and
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decompose the radial measure of the total factor energy efficiency in China’s industry. Our results
show that: the total factor energy efficiency in China’s industry grew at an annual average rate of
3.63% from 2002 to 2014; technical change, technical efficiency change and input-mix effect contribute
positively to the change in total factor energy efficiency; while scale efficiency change contributes
negatively to it.

The contributions of this paper lie in two aspects. First, as opposed to most previous studies,
this study estimates the level of radial total factor energy efficiency by using parametric techniques.
Second, it examines the effect of scale efficiency associated with output and input-mix change on
energy efficiency in China’s industry, finding that the deterioration of scale efficiency related to output
is the key factor restraining the growth of China’s industrial energy efficiency. The remainder of this
paper is organized as follows: Section 3 introduces an input-oriented Malmquist productivity index
and its parametric decomposition proposed by Pantzios et al. [30]; in Section 4, this paper estimates
and decomposes the total factor energy efficiency of China’s industry; in Section 5 some conclusions
are provided.

3. Decomposition and Parametric Estimation of the Input-Oriented Malmquist Productivity Index

3.1. Decomposition

According to Pantzios et al. [30] and Balk [27], for any two successive time periods t and t + 1, the
input-oriented Malmquist productivity index Mt

I . can be expressed as:

Mt
I
(

xt+1, yt+1, xt, yt) = TCt,t+1
I

(
xt+1, yt+1)× TECI

(
xt+1, yt+1, xt, yt)

×SECt
I
(
xt, yt+1, yt)×MEt

I
(
xt+1, xt, yt+1) (1)

where x and y denote inputs and outputs, respectively, and the subscript I refers to input orientation.
The four components on the right-hand side of (1) are defined as:

TCt,t+1
I =

Dt+1
I
(
xt+1, yt+1)

Dt
I(xt+1, yt+1)

(2a)

TECI =
Dt

I
(
xt, yt)

Dt+1
I (xt+1, yt+1)

(2b)

SECt
I =

ISEt(xt, yt+1)
ISEt(xt, yt)

(2c)

MEt
I =

ISEt(xt+1, yt+1)
ISEt(xt, yt+1)

(2d)

ISEt in (2c) is the input-oriented scale efficiency measure, evaluating the productivity of
an observed input-output bundle (xt, yt) relative to that of technically optimal scale.

TCt,t+1
I , representing the technical change component, captures the radial shift in the input

requirement set measured with period t + 1 data. If the same output level can be produced with less
inputs, technical progress occurs and the values of TCt,t+1

I are greater than one. Fare et al. [35] show
that (2a) can be rewritten as:

TCt,t+1
I

(
yt+1, xt+1

)
= TCM

(
yt, xt)×OB

(
yt, xt+1, yt+1

)
× IB

(
xt, yt, xt+1

)
(3)

TCM(yt, xt), Pantzios et al. [30] referring to it as technical change magnitude index, measures the rate
of technical change locally. The values of TCM will be greater than one when the input requirement
set contracts along a ray through period t data. The terms OB

(
yt, xt+1, yt+1) and IB

(
xt, yt, xt+1) are

the output and the input bias indices, respectively. The specific definitions of these two terms can be
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found in Pantzios et al. [30]. Generally, the bias indices compare the magnitude of technical change
along a ray through period t + 1 data to the magnitude of technical change along a ray through period
t data. If technical change is neutral, the input requirement set will shift inward or outward by the
same proportion along a ray through period t + 1 data as it does along the ray through period t
data. The input bias index equals one and does not have contribution to productivity when implicit
Hicks input-neutral technical change prevails. Similarly, the output bias index equals one and has no
contribution to productivity change when implicit Hicks output-neutral technical change and CRS
prevail [30].

The technical efficiency change component, TEC, measures enterprises’ ability to improve
technical efficiency from one period to the next. For input-oriented technical efficiency, TEC will
be greater than one as the technical efficiency improves.

The remaining two components, SECt
I and MEt

I , are defined in terms of the input-oriented scale
efficiency measure (ISEt). If a producer is operating at a technically optimal scale, its production
technology exhibits CRS and average ray-productivity reaches its maximum. The expression of the
component SECt

I
(

xt, yt+1, yt) can be found in the Formula (6) in Pantzios et al. [30]. If SECt
I is greater

than one, then the output bundle at period t + 1 lies closer to the point of technical optimal scale than
the output bundle of period t does, thus scale efficiency increases. Therefore, SECt

I measures how the
input-oriented measure of scale efficiency changes over time when input mix is fixed.

