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Abstract: This paper proposes an extended data envelopment analysis (DEA) model for deriving
eco-efficiency. In order to derive eco-efficiency, the proposed model utilizes the concepts of operational
efficiency and environmental efficiency. Since DEA can separately measure operational efficiency and
environmental efficiency, the treatment for constructing the unified indicator is required to ultimately
evaluate eco-efficiency through balancing operational and environmental concerns. To achieve this
goal, we define the environmental stringency as the business condition reflecting the degree of
enforcing environmental regulations across the firms or particular industries in different countries.
The proposed model provides flexibility, as required by the pollution-intensity of industry, in that it
allows the decision maker to evaluate DMU’s (decision-making unit) eco-efficiency appropriately
depending on the business environment. We present a case of agricultural production systems
to help readers understand what eco-efficiency becomes when we vary the stringency conditions.
Through the illustrative example, this paper presents the potential application by which different
environmental stringencies can successively be incorporated in DEA.

Keywords: eco-efficiency; operational efficiency; environmental efficiency; data envelopment
analysis (DEA)

1. Introduction

Recently, sustainability has become an undoubtedly critical issue, and many researchers involved
in environment studies have been paying serious attention to the challenging topic in order to achieve
both economic and environmental goals. Since the concept of eco-efficiency was first proposed by
Schaltegger and Sturm [1], a number of researchers as well as organizations suggested their own
definitions and also tried to link business with environmental issues, ultimately for sustainability.
For example, according to the World Business Council for Sustainable Development, eco-efficiency
is achieved by “the delivery of competitively priced goods and services that satisfy human needs
and bring quality of life, while progressively reducing ecological impacts and resource intensity
throughout the life cycle, to a level at least in line with the earth’s carrying capacity” [2]. Although
the definitions are slightly different, in essence they have the common core that eco-efficiency means
to “efficiently produce with less pollutants and energy”. Obviously, it is worth noting that the major
concern of measuring eco-efficiency is on how to improve economic performance while diminishing
environmental damages. So, currently, eco-efficiency is of high concern in many business areas.

Data envelopment analysis (DEA), first proposed by [3], is an effective tool in evaluating the
efficiencies of a set of decision-making units (DMUs), which use multiple inputs to produce multiple
outputs. DEA does not require the parametric specifications of a particular function and it also does
not require the predetermined weights to be attached to each input and output. Since the original
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model was carried out, many researchers have contributed to the refinement and extension of DEA
for the various fields of their interests. Traditional DEA models allow the users to evaluate the
economic performance of individual DMUs, depending on a profitability perspective. However,
because addressing the environmental performance of organizations has become one of the important
issues, it is necessary to extend the present DEA techniques or develop new DEA techniques that take
into account environmental impacts on the performance evaluation.

Over the past two decades, the efforts for environmental application using DEA have increased
considerably (e.g., [4–22]). In general, the efficiency is derived from a fractional formulation that either
minimizes inputs while holding outputs constant or maximizes outputs while holding inputs constant.
Also, there are other approaches for maximizing outputs and minimizing inputs simultaneously.
Under these optimization schemes, the result of DEA is directly affected by clearly defined input
and output variables. Therefore, the inputs and outputs should be selected for a particular problem
context. However, in the production process, traditional DEA models cannot provide accurate results
if there are important variables that have a negative effect on the environment. Such environmentally
detrimental factors can be considered undesirable outputs, which are often produced along with
desirable outputs and are expected to be minimized. As Färe et al. [23] pointed out, the performances
of DMUs turn out to be very sensitive to whether or not undesirable outputs are included. There are
DEA studies that tried to incorporate undesirable outputs. For example, Färe and Grosskopf [24],
Seiford and Zhu [25], and Liu et al. [26] clarified the issue of efficiency evaluation of undesirable
outputs and provided the mathematical models to solve it.

Usually, the performance measure incorporating both desirable and undesirable outputs is
used as a form of environmental efficiency in environment studies. Since DEA can separately
measure the operational (technical) and environmental efficiency, the treatment for constructing
the unified measure is required to ultimately evaluate eco-efficiency through balancing operational
and environmental concerns. Among the aforementioned environmental studies, Korhonen and
Luptacik [6], Zhang et al. [20], and Mahdiloo et al. [8] provided the DEA-based eco-efficiency models
considering environmental variables by setting them to undesirable outputs. To derive eco-efficiency,
they used an environmental efficiency (ecological efficiency) measure as the ratio of undesirable
outputs to desirable outputs and combined it with traditional operational efficiency, defined as
the ratio of desirable outputs to inputs. That is, the undesirable outputs behave like inputs for
environmental efficiency calculation. Mahdiloo et al. [8] criticized the so-called three-step methods,
suggested by [6,20], in that the combination of operational and environmental efficiency does not
provide a valid eco-efficiency score. Furthermore, Mahdiloo et al. [8] suggested multiple objective
linear programming (MOLP) to incorporate technical and environmental efficiency so as to reduce the
computational burden resulting from the three-step methods. The MOLP model recognizes DMUs as
being eco-efficient if and only if they are both operationally and environmentally efficient, while the
former models identify them if a DMU is either operationally or environmentally efficient.

In this research, a modified DEA model is suggested for taking into account the
environment-related factors. Along this line of research, this study attempts to determine eco-efficiency
on the basis of the operational and environmental aspects without directly unifying both operational
and environmental efficiency. In order to reflect environmental concern across business situations,
we propose a new model with parametric constraints that represent the situational context of
environmental concern. As pointed out by [6], studies on the impact of environmental policy on
the efficiency measure across the firms or particular industries in different countries are required. Our
research aimed at addressing this challenge.

To show applicability, agricultural production systems are illustrated by a new model suggested
in this research. That is, we apply the modified DEA model to soybean data gathered from 94 farms
in Iran. Recently, many agricultural applications have been examined to derive eco-efficiency using
DEA methodology, focusing on regional specific evaluation (China [27], Canada [28], Iran [29],
Japan [30], Spain [31]). In addition, other applications for eco-efficiency are employed for the
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evaluation of factories [4,9,15,19], power plants [6,10,14,18,32], supplier selection [8], regions and
cities [7,12,13,16,17,21], and transportation [33]. Particularly, unlike previous studies, we present
a generalized way to evaluate any condition with regard to the different levels of environmental
pressures or environmental concerns.

The remainder of this paper is organized as follows. In Section 2, DEA formulations of operational
and environmental efficiency are introduced with input decomposition. Also, the proposed model
for eco-efficiency is presented. In Section 3, we illustrate the proposed method using soybean data
collected from 94 farms in Iran. Finally, conclusions are given in Section 4.

2. Proposed Method

The conceptual DEA framework of eco-efficiency evaluation for sustainability is depicted in
Figure 1.
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Figure 1. The conceptual framework.

Consistent with previous studies [6,20], the underlying eco-efficiency of the proposed model
is based on the idea that undesirable outputs can be treated as inputs in a fractional form for
efficiency calculation.

2.1. Input Decomposition

As a preliminary work, we decompose inputs in the proposed DEA model into two types, which
are operational inputs and environmental inputs. Operational inputs consist of labor, machinery,
resources, energy, etc. In some DEA studies, energy has evolved as an important measurement, and
it has been widely investigated not only as an energy efficiency measurement [34–36] but also as an
input variable [8,20]. Since our study is not limited to the efficient use of energy, the proposed model
considers it as an input variable along with traditional inputs such as labor, machinery, and resources.
It is reasonable to consider the energy (e.g., electricity, gasoline, diesel, natural gas, and so on) as an
input because it is a key and basic resource in most production processes. Environmental inputs are
defined as undesirable outputs, e.g., emission of CO2, SO2, or NO, which are generated from the entire
production process. In this study, the life cycle inventory (LCI) information, which describes all the
resources used and all the emissions released into the environment connected with the production
process, is employed to determine environmental inputs more specifically.

2.2. Operational Efficiency

In general, the operational efficiency accounts for the capability of an organization that produces
products or services in a cost-effective manner while ensuring the quality. Typically, it is defined as the
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ratio of the outputs to the inputs in a system. Thus, we define operational efficiency as the ratio of
desirable outputs to operational inputs.

The traditional DEA model is the basis for developing a new model for eco-efficiency. This model
implicitly assumes that all DMUs operate a constant returns to scale (CRS) transformation of the inputs
into outputs. We adopt a CRS assumption in this study. When there are m operational inputs xij (i = 1,
2, . . . , m) and s outputs yrj (r = 1, 2, . . . , s) for each DMU j (j = 1, 2, . . . , n), the operational efficiency of
a particular DMU o can be formulated as the following fractional programming model:

max

s
∑

r=1
uryro

m
∑

i=1
vixio

s.t.
s
∑

r=1
uryrj

m
∑

i=1
vixij

≤ 1

vi ≥ 0
ur ≥ 0

(1)

where vi and ur are unknown non-negative weights for operational inputs and outputs,
respectively. Also, Model (1) can be transformed into a linear model through the Charnes-Cooper
transformation [37]:

max
s
∑

r=1
uryro

s.t.
s
∑

r=1
uryrj −

m
∑

i=1
vixij ≤ 0

m
∑

i=1
vixio = 1

vi ≥ 0
ur ≥ 0

(2)

If the optimal value of the objective function in Model (2) equals to one, then it can be said of the
specific DMU o that it is on the efficient frontier.

2.3. Environmental Efficiency

Compared to operational efficiency, environmental efficiency explains how efficiently produced
the outputs are relative to the environmental inputs, as defined above. Thus, environmental efficiency
is calculated as the ratio of outputs to environmental inputs. Assume there are p environmental inputs
zkj (k = 1, 2, . . . , p) for each DMU j (j = 1, 2, . . . , n), the environmental efficiency of a particular DMU o
can be formulated as follows:

max

s
∑

r=1
uryro

p
∑

k=1
wkzko

s.t.
s
∑

r=1
uryrj

p
∑

k=1
wkzkj

≤ 1

wk ≥ 0
ur ≥ 0

(3)



Sustainability 2017, 9, 661 5 of 18

Model (3) also can be transformed to a linear model using the Charnes-Cooper transformation
as follows:

max
s
∑

r=1
uryro

s.t.
s
∑

r=1
uryrj −

p
∑

k=1
wkzkj ≤ 0

p
∑

k=1
wkzko = 1

wk ≥ 0
ur ≥ 0

(4)

2.4. A Model for Eco-Efficiency

At this stage, we proposed a more concrete DEA method for eco-efficiency using both operational
and environmental efficiency simultaneously. If there are m operational inputs and p environmental

inputs, the total weighted sum of the inputs to a DMU j can be calculated as
m
∑

i=1
vixij +

p
∑

k=1
wkzkj.

Thus, eco-efficiency incorporating operational and environmental impacts on the process performance
could be expressed as the ratio of the weighted sum of outputs to the weighted sum of total inputs.
Accordingly, the eco-efficiency of a particular DMU o is formulated as follows:

max

s
∑

r=1
uryro

m
∑

i=1
vixio+δ

p
∑

k=1
wkzko

s.t.
s
∑

r=1
uryrj

m
∑

i=1
vixij+δ

p
∑

k=1
wkzkj

≤ 1

vi ≥ 0
ur ≥ 0
wk ≥ 0

(5)

In Model (5), the parameter δ reflects environmental regulation in a particular production problem.
That is, in order for the decision maker to respond appropriately to a given situation, the parameter
plays an adjusting role toward operational or environmental orientation. Specifically, the smaller δ

explains the situation that focuses more on the operational excellence, while the larger δ implies the
higher environment pressure that exists in the industry. Thus, we call this parameter δ the degree of
environmental stringency that explains environmental sensitivity.