MEt
I , the input-mix effect, measures how the distance of a frontier-point to the frontier of the “cone

technology” changes when input mix changes, conditional on the same output bundle. Specifically, it
measures the change in the input-oriented measure of scale efficiency from a change in input mix
when outputs remain unchanged. If the values of MEt

I are greater than one, that indicates a positive
contribution of the input-mix effect to productivity changes. The product of SECt

I and MEt
I measures

the combined effect of the scale efficiency change and of input-mix; it is essentially an overall scale
effect. It is worth noting that if technology exhibits CRS, then both SECt

I and MEt
I are equal to one.

3.2. Parametric Estimation

In order to estimate the Malmquist productivity index using parametric techniques, it is necessary
to specify a particular function form for the input distance function. Researchers often choose a flexible
function form such as translog function. Suppose a producer uses k (k = 1,2, . . . ,K) inputs to produce
m (m = 1,2, . . . ,M) outputs at time t (t = 1,2, . . . , T). The translog input distance function can be
defined as:

ln Dt
I
(

xt, yt) = α0 +
K
∑

k=1
αklnxt

k + 0.5
K
∑

k=1

K
∑

l=1
αkl lnxt

klnxt
l + 0.5

K
∑

k=1

M
∑

m=1
δkmlnxt

k ln yt
m

+
M
∑

m=1
βmlnyt

m + 0.5
M
∑

m=1

M
∑

n=1
βmnlnyt

mlnyt
n + γ0t + 0.5γ00t2

+
K
∑

k=1
ηklnxt

kt +
M
∑

m=1
µmlnyt

mt

(4)

The regularity conditions related to input distance function require that it should be homogeneous
of degree one in input quantities and symmetrical. That means the following restrictions on the
parameters of (4):

∑K
k αk = 1, ∑K

k αkl = 0, ∑K
k δkm = 0, ∑K

k ηk = 0 (5)

αkl = αlk, βmn = βnm (6)

The linear homogeneity restriction is imposed by dividing all input quantities in the right-hand
side of (4) by the quantity of that input used as a numeraire. For example, here supposing it to be x1,
then (4) can be written as:
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ln
[

Dt
I(xt ,yt)

xt
1

]
= α0 +

K
∑

k=2
αk ln

(
xt

k
xt

1

)
+ 0.5

K
∑

k=2

K
∑

l=2
αkl ln

(
xt

k
xt

1

)
ln(xt

l /xt
1)

+0.5
K
∑

k=2

M
∑

m=1
δkmln(xt

k/xt
1) ln yt

m

+
M
∑

m=1
βmlnyt

m+0.5 ∑M
m=1 ∑M

m=1 βmn lnyt
m lnyt

n+γ0t +0.5γ00t2 +
K
∑

k=2
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According to the definition of the input distance function, Dt
I
(
xt, yt) must be equal to or greater

than one. Let ln Dt
I = uit, then uit ≥ 0 represents the technical inefficiency. Shifting lnDt

I
(
xt, yt) to the

right-hand side of (7), and adding a random noise term, vit, assumed to be normally distributed, and
independent with uit, gives the following regression model:

− ln xt
1 = α0+

K
∑

k=2
αk ln

(
xt

k
xt

1

)
+ 0.5

K
∑

k=2

K
∑

l=2
αkl ln

(
xt

k
xt

1

)
ln(xt

l /xt
1)

+0.5
K
∑

k=2

M
∑

m=1
δkmln(xt

k/xt
1) ln yt

m +
M
∑

m=1
βmlnyt

m

+0.5
M
∑

m=1

M
∑

m=1
βmnlnyt

mlnyt
n + γ0t + 0.5γ00t2 +

K
∑

k=2
ηk ln

(
xt

k
xt

1

)
t

+
M
∑

m=1
µmlnyt

mt + vit − uit

(8)

Following Battese and Coelli [36], Pantzios et al. [30] model the temporal pattern of technical
inefficiency as:

uit = β(t)ui

(
exp

[
−ξ
(

t− T
)])

ui (9)

where ξ is a parameter to be estimated, and ui ∼
∣∣N(µ, σ2

u
)∣∣. If its estimated value is negative, technical

efficiency tends to improve over time. If ξ = 0, then technical efficiency is time-invariant, meaning
technical efficiency makes no contribution to productivity change.