Also, this model is a generalized version of [6,20] because the two models lead to identical
outcomes to the proposed model if δ = 1. This parameter illustrates the relative importance between
operational and environmental inputs and is specified by the decision maker. By assigning the
approporiate value to δ, the evaluation method for eco-efficiency can be flexibly applied to a variety of
business situations with regard to the different levels of environmental pressures or environmental
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concerns. Using the Charnes-Cooper transformation with an additional constraint, this fractional
programming Model (5) can be represented by the following linear programming model:

max
s
∑

r=1
uryro

s.t.
s
∑

r=1
uryrj −

m
∑

i=1
vixij − δ

p
∑

k=1
wkzkj ≤ 0

m
∑

i=1
vixio + δ

p
∑

k=1
wkzko = 1

vi ≥ 0
ur ≥ 0
wk ≥ 0

(6)

We refer to this linear Model (6) as the base model in this study. To reflect the relative importance
between a set of operational inputs and a set of environmental inputs, the base model can be modified
by using adjustment parameter δ. If δ is larger than 1, the following constraint should be added to the
base Model (6):

m

∑
i=1

vixij −
1
δ

p

∑
k=1

wkzkj ≤ 0 (7)

Constraint (7) implies the business condition that a set of environmental inputs is δ times more
important than a set of operational inputs for any DMU. For example, if δ = 2, the constraint ensures that
all DMUs will be assessed by satisfying 2∑m

i=1 vixij ≤ ∑
p
k=1 wkzkj, meaning that a set of environmental

inputs is at least two times more important than a set of operational inputs. In a similar manner, if δ is
less than 1, the following constraint should be added to Model (6):

−
m

∑
i=1

vixij +
1
δ

p

∑
k=1

wkzkj ≤ 0 (8)

The balanced condition can be formulated by assigning δ equal to 1. In addition, as described
above, if δ equals 1, the following equality condition should be included:

m

∑
i=1

vixij −
p

∑
k=1

wkzkj = 0 (9)

By adding Constraint (7) or (8) or (9) to base Model (6), the pollution-intensity of an industry
can successively be taken into account. Therefore, we call these constraints environmental
stringency constraints.

Even though Model (5), when the value of δ equals to 1, is identical to the models of [6,20],
the enhanced Model (6) with Constraint (9) is distinguished. Constraint (9) restricts the weights
by satisfying the weighted sum of the operational inputs as equal to the weighted sum of the
environmental inputs for all DMUs, while the earlier two models permit the most favorable weights to
be chosen freely in the usual DEA manner. Namely, Constraint (9) explains a business environment that
takes into account the equal importance of operational and environmental concerns for eco-efficiency
evaluation. However, by adding Constraint (9), the programs may often become infeasible because
it strictly restricts the decision space. Furthermore, it is difficult and unrealistic to extract an explicit
recognition of a business environment that represents the exactly equal importance between operational
and environmental concerns. To avoid infeasibility and unreality, the use of Constraints (7) and (8) is
recommended. Through the non-strict inequality in Constraints (7) and (8), the results from the two
independent models can be compared and analyzed in the situation in which the equal importance
between operational and environmental aspects is elicited by the decision maker.
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This restriction looks similar to a traditional restriction called Type II Assurance Region (ARII),
which represents the relationships between input weights and output weights. However, the restriction
suggested in this research is different in that it is imposed on a group of input variables while ARII
imposes it on each single input. In other words, this restriction does not control the weights on
all input variables directly but allows the most favorable weights to be chosen within a narrower
condition. In addition, the use of such constraints can increase the discriminatory power of DEA
because discriminatory power may be decreased if large numbers of inputs and outputs are involved
relative to the number of DMUs [38]. As noted in [39], weight restrictions may be useful if one wishes
to reduce the number of efficient DMUs. It may be especially helpful in environment studies where a
large number of variables are extracted from the LCI data.

3. Illustrated Example

In this section, the proposed method is applied to agricultural production systems. The
agricultural production system is suitable for applying the proposed approach since it consumes
traditionally used inputs in typical production processes such as labor and machinery, as well as
environment-related inputs such as chemicals and fertilizers. In addition, undesirable outputs are
produced with desirable outputs. We adopted the LCI data presented by [29] for soybean farming
evaluation. The inputs and outputs are selected from life cycle impact assessment, but the efficiency
measure does not clearly identify the operational efficiency and environmental efficiency since they
do not differentiate environmental inputs from operational inputs. The former study considered
environment-related variables as aggregated measures such as chemicals and fertilizers. These
variables were incorporated as inputs in the DEA model with other input measures of labor, machinery,
diesel, water, electricity, farmyard manure (FYM), seeds, and the output of soybeans. However, the
LCI data provides the original sources of chemicals and fertilizers. Specifically, the components of
the chemicals are herbicides, insecticides, and K2O, and the components of the fertilizers are urea
and P2O5. Emissions of CH4 and N2O are also selected in the LCI data, but these are not directly
considered variables in DEA. In this problem, a redefined input-output setting is summarized in the
following Table 1.

Table 1. Input decomposition.

Operational Inputs
Traditional Inputs

Labor (h)
Machinery (h)

Water (m3)
Seed (kg)

Energy Diesel (L)
Electricity (kWh)

Environmental Inputs

Chemicals
Herbicides (kg)
Insecticides (kg)

K2O (kg)

Fertilizers
Urea (kg)
P2O5 (kg)
FYM (kg)

Undesirable Outputs CH4 (kg)
(direct gas emission) N2O (kg)

To illustrate an application of the proposed eco-efficiency DEA model, the modified dataset of
soybean farming is presented in Table 2. The data presented herein is collected for a combinational
use of LCI and DEA data analyzed in [29]. The reader is referred to Mohammadi et al. [29] for the
complete data. It is also noted that a rule of thumb by [38] is satisfied because the number of DMUs is
over three times greater than the total number of input and output variables, although a large number
of variables are utilized through the use of LCI data.
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Table 2. Data set for the analysis.