Following Balk [27] and Fuentes et al. [28], Pantzios et al. [30] illustrate how to use the parameter
estimates of the input distance function along with the observed values of input and output to estimate
the components of the Malmquist productivity index. Specifically, under the translog input distance
function specification, the technical efficiency change term, TCM

(
yt, xt) can be expressed as:

TCM
(
yt, xt) = exp

[
γ0 + γ00

(
t +

1
2

)
+

K

∑
k

ηklnxt
k +

M

∑
m

µmlnyt
m

]
(10)

The output bias index OB
(
yt, xt+1, yt+1) can be calculated as:

OB
(

yt, xt+1, yt+1
)
= exp

[
M

∑
m

µm

(
lnyt+1

m − lnyt
m

)]
(11)

Similarly, input bias index IB
(

xt, yt, xt+1) can be given as:

IB
(

xt, yt, xt+1
)
= exp

[
M

∑
k

ηk

(
lnxt+1

k − lnxt
k

)]
(12)
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Therefore, the technical change component (2a) of the Malmquist productivity index in (1) can be
computed as the product of expressions of (10)–(12).

The technical efficiency change is calculated as the ratio of two successive distance functions:

TECI =
Dt

I
(

xt, yt)
Dt+1

I (xt+1, yt+1)
= exp

[
lnDt

I
(

xt, yt)− lnDt+1
I

(
xt+1, yt+1

)]
(13)

Given the stochastic nature of (8), the predicted value of the input distance function is estimated
as a conditional expectation:

Di,t
I
(

xi,t, yi,t, t
)

= E[exp(−ui,t)|ui,t + vi,t]

=
1−Φ(β(t)σ∗−

µi
σ∗ )

1−Φ(− µi
σ∗ )

exp
(

β(t)µi + 0.5β(t)2
itσ

2
∗

)
where

µi =

(
∑ β
(

t
)

εit

)
σ2

v(
σ2

v + σ2
u ∑t β(t)2

) ,

and

σ2
∗ =

σ2
v σ2

u(
σ2

v + σ2
u ∑t β(t)2

) .

The remaining two components, SECt and MEt can be calculated using estimates of the
input-oriented scale efficiency. For the translog input distance function, the scale efficiency of
an input-output bundle (x, y) can be estimated as:

ISEt(x, y) = exp

[
1

2β

(
1− εt(x, y)

εt(x, y)

)2
]

(14)

where β = ∑M
m ∑M

n βmn, and

εt(x, y) = −
(

∑M
m

∂lnDt
I(x, y)

∂lnym

)−1

=
(
∑M

m

[
βm + ∑K

k δkmlnxk + ∑M
n βmnlnyn + µmt

])−1
,

which is the scale elasticity.
According to (2c) and (14), the scale efficiency change can be computed as:

SECt
I(xt, yt, yt+1) = exp

{
1

2β

[(
1

εt(xt, yt+1)
− 1
)2
−
(

1
εt(xt, yt)

− 1
)2
]}

(15)

Similarly, based on (2d) and (14), the input-mix effect can be calculated as:

MEt
I(xt, xt+1, yt+1) = exp

{
1

2β

[(
1

εt(xt1, yt+1)
− 1
)2
−
(

1
εt(xt, yt+1)

− 1
)2
]}

(16)

After computing all parts of the Malmquist productivity index through (10)–(16), Pantzios et al. [30]
propose formal procedure to test the statistical significance of various hypotheses on productivity
changes. For example, if there is no technical change, then TC = 1. A sufficient condition for TC = 1
is that the assembling parts, i.e., TCM, OB and IB, are equal to one simultaneously, resulting in the
following parameter restrictions on (10)–(12):
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γ̂0 = γ̂00 = η̂k = µ̂m = 0, for all k and m (17)

µ̂m = 0, for all (18)

η̂k = 0, for all k (19)

If the technical inefficiency is time-invariant, then TEC = 1. Given (9), TEC = 1 implies that ξ = 0. Lastly,
if the production technology exhibits CRS, then SEC and ME should be equal to one. Pantzios et al. [30]
have shown this implies the following parameter restrictions:

∑M
m β̂m = −1, and ∑M

m δ̂km = ∑M
m β̂mm = 0 (20)

4. Empirical Estimation and Decomposition of the Total Factor Energy Efficiency in China’s
Industrial Sector

4.1. Variables and Data

Based on the specification of (8), this section will estimate the total factor energy efficiency of
China’s industry using the input-output data at the sectoral level, and further examine the sources of
its growth via the decomposition approach. The standard industrial classification of China has been
revised several times since 1994. Considering the availability and continuity of data, this paper selects
30 sub-industries (The selected 30 sub-industries include: coal mining and dressing, petroleum and
natural gas extraction, ferrous metal mining and dressing, nonferrous metal mining and dressing,
nonmetal mineral mining and dressing, agricultural and sideline food processing, food manufacturing,
beverage manufacturing, tobacco processing, textile industry, timber processing, bamboo, cane, palm
fiber and straw products, furniture manufacturing, paper making and paper products, printing and
record medium reproduction, petroleum processing and coking, raw chemical materials and chemical
products, medical and pharmaceutical products, chemical fiber industry, nonmetal mineral products,
smelting and pressing of ferrous metal, smelting and pressing of nonferrous metal, metal products,
universe equipment manufacturing, special purpose equipment, electric machinery and equipment,
communications and computers and other electronic equipment, waste resources and material recovery
and processing, production and supply of electricity and heating power, production and supply of
gas, production and supply of water) of China’s industry as samples. The input-output data of these
sub-industries from 2002 to 2014 is employed for the above-mentioned purposes.

The industrial gross value of above-scale enterprises by industry is used to measure the output.
In order to remove the impact of inflation, the industrial gross value for each industry is deflated by the
industrial producer price index (2002 = 100) of that industry. Input variables include labor, capital and
energy. The number of employees of above-scale enterprises at the end of each year is used to measure
the labor input. The total net fixed asset is used to measure the capital input. The net fixed assets value
is just a book value, unable to reflect the capital stock in production accurately. In order to do that, we
use the fixed asset investment price index to adjust the net fixed asset. In China, the National Bureau
of Statistics classifies the overall price index of fixed asset investment into three categories, i.e., the
price indices of construction and installment, purchase of equipment, tool and instrument, and others.
We use those three price indices to construct the price index of fixed asset investment for each industry
according to the following formula:

pi(t) = wic(t)pc(t) + wie(t)pe(t) + wio(t)po(t) (21)

where pc(t), pe(t) and po(t) denote the price indices of construction and installment, purchase of
equipment, tool and instrument, and others, respectively; wic(t), wie(t) and wio(t) are the weights of
those three price indices, calculated as the ratios of the investments in construction and installment,
purchase of equipment, tool and instrument, and other expenses to the total fixed asset investment of
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each industry, respectively. After constructing the fixed asset investment price index for each industry,
we adjust the net fixed asset of each industry with the constructed fixed asset investment price index
according to the following formula:

Kt
i = Kt0

i +
t

∑
t0+1

∆Kt
i /pt

i (22)

where Kt0
i is the net fixed asset of industry i at the end of the year t0, ∆Kt

i is the increase in the net
fixed asset of industry i at the end of year t, which equals the difference between the net fixed asset
of two years in succession, pt

i is the price index of the fixed asset investment of industry i in the year
t (2002 = 100). Finally, we use the amount of the primary energy consumption of each industry to
measure its energy input in production. All data of input-output and energy consumption comes from
relevant years’ China Industry Statistical Yearbook [37] and China Energy Statistical Yearbook [38], the data
of the industrial producer price index and the price index of fixed assets investment is from the CEIC
database [6]. Table 1 presents the summary statistics for related input-output variables.

Table 1. Summary statistics of relevant input-output variables.