DMU Labor
(h)

Machinery
(h)

Water
(m3)

Diesel
(L)

Electricity
(kWh)

Seed
(kg)

Herbicides
(kg)

Insecticides
(kg)

Urea
(kg)

P2O5
(kg)

K2O
(kg)

FYM
(kg)

CH4
(kg)

N2O
(kg)

Soybean
(kg)

Straw
(kg)

1 169 16 2016 70 0 60 4 1.5 110 46 0 0 9.3 3.2 3500 4312
2 142 15 2150 65 0 60 3 0.5 55 23 0 2500 8.4 3.1 3000 3889
3 197 22 3360 88 1953 70 2 1 96 69 0 2500 8.4 3.2 3000 3889
4 254 35 2722 122 1286 70 3 2 110 46 0 7500 9.5 3.4 3600 4397
5 138 32 2464 111 1432 100 2 2.5 78 23 0 2222 0 3.2 3000 3889
6 152 28 2419 98 0 60 3 2 110 46 0 2000 0 3.7 3150 4016
7 148 28 2419 109 703 60 3 3 110 46 0 563 0 3.2 4150 4862
8 213 27 4838 109 1406 100 1 2 137 115 0 1250 9.3 3.3 3500 4312
9 159 18 2822 76 0 80 0 2 76 46 0 0 7.1 3.1 2300 3296

10 137 28 2822 96 0 70 3 3.5 76 46 0 0 0 3.4 2300 3296
11 272 26 2016 105 0 63 3 2 103 115 0 750 9.3 3.2 3500 4312
12 185 31 2419 126 1406 60 3 4.5 82 92 0 1500 0 3.6 3400 4227
13 228 35 1344 119 781 80 3 5 82 92 0 7500 8.4 3.4 3000 3889
14 264 22 1890 91 0 100 3 2 100 72 0 0 7.1 3.2 2315 3309
15 200 45 4032 150 1758 80 0 1.5 92 0 0 16,667 9.8 3.6 3750 4524
16 289 32 3528 115 2179 75 3 1.5 114 115 0 7500 0 3.4 3250 4100
17 282 35 3024 130 1758 60 3 2.5 105 92 0 4500 0 3.3 3500 4312
18 209 24 2621 83 1524 80 3 1 92 0 0 6000 7.7 3.3 2600 3550
19 268 33 7258 119 2901 80 3 8 92 0 0 12,500 8.4 3.5 3000 3889
20 210 55 3024 168 1538 60 0 1 64 46 0 10,000 9.3 3.4 35,007 4312
21 139 27 1260 108 732 60 3 4.5 114 115 0 9375 0 3.9 3500 4312
22 179 23 4536 109 1154 80 5 0.5 69 0 0 4000 0 3.8 4000 4735
23 200 40 2822 131 820 70 3 3.5 114 115 0 1111 8.6 3.2 3115 3986
24 245 29 2016 106 1172 80 3 1.5 87 46 0 3750 9.3 3.3 3500 4312
25 222 31 3226 93 1289 80 3 8 0 0 0 11,000 10.6 3.3 4200 4904
26 263 54 5443 175 2175 70 3 3.5 92 0 0 12,500 8.6 3.5 3100 3974
27 285 64 5443 203 2175 70 3 2.5 92 0 0 25,000 8.4 3.9 3000 3889
28 124 17 2419 69 0 55 3 0.5 78 23 25 0 0 3.5 3200 4058
29 215 15 5645 88 3282 70 0 1 87 46 0 0 9.3 3.1 3500 4312
30 134 14 4838 76 1406 70 0 1.5 69 0 0 0 6.6 3.1 2000 3043
31 137 17 2016 64 1318 60 3 3 78 23 0 833 0 3.1 3300 4143
32 201 17 3024 68 879 60 3 0.5 110 46 0 0 0 3.2 3600 4397
33 159 38 3528 128 2051 70 3 2.5 110 46 0 7500 9.3 3.4 3500 4312
34 269 50 2016 160 732 60 3 5.5 64 46 0 0 10.6 3.1 4200 4904
35 223 10 4838 65 2813 60 3 4.5 64 46 0 1500 8.4 3.1 3000 3889
36 145 24 3360 101 2075 60 0 3 64 46 0 0 7.5 3.1 2500 3466
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Table 2. Cont.

DMU Labor
(h)

Machinery
(h)

Water
(m3)

Diesel
(L)

Electricity
(kWh)

Seed
(kg)

Herbicides
(kg)

Insecticides
(kg)

Urea
(kg)

P2O5
(kg)

K2O
(kg)

FYM
(kg)

CH4
(kg)

N2O
(kg)

Soybean
(kg)

Straw
(kg)