Variable Unit Mean S.D Min Max

Industrial gross output value, Y billion yuan 1236.90 1630.5 3.21 1255.13
Labor, L 10 thousand 211.25 189.89 1.00 906.59

Fixed asset, K billion Yuan 446.25 726.85 0.23 605.59
Energy input, E 10 thousand (tce) 7184.74 12573.7 33 69342.42

4.2. Empirical Results

Having chosen the above-mentioned input-output variables, for the sake of clarity, we write out
the following translog input distance functions for China’s industry:

lnD(L, K, E, Y) = α0 + α1lnL + α2lnK + α3LnE + 1
2 α11(lnL)2 + α12lnL·lnK

+α13lnL·lnE + 1
2 α22(lnK)2 + α23lnK·lnE + 1

2 α33(lnE)2

+δ11lnL·lnY + δ21lnK·lnY + δ31lnE·lnY + β1lnY

+ 1
2 β11(lnY)2 + γ0t + 1

2 γ00t2 + η1lnL·t + η2lnK·t + η3lnE·t
+µ1lnY·t

(23)

Since the input distance function is homogeneous of degree one in inputs, dividing the left-hand
side and all input variables in the right-hand side of (23) by the quantity of energy input E gives the
following formula:

ln (D(L,K,E,Y)
E ) = α0 + α1 ln

(
L
E

)
+ α2 ln

(
K
E

)
+ 1

2 α11

(
ln
(

L
E

))2
+ α12 ln

(
L
E

)
· ln
(

K
E

)
+ 1

2 α22

(
ln
(

K
E

))2
+ δ11 ln

(
L
E

)
·lnY + δ21 ln

(
K
E

)
·lnY

+β1lnY + 1
2 β11(lnY)2 + γ0t + 1

2 γ00t2 + η1 ln
(

L
E

)
·t + η2 ln

(
K
E

)
·t + µ1lnY·t

(24)

Let unobservable input distance function value lnD(L, K, E, Y) = ut, ut ≥ 0, rearranging and adding
the random error vt to (24) leads to the following regression model:
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−lnE = α0 + α1 ln
(

L
E

)
+ α2 ln

(
K
E

)
+ 1

2 α11

(
ln
(

L
E

))2
+ α12 ln

(
L
E

)
· ln
(

K
E

)
+ 1

2 α22

(
ln
(

K
E

))2
+ δ11 ln

(
L
E

)
·lnY + δ21 ln

(
K
E

)
·lnY + β1lnY

+ 1
2 β11(lnY)2 + γ0t + 1

2 γ00t2 + η1 ln
(

L
E

)
·t + η2 ln

(
K
E

)
·t

+ µ1lnY·t + vt − ut

(25)

Next, we are applying the input-output data of China’s 30 sub-industries to model (25) to
measuring and decomposing the total factor energy efficiency in China’s industry. Table 2 reports the
maximum likelihood parameter estimates of model (25).

Table 2. The maximum likelihood (ML) parameter estimates of model (25).

Parameter Estimate SE Parameter Estimate SE

α0 −1.8469 (0.5350)** γ0 −0.3459 (0.0241)***

α1 −2.6861 (0.1543)*** γ00 −0.0035 (0.0005)***

α2 1.7406 (0.1578)*** η1 −0.0454 (0.0047)***

α11 −0.0358 (0.0261) η2 0.0390 (0.0053)***

α12 0.1006 (0.0604) µ1 0.0292 (0.0028)***

α22 −0.0077 (0.0433) σ2 0.7836 (0.0779)***

δ11 0.2782 (0.0174)*** γ 0.9946 (0.0991)**

δ21 −0.2408 (0.0230)*** µ 1.7656 (0.1468)***

β1 1.3131 (0.1246)** ξ −0.0088 (0.0014)***

β11 −0.0072 (0.0085) ln(θ) 402.63

Note: *, ** and *** denote the statistical significances at the level of 10%, 5% and 1%, respectively.

We notice that the estimated coefficients are statistically significant except the estimated
coefficients for the terms of the squared ln(L/E), squared ln(K/E) and squared ln(Y). The estimated
value of ξ is negative, and statistically significant at the 1% level; this provides evidence that the level
of the energy efficiency in China’s industry is improving over time, as can be confirmed by the results
of the later decomposition. The estimated values for σ2 and γ are significant statistically at the 1%
level; in addition, the estimated value of parameter γ, the ratio of the inefficiency term variance σ2

u to
the overall variance σ2, is 0.99, which implies that almost all deviations from the input set frontier in
China’s industry can be attributed to the inefficiency.