37 176 29 4032 108 1172 70 3 2 64 46 0 2083 0 3.6 3500 4312
38 183 29 3629 100 1450 60 3 10.6 48 35 0 208 0 3.1 2800 3720
39 167 23 6048 93 3076 60 3 2.5 50 69 0 0 0 3.5 3000 3889
40 238 26 4032 95 879 55 3 2.5 64 46 0 0 9 3.1 3330 4168
41 290 34 6048 117 3516 90 3 6 197 92 0 0 9.3 3.4 3500 4312
42 206 24 3528 93 2051 60 3 5 128 92 0 3000 10.2 3.3 4000 4735
43 350 21 4032 120 1538 60 4 5 159 92 0 3000 9.1 3.4 3400 4227
44 133 31 3024 100 1154 75 3 6.5 96 69 0 0 9.3 3.2 3500 4312
45 169 25 3528 92 1025 70 3 3.5 0 0 0 6250 0 3.7 4000 4735
46 157 34 2822 108 820 70 3 3 110 46 0 3750 8 3.3 2800 3720
47 239 35 2822 120 1641 70 3 3.6 156 46 0 15,000 0 4.3 4000 4735
48 170 21 3360 89 855 60 3 1.5 115 0 150 0 9.3 3.2 3500 4312
49 220 50 3110 146 1582 80 3 4 135 81 13 10,000 9.3 3.5 3500 4312
50 277 29 4838 117 2813 60 1.25 4.5 110 46 0 0 9.9 3.2 3800 4566
51 186 48 2952 165 1791 65 1.5 3 92 0 0 21,429 0 4.3 3700 4481
52 189 20 2688 81 781 60 0 1.5 64 46 0 0 7.8 3.1 2666 3606
53 104 35 4838 124 2110 60 3 3 83 23 0 12,000 7.7 3.5 2600 3550
54 170 19 2520 75 1465 60 3 2 92 0 0 0 7.9 3.2 2700 3635
55 112 20 3226 101 2110 70 2 3 92 0 125 0 9.1 3.2 3400 4227
56 144 25 2112 106 1074 60 3.5 0.3 110 46 0 1500 0 3.7 3570 4371
57 179 15 3024 86 1978 60 0 1.5 92 0 100 0 8.4 3.2 3000 3889
58 215 30 3024 109 769 55 3 3 123 138 0 22,500 0 3.9 3500 4312
59 146 34 3629 134 1846 70 3 2.5 87 46 0 15,000 0 4.1 3800 4566
60 162 40 4657 147 2369 70 3 2.5 87 46 0 15,000 9.3 3.6 3500 4312
61 245 34 3528 119 1410 70 3 3 92 0 100 10,000 8.4 3.4 3000 3889
62 196 9 2016 61 513 100 3 2.5 32 23 0 417 0 3.4 2500 3466
63 187 19 2957 79 1934 70 2 2.5 137 115 0 0 8 3.3 2800 3720
64 163 21 2880 88 1465 70 3 3 115 0 50 2500 9.4 3.3 3570 4371
65 243 21 3024 86 824 55 3 3 123 138 0 5000 9.7 3.4 3700 4481
66 196 22 3326 103 2175 70 3 2.5 137 115 0 0 8 3.3 2800 3720
67 178 26 2150 100 0 60 3.5 0.3 110 46 0 1500 0 3.6 3000 3889
68 214 33 2688 132 1367 70 3.5 3 110 46 0 7500 0 3.9 3500 4312
69 169 27 2520 92 1282 70 3.5 0.5 92 0 50 7500 0 3.9 3600 4397
70 208 28 2464 104 1432 70 3 3 123 138 0 20,000 8 3.8 2800 3720
71 165 37 4032 124 1758 70 3 2 77 0 0 15,000 0 4 3500 4312
72 261 32 3528 124 2179 70 3 1.5 114 115 0 7500 0 3.8 2900 3804
73 283 38 3024 138 1758 70 3 1.5 69 0 100 5000 9.4 3.2 3550 4354
74 167 37 3276 136 1904 70 3 1 92 0 0 7500 7.7 3.4 2600 3550
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Table 2. Cont.

DMU Labor
(h)

Machinery
(h)

Water
(m3)

Diesel
(L)

Electricity
(kWh)

Seed
(kg)

Herbicides
(kg)

Insecticides
(kg)

Urea
(kg)

P2O5
(kg)

K2O
(kg)

FYM
(kg)

CH4
(kg)

N2O
(kg)

Soybean
(kg)

Straw
(kg)

75 211 31 2903 122 1477 60 0 1 46 0 50 10,000 9.1 3.3 3400 4227
76 155 36 3780 129 1030 70 3 2.5 69 0 0 10,000 0 3.4 3800 4566
77 154 30 2520 96 1007 70 3 2 110 46 0 7500 0 3.4 3300 4143
78 176 28 6451 119 2344 80 3 2.5 92 0 50 0 7.7 3.2 2600 3550
79 195 18 3629 89 1846 80 3 6 119 69 0 10,000 8.9 3.5 3300 4143
80 144 21 3226 93 1641 70 2 3 137 115 0 0 0 3.8 3900 4651
81 108 29 1613 98 820 60 3.5 1.5 64 46 0 7500 0 3.8 3700 4481
82 279 27 3360 116 916 90 4 4.5 160 115 0 15,000 8.9 3.7 3300 4143
83 309 12 2822 55 820 80 1 1 128 92 0 0 9.5 3.2 3600 4397
84 95 12 4704 66 0 60 3.5 2.5 87 46 50 10,000 0 3.4 3400 4227
85 141 25 2268 105 0 60 2 1.5 174 92 0 0 0 3.3 3200 4058
86 152 27 2100 103 0 60 0 2.5 91 115 0 12,500 0 3.9 3150 4016
87 127 19 2520 82 0 65 3 4.5 114 115 0 9375 8.5 3.5 3050 3931
88 121 21 2016 84 1172 60 3 2 46 0 0 10,000 0 3.8 3100 3974
89 213 6 2688 47 1074 70 2 1.5 105 92 0 0 0 3.2 2000 3043
90 171 17 4032 69 2344 70 3 1 92 0 0 0 0 3.5 2500 3466
91 192 18 6451 87 328 75 3 1 64 46 0 18,667 0 4 3000 3889
92 217 6 2688 48 1074 70 3 1.5 105 92 0 0 6.6 3.2 2000 3043
93 199 19 3629 72 2110 60 3 2 64 46 0 0 8.4 3.1 3000 3889
94 211 16 2520 58 1007 60 3 1.5 110 46 0 0 0 3.2 3200 4058

DMU: decision-making unit; FYM: farmyard manure.
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3.1. Subsection Model (6) with δ = 1

First of all, base Model (6) is applied to this case study by assigning 1 to δ. As presented in
Section 2.4, this setting makes Model (6) identical to the common model of [6,20]. The efficiency scores
by Model (6) with δ = 1 are presented in the second column of Table 3. As shown in Table 3, 57 out of
94 DMUs are reported as eco-efficient in this setting (δ = 1). From the decision maker’s view, this figure
may be regarded as unsatisfactory with respect to discriminatory power. As noted by [40], the single
input and output, possibly minor, can be overweighed as a whole for a certain DMU; accordingly it
may not really reflect the model’s performance. In this manner, DEA is more likely to produce such
results since the unrestricted Model (6) identifies the efficient DMUs through the extremely optimistic
schemes, even though the rule of thumb for the number of DMUs and variables is satisfied.

Table 3. Data envelopment analysis (DEA) results.

DMU Model (6) (δ = 1) OE δ = 1/10 δ = 1/3 δ = 1/2 δ = 1 δ = 2 δ = 3 δ = 10 EE

1 1 1 1 1 1 1 1 0.968 0.94 0.937
2 1 0.94 0.944 0.977 1 1 1 1 1 1
3 0.836 0.706 0.709 0.732 0.759 0.823 0.834 0.832 0.824 0.823
4 0.888 0.76 0.761 0.773 0.786 0.86 0.882 0.88 0.875 0.874
5 1 0.67 0.674 0.705 0.743 0.938 1 1 1 1
6 1 0.901 0.908 0.976 1 0.981 0.827 0.8 0.774 0.772
7 1 1 1 1 1 1 1 1 1 1
8 0.97 0.625 0.63 0.673 0.731 0.914 0.939 0.921 0.895 0.892
9 1 0.615 0.621 0.68 0.762 1 1 0.956 0.869 0.861
10 1 0.642 0.645 0.68 0.719 0.918 0.879 0.82 0.765 0.76
11 1 1 1 1 1 1 0.945 0.92 0.9 0.897
12 0.895 0.818 0.819 0.83 0.845 0.88 0.871 0.866 0.854 0.852
13 0.903 0.804 0.806 0.831 0.86 0.832 0.702 0.684 0.67 0.669
14 0.783 0.706 0.707 0.719 0.733 0.727 0.644 0.624 0.609 0.607
15 1 0.678 0.683 0.737 0.812 1 1 1 1 1
16 0.823 0.659 0.661 0.673 0.686 0.774 0.823 0.823 0.823 0.823
17 0.872 0.84 0.843 0.848 0.854 0.869 0.862 0.861 0.86 0.86
18 0.923 0.605 0.607 0.632 0.665 0.832 0.788 0.776 0.765 0.764
19 0.704 0.572 0.575 0.599 0.624 0.688 0.703 0.702 0.701 0.701
20 1 0.838 0.845 0.909 0.997 1 1 1 1 1
21 1 1 1 1 1 0.945 0.793 0.77 0.753 0.751
22 1 0.827 0.832 0.88 0.946 1 1 1 1 1
23 0.745 0.643 0.644 0.651 0.659 0.716 0.745 0.745 0.745 0.745
24 0.983 0.821 0.823 0.847 0.871 0.956 0.963 0.942 0.92 0.917
25 1 0.897 0.904 0.963 1 1 1 1 1 1
26 0.797 0.635 0.638 0.659 0.685 0.789 0.785 0.781 0.777 0.777
27 0.78 0.614 0.616 0.64 0.666 0.762 0.716 0.707 0.7 0.699
28 1 1 1 1 1 1 1 1 1 1
29 1 0.87 0.878 0.964 1 1 1 1 1 1
30 1 0.517 0.522 0.571 0.638 0.966 1 1 1 1
31 1 1 1 1 1 1 1 1 1 1
32 1 1 1 1 1 1 1 1 1 1
33 0.841 0.747 0.748 0.758 0.769 0.824 0.834 0.831 0.828 0.828
34 1 1 1 1 1 1 1 1 1 1
35 1 1 1 1 1 0.98 0.846 0.788 0.749 0.745
36 1 0.629 0.634 0.68 0.739 0.976 0.984 0.966 0.95 0.948
37 0.964 0.769 0.772 0.797 0.814 0.915 0.959 0.956 0.953 0.953
38 1 0.689 0.692 0.722 0.743 0.897 1 1 1 1
39 1 0.762 0.766 0.798 0.825 0.943 1 1 1 1
40 1 0.884 0.887 0.913 0.931 0.988 1 1 1 1
41 0.834 0.623 0.625 0.64 0.658 0.778 0.83 0.813 0.798 0.796
42 1 1 1 1 1 0.996 0.958 0.946 0.914 0.911
43 0.881 0.866 0.869 0.881 0.881 0.864 0.799 0.784 0.753 0.75
44 1 0.819 0.823 0.868 0.926 0.985 0.913 0.87 0.835 0.832
45 1 0.939 0.946 1 1 1 1 1 1 1



Sustainability 2017, 9, 661 12 of 18

Table 3. Cont.

DMU Model (6) (δ = 1) OE δ = 1/10 δ = 1/3 δ = 1/2 δ = 1 δ = 2 δ = 3 δ = 10 EE

46 0.666 0.63 0.631 0.64 0.65 0.666 0.663 0.662 0.661 0.661
47 0.901 0.845 0.846 0.855 0.864 0.882 0.847 0.835 0.825 0.824
48 1 0.908 0.913 0.95 0.991 1 1 1 1 1
49 0.77 0.639 0.64 0.651 0.663 0.737 0.77 0.77 0.77 0.77
50 1 0.915 0.919 0.958 1 1 1 0.993 0.988 0.988
51 1 0.821 0.825 0.859 0.904 1 1 1 1 1
52 1 0.71 0.715 0.769 0.836 1 1 1 1 1
53 0.83 0.721 0.723 0.748 0.769 0.773 0.651 0.636 0.625 0.623
54 1 0.746 0.749 0.773 0.803 0.954 1 1 1 1
55 1 0.932 0.937 0.991 1 1 1 1 1 1
56 1 0.924 0.927 0.957 0.997 1 1 1 1 1
57 1 0.858 0.867 0.948 1 1 1 1 1 1
58 0.92 0.918 0.92 0.92 0.92 0.872 0.781 0.77 0.762 0.761
59 0.932 0.837 0.838 0.853 0.869 0.923 0.901 0.881 0.864 0.862
60 0.837 0.741 0.743 0.756 0.771 0.822 0.829 0.824 0.82 0.819
61 0.78 0.628 0.631 0.655 0.681 0.766 0.78 0.779 0.776 0.775
62 1 0.98 0.988 1 1 1 1 1 1 1
63 0.781 0.693 0.696 0.725 0.747 0.771 0.741 0.723 0.707 0.705
64 1 0.871 0.875 0.903 0.934 1 1 1 1 1
65 1 1 1 1 1 0.965 0.875 0.861 0.85 0.848
66 0.75 0.647 0.649 0.663 0.673 0.721 0.727 0.714 0.703 0.701
67 1 0.857 0.865 0.945 0.999 1 1 0.946 0.865 0.859
68 0.766 0.733 0.734 0.739 0.744 0.764 0.752 0.746 0.741 0.74
69 1 0.859 0.862 0.895 0.934 1 1 1 1 1
70 0.656 0.635 0.636 0.65 0.656 0.64 0.605 0.597 0.588 0.587
71 0.958 0.737 0.74 0.769 0.808 0.946 0.933 0.926 0.92 0.919
72 0.695 0.602 0.603 0.615 0.627 0.685 0.695 0.695 0.695 0.695
73 1 0.732 0.735 0.763 0.799 0.967 1 1 1 1
74 0.798 0.544 0.546 0.569 0.599 0.757 0.742 0.733 0.726 0.726
75 1 0.818 0.824 0.886 0.969 1 1 1 1 1
76 1 0.818 0.822 0.855 0.901 1 1 1 1 1
77 0.855 0.787 0.788 0.801 0.815 0.852 0.837 0.828 0.821 0.82
78 0.883 0.511 0.512 0.53 0.555 0.76 0.883 0.883 0.883 0.883
79 0.853 0.762 0.765 0.789 0.812 0.839 0.767 0.75 0.719 0.716
80 1 0.965 0.971 1 1 1 1 1 1 1
81 1 1 1 1 1 1 1 0.992 0.965 0.962
82 0.715 0.606 0.607 0.623 0.639 0.696 0.701 0.694 0.679 0.678
83 1 1 1 1 1 1 1 1 0.997 0.992
84 1 1 1 1 1 1 0.912 0.867 0.833 0.829
85 1 0.966 0.973 1 1 1 1 1 1 1
86 1 0.943 0.952 1 1 1 1 1 1 1
87 1 0.927 0.932 0.986 1 0.914 0.723 0.696 0.669 0.666
88 1 0.909 0.912 0.941 0.981 1 0.944 0.912 0.885 0.882
89 1 1 1 1 1 0.942 0.718 0.681 0.656 0.653
90 1 0.668 0.672 0.715 0.754 0.95 1 1 1 1
91 1 0.683 0.686 0.715 0.749 0.954 0.961 0.942 0.928 0.926
92 1 1 1 1 1 0.823 0.577 0.557 0.537 0.535
93 1 0.82 0.822 0.847 0.864 0.958 0.987 0.972 0.958 0.957
94 1 0.988 0.993 1 1 0.976 0.912 0.9 0.89 0.889