Figure 3 displays the average score of the total factor energy efficiency for all sub-industries
during the period 2002 to 2014. It shows that most sub-industries have a poor performance in
energy efficiency. However, there is a significant variation among sub-industries. Some industries
perform excellently in terms of energy efficiency—including waste resources and material recovery and
processing, production and supply of electricity and heating power—with the energy efficiency scores
averaged greater than 0.9. Instead, some others (for instance, coal mining and dressing, petroleum and
natural gas extraction, ferrous metal mining and dressing, and production and supply of water) are
underperforming, with energy-efficiency scores between 0.4 and 0.6. It is noteworthy that the average
energy-efficiency score of the production and supply of electricity and heating power is high—up
to 0.98. Because of its large share of national capital and the nature of monopoly, the production
and supply of electricity and heating power has been regarded for a long time as an inefficient
sector. In reality, China’s power sector has been devoted to improving energy efficiency and reducing
emissions through innovation and new technology promotion over the past decade. For instance, the
propagation of ultra-supercritical pulverized coal and circulating fluidized bed boiler technologies has
dramatically increased the efficiency of China’s fleet of coal-fired power plants. The coal consumption
for every kilowatt-hour has dropped to roughly 315 grams of coal in 2015 from around 370 grams in
2005, broadly having reached the average level of the developed countries. Our estimate of energy
efficiency for that sector is consistent with this situation.
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Figure 3. The average level of energy efficiency of different sub-industries. Note: the symbols i1 to
i30 correspond to following sub-industries, respectively: (i1) coal mining and dressing; (i2) petroleum
and natural gas extraction; (i3) ferrous metal mining and dressing; (i4) nonferrous metal mining and
dressing; (i5) nonmetal minerals mining and dressing; (i6) agricultural and sideline food processing;
(i7) food manufacturing; (i8) beverage manufacturing; (i9) tobacco processing; (i10) textile industry;
(i11) timber processing, bamboo, cane, palm fiber and straw products; (i12) furniture manufacturing;
(i13) paper making and paper products; (i14) printing and record medium reproduction; (i15) petroleum
processing and coking; (i16) raw chemical materials and chemical products; (i17) medical and
pharmaceutical products; (i18) chemical fiber industry; (i19) nonmetal mineral products; (i20) smelting
and pressing of ferrous metal; (i21) smelting and pressing of nonferrous metal; (i22) metal products;
(i23) universe equipment manufacturing; (i24) special purpose equipment; (i25) electric machinery and
equipment; (i26) communications and computers and other electronic equipment; (i27) waste resources
and material recovery and processing; (i28) production and supply of electricity and heating power;
(i29) production and supply of gas; (i30) production and supply of water.

Table 3 reports the Malmquist total factor energy efficiency index (MTFEEI) and the sources of its
growth in China’s industry. According to these estimates, the Malmquist total factor energy efficiency
index grows at an annually averaged rate of 3.36% from 2002 to 2014, which indicates during this
period the energy efficiency of China’s industry has been increasing. In terms of the sources of TFP
growth, technical change (TC) and technical efficiency change (TEC) make positive contributions to the
growth of the total factor energy efficiency. Although the growth rate of technical change is negative at
the beginning, the yearly averaged rate of growth of TC is as high as 2.49% during the period 2002
to 2014. Meanwhile, the average annual growth rate of technical efficiency is 1.31%. These figures
illustrate that technical change and technical efficiency categories’ increase have played a crucial role
in improving energy efficiency. On the other hand, scale efficiency change is found to be a negative
force: the scale efficiency associated with output from two successive years declined at an annually
average rate of 4.22%. This implies that China’s industry is moving away from the technically optimal
scale in terms of output. The input-mix effect (ME) is the most important source of total factor energy
efficiency growth during the period examined. The average value of the input-mix effect indicates that
the scale efficiency associated with the input combinations used over two successive years increased
at an annual rate of 3.95%. However, the input-mix effect is not strong enough to offset the negative
effect of the scale efficiency changes on total factor energy efficiency. Hence, the overall scale effect,
that is, the combined effect of radial scale efficiency changes and scale efficiency changes associated
with temporal changes in the input mix, decreases the total factor energy efficiency by 0.27%.
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Table 3. Malmquist energy efficiency index and its decomposition.