OE: Operational efficiency; EE: Environmental efficiency.

Also, this model may look like it considers the relative importance of operational and
environmental impacts due to δ in the normalization constraint. However, it does not appropriately
consider the environmental impacts because no environmental stringency constraint is imposed, not
only for a DMU o but also for other DMUs. Assume that the decision maker takes into account the
business conditions such that both operational and environmental concerns are equally important.
The stringency parameter may play a role in reflecting this condition to the DEA model by setting
δ = 1. The model constrains the total weighted sum of operational and environmental inputs to be
unity. Therefore, the weights vi and wk behave like homogeneous ones that constitute a single virtual
input, without discriminating between operational and environmental inputs.
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3.2. Operational Efficiency and Environmental Efficience

Operational efficiency and environmental efficiency are measured by Models (2) and (4), and
these are presented in the third and the last column, respectively, in Table 3. As shown in Table 3,
we see that 16 DMUs are operationally efficient and 34 DMUs are environmentally efficient. In the
three-step methods, if a DMU is either operationally or environmentally efficient, it is identified
as being eco-efficient. This characteristic is also criticized by [8]. However, eco-efficiency does
not always pick the maximum value between the operational and environmental efficiency scores.
Among efficient DMUs by Model (6), this feature is not applied to 12 DMUs (specifically DMU
6, 9, 10, 36, 44, 50, 67, 87, 88, 91, 93, and 94). For example, DMU 6’s eco-efficiency derived
by Model (6) is neither operationally nor environmentally efficient (operational efficiency = 0.901,
environmental efficiency = 0.772). We believe that this model is limited in measuring eco-efficiency
appropriately because it provides misunderstandings, which stem from not being able to discriminate
between operations- and environment-oriented processes and the eco-efficiency of DMUs. Specifically,
for example, both DMU 20 and 21 are eco-efficient by the former model, but DMU 20 is more
environment-oriented, while DMU 21 is more operations-oriented.

3.3. Eco-Efficiency

DEA is performed by adding Constraints (7) and (8) to Model (6). The fourth to the tenth columns
of Table 4 present the eco-efficiency as parameter δ changes. It also noted that the settings δ = 1/10 and
δ = 10 describe the extremely operations-oriented and environmental-oriented business envirionment,
thus these could hardly be regarded as eco-efficiency. However, in this case study, we utilize these
settings for the purpose of comparison to operational and environmental efficiency.

Table 4. The number of efficient decision-making units (DMUs).

Model (6) with δ = 1 OE δ = 1/10 δ = 1/3 δ = 1/2 δ = 1 δ = 2 δ = 3 δ = 10 EE

No. of DMUs 57 16 16 22 30 35 40 35 34 34

As expected, eco-efficiency converges to the operational efficiency as δ decreases. On the contrary
it converges to the environmental efficiency as δ increases. Accordingly, the results of these two
extreme conditions are very similar to the operational or environmental efficiency. First, we set the
parameter δ to be 1 for both conditions by adding Constraints (7) and (8). Since both constraints
share the equality condition although the directions are different, the two results provide the basis
for deriving eco-efficiency from the conditions that reflects exactly same importance for operational
and environmental concerns. As pointed out in Section 2.4, this condition is not realistic, but it is
meaningful in that it provides the criterion for considering the different business environments. In this
example, to incorporate the environmental stringency that reflects the equal importance of operational
and environmental concerns, we use the average score of the models under Constraints (7) and (8)
rather than using of Constraint (9).

The figures in Table 3 show the changes of efficiency as the environmental stringency. Among
94 DMUs, the eco-efficiency scores of DMU 7, 28, 31, 32, and 34 are 1 regardless of the value of the
stringency parameter. In other words, one can interpret that these five DMUs are efficiently operating
under any business conditions. Furthermore, these DMUs are not only operationally efficient but also
environmentally efficient. In addition, comparing the number of efficient DMUs by Model (6), the
proposed method overcomes the poor discriminatory power, a commonly reported problem in DEA.
The numbers of efficient DMUs for the various settings of δ are presented in the Table 4.

As shown in Figure 2, 11 DMUs (DMU 1, 11, 21, 35, 42, 65, 81, 83, 84, 89, 92) are operationally
efficient but environmentally inefficient. Under Model (6) with δ = 1, all these DMUs are eco-efficient.
However, the proposed method cannot carry out such a result because the environmental stringency is
not identified. Therefore, in order to simluate the proposed method, we tried to derive the eco-effiency
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by changing the degree of environmental stringency. Figure 2 presents the changes of efficiency scores
of 11 operationally efficient DMUs by changing δ from 1/10 to 10. From the results, we conclude that
these 11 DMUs are eco-efficient when the operational concern is at least two times more important
than the environmental concern. However, eco-efficiency scores are decreased as δ increases. In other
words, eco-efficient DMUs in certain environments may not be eco-inefficient in other environments.Sustainability 2017, 9, 661  15 of 19 
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Figure 2. Changes of operationally efficient DMUs.

Figure 3 illustrates the efficiency changes of 29 DMUs, which are environmentally efficient but
operationally inefficient. These 29 DMUs are regarded as being eco-efficient under Model (6) with
δ = 1. However, the proposed model recognizes eco-efficient DMUs according to the environmental
stringencty parameter. The simulation results show that all 29 DMUs are eco-efficient only when δ ≥ 2.
The changes of the eco-efficiency of 29 DMUs are presented in Figure 3.
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Again, we highlight that five DMUs are eco-efficient regardless of the environmental stringency.
Now, in order to evaluate DMUs under the specified business conditions, we assume that the decision
maker specifies the value of the stringency parameter. Assume δ equals one. Then 35 DMUs are
eco-efficient. Among them, 26 DMUs are either operationally efficient or environmentally efficient.
However, there are four DMUs (DMU 9, 50, 67, 88), as shown in Figure 4, which are neither
operationally efficient nor environmental efficiency but are eco-efficient.Sustainability 2017, 9, 661  16 of 19 
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Additionally, the eco-efficiency scores of some DMUs are not skewed towards either
operations-oriented situations or environment-oriented situations. For example, DMU 9, 50, 67, and
88 are eco-efficient on the condition that equal importance is given to operational and environmental
concerns. However, we should note that the scores of operational efficiency and/or environmental
efficiency are not equal to 1. This result explains that some DMUs can be evaluated as being eco-efficient
under a certain condition, even if they are not operationally efficient or environmentally efficient.

4. Conclusions

In this paper, we proposed a more concrete and flexible DEA method for evaluating eco-efficiency.
By using the environmental stringency constraints, the proposed model allows users to evaluate DMUs’
performance in accordance with their business conditions. We analyzed a case example to present the
results by varying the value of the stringency parameter. Also, the results were compared with the
results from Model B in [6,20].

The main contributions of this study are three-fold. Firstly, the proposed model provides the
flexibility, as required by the pollution-intensity of industry, in that it allows the decision maker
to appropriately evaluate a DMU’s eco-efficiency depending on the business environment. This
approach overcomes the disadvantage in the earlier studies, which provide eco-efficiency evaluation
models without considering environmental stringency. Different environmental stringencies can
successively be incorporated in DEA. Through the use of selective parametric restrictions, DEA
can flexibly be applied to the eco-efficiency evaluation problem. Secondly, the proposed model
provides clarification or a link between operational and environmental efficiency in a different way
from previous eco-efficiency research. In the previous studies, a particular DMU is treated as being
eco-efficient if it is either operationally or environmentally efficient. In other words, eco-efficiency is
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derived by picking a more favorable score between operational efficiency and environmental efficiency.
However, the proposed method shows that this property cannot be applied when the environmental
stringency is considered. Thirdly, the proposed method enhances the discriminant power. This
contribution may seem relatively minor, but it is worth noticing that it can generate a reasonable
number of efficient DMUs and produce more realistic results in real-world applications because
unconstrained weights on its inputs and outputs are usually unacceptable [41].

Some of the further research opportunities are as follows. First, this study examines eco-efficiency
by decomposing inputs into operational and environmental inputs. However, both undesirable outputs
and undesirable inputs are considered as environmental inputs in the illustrative example, although
environmental inputs are defined as undesirable outputs in the proposed model. Therefore, a technique
for treating these two factors separately will be helpful for the input-output context. Second, the role
of the stringency parameter described in the Section 2.4 provides some other ideas for future studies,
particularly including possible extensions of our method to situations where equal importance between
operational and environmental aspects exists. Finally, we can expect that much further improvement
by a more detailed case study will enhance the practical use of DEA for eco-efficiency evaluation.

However, there are some limitations to the proposed model. First, the major limitation is the
process of eco-efficiency approximation by taking an average of two scores when both operational
and environmental concerns are equally important. Since incorporating equal importance between
operational and environmental concerns is unrealistic when it applied to the evaluation model, it
requires convincing ways of systematical improvement on a theoretical basis. Second, the proposed
method only considers the evaluation problem, where all DMUs follow the same environmental
stringency. Therefore, one should adopt a different approach if several DMUs belong to different
business environments. This limitation also provides opportunities for further studies. The last
limitation is the non-statistical property of DEA. Since efficiency scores are obtained by deterministic
computation based on the data without statistical assumptions, the results are very sensitive to the
data. This inherent weakness of DEA made it difficult to interpret the statistical reliability of the results.
However, it is expected that statistical techniques such as bootstrapping can be better incorporated
into a DEA-based eco-efficiency study.
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Abbreviations

The following abbreviations are used in this manuscript:

DEA Data Envelopment Analysis xij amount of operational input i for DMU j
DMU Decision Making Unit zkj amount of environmental input k for DMU j
LCI Life Cycle Inventory yrj amount of output r for DMU j
MOLP Multiple Objective Linear Programming vi non-negative weight for operational inputs i
CRS Constant Return to Scale wk non-negative weight for environmental input k
ARII Type II Assurance Region ur non-negative weight for output r
FYM Farmyard Manure δ degree of environmental stringency
OE Operational Efficiency
EE Environmental Efficiency
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