TC TEC SEC ME TFP

2002−2003 0.9917 1.0135 0.9515 1.0519 1.0059
2003−2004 1.0107 1.0134 0.9455 1.0630 1.0295
2004−2005 1.0198 1.0132 0.9627 1.0284 1.0230
2005−2006 1.0124 1.0142 0.9780 1.0411 1.0453
2006−2007 1.0263 1.0131 0.9642 1.0255 1.0281
2007−2008 1.0384 1.0129 0.9513 1.0206 1.0212
2008−2009 1.0202 1.0128 0.9611 1.0415 1.0342
2009−2010 1.0306 1.0125 0.9506 1.0323 1.0239
2010−2011 1.0309 1.0137 0.9617 1.0590 1.0643
2011−2012 1.0368 1.0126 0.9559 1.0440 1.0477
2012−2013 1.0380 1.0125 0.9642 1.0247 1.0383
2013−2014 1.0426 1.0124 0.9469 1.0427 1.0421

Mean 1.0249 1.0131 0.9578 1.0395 1.0336
Annual growth rate (%) 2.49 1.31 −4.22 3.95 3.36

Three hypotheses relating to model specification are examined using the LR test. Table 4 reports
the results. First, if the technical inefficiency is not present in sample data, then γ = µ = ξ = 0.
The null hypothesis that γ = µ = ξ = 0 is rejected at the 1% level of significance, indicates that
technical inefficiency is present in the data. This finding is consistent with the statistical significance
of the γ-parameter in Table 2. Next, if technical efficiency is time-invariant, then ξ = 0. The null
hypothesis that ξ = 0 is rejected at the 1% level of statistical significance, illustrating that the technical
inefficiency is time-variant. In fact, as shown in Table 3, the technical efficiency has been increasing
over time. Finally, the hypothesis that there is no technical change, i.e., TC = 1 is also rejected at the 1%
level of significance, meaning that the technical change is present. This finding is also depicted by the
statistically significant, negative estimates of parameters γ0 and γ00 in Table 2.

Table 4. Hypothesis tests.

Hypothesis LR-test Critical value

No technical inefficiency 27.6 χ2
0.99(4) = 13.27

No technical change effect 31.2 χ2
0.99(6) = 16.81

Time-invariant technical inefficiency 9.92 χ2
0.99(1) = 6.64

5. Conclusions

Based on the input-oriented distance function framework, this paper estimates and decomposes
the total factor energy efficiency of China’s industry using parametric techniques. The results show
that the total factor energy efficiency has been increasing at an average annual rate of 3.36% during
the period 2002–2014. The technical change, technical efficiency change and input-mix effect are key
sources of the total factor energy efficiency, the yearly averaged growth rates of these three factors
are 2.49%, 1.31% and 3.95%, respectively. That is, the input-mix effect, measuring the scale efficiency
associated with input mix, is the largest contributor to the energy efficiency improvement. Our results
also indicate the scale efficiency change associated with output exerts a negative impact on the growth
of energy efficiency; its annual growth rate averages−4.22%. The overall scale effect, i.e., the combined
effect of the scale efficiency change and input-mix effect on energy efficiency is −0.27%, thus implying
the overall scale efficiency of China’s industry declines during the period examined.

Our results have some implications for improving the energy efficiency of China’s industrial
sector. First, since scale efficiency is the main factor preventing the total factor energy efficiency
from increasing, China should focus on improving the scale efficiency of the industrial sector.
Currently, China is facing a serious overcapacity problem, which is recognized to be rooted in the
intrinsic motivations of both enterprises and governments to expand investment and production.
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The overcapacity means many productive resources do not contribute to the improvement of social
welfare. This necessarily leads to deterioration in scale efficiency. In order to overcome this “investment
thirst” of state-owned enterprises, it is necessary for China to get the prices right; it is even more
important to get the incentives right. At present, government intervention is still in vogue in some
crucial areas such as electricity, banking, etc. For instance, interest rates and electricity prices remain
under government control, providing distorted incentives to enterprises to expand investment and
production. Hence, China has to further promote the market-oriented reforms in these areas. In addition,
China should establish an effective, comprehensive tax and fee system for environment and energy
resources to reflect the social costs of energy utilization. This can help to provide the right incentives to
enterprises for improving energy efficiency.

Next, the results show that, although both technical change and technical efficiency change
increased during the period examined, the growth rates are much lower than that of deterioration
in scale efficiency, likely implying that China should pay more attention to indigenous innovations
through increasing R&D investment, even though learning and imitating advanced foreign technologies
has greatly contributed to the technological progress in China. Particularly, China should transform
and upgrade its traditional manufacturing through investment in modern information technologies
and other applicable technologies. This will help China to accelerate technical change and fully use its
huge potential of energy conservation.
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