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Abstract: On the 3 September 2016, China officially ratified the Paris agreement as the main global
producer of carbon emissions. A key of China’s commitment is to reduce its carbon intensity by
60–65% between 2005 and 2030. An improved understanding of the inequality of carbon intensity
at national-, inter-regional-, and intra-regional scale is a prerequisite for the development of a more
cost-effective carbon intensity reduction policy. In this study, we used the Dagum Gini coefficient
and its subgroup decomposition method to quantify China’s inequality of carbon intensity between
2000 and 2014 based on available and updated data. The results show: (i) The Gini coefficient
indicates a rising inequality of the carbon intensity at both national and sub-national scale, suggesting
accelerated inequality of carbon intensity at national-, inter-regional, and intra-regional-scale.
(ii) The Gini coefficient indicates a rising trend of intra-regional carbon intensity in Central and
Western China, while the trend declines for Eastern China. (iii) The Gini coefficient indicates rising
carbon intensity between Eastern and Central China, Western and Eastern China, and Central and
Western China. (iv) Transvariation intensity occupies a leading role in the increasing national-level
carbon intensity Gini coefficient. Ultimately, several policy recommendations are provided.
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1. Introduction

On the 3 September 2016, China as the main global producer of carbon emission, announced
its ratification of the Paris climate change agreement [1], thus paving the way many other countries
to follow suit. A key of China’s commitment is to reduce its carbon intensity (defined as carbon
dioxide emissions per unit of GDP) by 60–65% of the 2005 level by the end of 2030 [2,3]. Implementing
this commitment requires a total restructuring of Chinese energy consumption [4,5]. It furthermore
requires the optimization of its economic structure [6,7]. However above all, this commitment
requires the development of a more cost-effective policy to reduce carbon intensity [8,9]. An improved
understanding of carbon intensity inequality at national-, inter-regional, and intra-regional scale is a
necessary prerequisite for the development of an effective policy to reduce carbon emission.

The Gini coefficient is a versatile method to analyze inequality issues [10–13]. Dagum developed
a Gini coefficient and a subgroup decomposition technique, which allowed the Gini coefficient method
to be used for spatial decomposition [14,15]. Dagum’s Gini coefficient and its subgroup decomposition
technique can decompose regional differences into intra-regional differences, inter-regional net
differences, and an intensity of transvariation intensity. Therefore, Dagum’s Gini coefficient method
has been used to study the inequality of energy and carbon emission issues [16–21]. In this study,
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we utilized the Gini coefficient and its subgroup decomposition method to investigate disparities of
carbon intensity in China between 2000 and 2014, based on available and updated data.

2. Literature Review

Carbon dioxide emission inequality exists throughout various regions, which is considered to
be an outstanding problem for all affected countries and places. Most previous studies focused
on differences between countries [17,22–29] instead of analyzing one specific country. However,
an analysis on nation-state level is more applicable to a specific region, since the discussions are based
on the character of the studying area. This can also shed light on the specific problems caused by
changes of carbon dioxide emission.

Moreover, most of the studies related to CO2 problems were mainly about carbon dioxide
emission. Fu and Yang analyzed spatial structures and evolution of networks by examining geographic
characteristics of selected renewable energy trades and their evolution, based on data from the United
Nations COMTRADE Database, ranging from 1988 to 2013 [30]. Grunewald and Jakob discussed the
evolution of inequality in global CO2 per-capita emissions, using both historical data of energy-related
CO2 emissions and future emission scenarios generated with the integrated assessment model
REMIND [31]. Hübler utilized simultaneous-quantile regressions with per capita CO2 emissions
as a dependent variable, thus testing this negative nexus with country-level panel data. The conclusion
was that although this supports the negative inequality-emissions (energy) nexus, regressions with
fixed-effects in fact question this; therefore, international trade and international investments are
predominantly positively related to energy-related emissions [32]. Jorgenson and Schor investigated
the relationship between U.S. state-level CO2 emissions and two measures of income inequality:
the income share of the top 10% of the population and the Gini coefficient, each of which focused on
unique characteristics of income distributions, used to evaluate different analytical approaches [33].
Mussini and Grossi used a three-term decomposition of the changes that occur in the Gini index of per
capita CO2 emissions when moving from an initial to a final per capita CO2 emission distribution to
reveal effects of changes CO2 emission inequality over time depending on country ranking and per
capita CO2 emissions [18]. Padilla and Duro analyzed the evolution of inequality for CO2 emissions
per capita of the European Union by decomposing the Theil index of inequality into contributions
of different factors. The decomposition based on the Kaya formula was applied to the inequality
between and within groups of countries, thus comparing the change of inequality caused by the energy
intensity factor [34]. Remuzgo and Sarabia analyzed determining factors of inequality in the global
distribution of carbon dioxide emissions of different regions by applying factorial decomposition of
the second Theil index of inequality. Moreover, the carbon dioxide emission, which was based on
Kaya factors, was decomposed into four factors, indicating that global inequality in CO2 emissions
dropped by 22% between 1990 and 2010, while economic growth in terms of labor productivity was
revealed as the main factor responsible for the inequality value [35].

Based on these previous studies, we conducted a study about the inequality; however,
we concentrated more on the inequality of carbon intensity to uncover more information on the carbon
intensity of China, providing more support information for China [36–38] to reduce carbon emissions.

3. Methodology and Data

3.1. Methodologies

The Gini coefficient developed by Corrado Gini as a way to quantify [39,40] and frequently
used index to determine the difference of income distribution in economics [41,42], representing the
distribution of social wealth in the static surface [43,44]. Standard application of the Gini coefficient is
to show income distribution across groups through time [45]. Recently, the Gini coefficient has been
extended to measure disproportionality in energy resources [46], inequality in plant size or fecundity,
as well as spatial distributions of different land types [39]. With the increasing prominence of carbon
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equity, carbon Gini coefficient as an effective measurement tool for the equality of carbon emissions
has been widely applied in recent years [23,29,47]. Informed by Dagum [14,15] and inspired by further
studies [48–51], the carbon intensity Gini coefficient G can be expressed as

G =
∑k

j=1 ∑k
h=2 ∑

nj
i=1 ∑nh

r=1

∣∣yji − yhr
∣∣

2n2Y
(1)

Yh ≤ . . . Y J ≤ . . . ≤ Yk (2)

where yji (yhr) is the carbon intensity of a province in the region j(h), Y is the average carbon intensity
of all provinces in the country, and nj (nh) is the number of provinces in region j(h).

Also informed by Dagum [14,15], the carbon intensity Gini coefficient G can be decomposed into
three parts: the intra-regional Gini coefficient (Gw), the inter-regional Gini coefficient (Gnb), and the
Trans-variation intensity (Gt): G = Gw + Gnb + Gt. The Gini coefficient of the inter-region j can be
expressed as

Gjj =

1
2Y j

∑
nj
i=1 ∑

nj
r=1

∣∣yji − yjr
∣∣

n2
j

(3)

where Gjj is the Gini coefficient of the j-th sub-national and Y j is the average carbon intensity of all
the provinces in the j-th sub-national. The contribution of the inter-regional Gini coefficient to the
national-level Gini coefficient can be expressed as

Gw =
k

∑
j=1

GjjPjSj (4)

where Gw is the contribution of the inter-regional Gini coefficient; Pj and Sj follows lead to that Pj = nj/n,
Sj = nj Yj/nY, j = 1, 2, . . . , k. The Gini coefficient in the intra-region j can be expressed as

Gjh =
∑

nj
i=1 ∑nh

r=1

∣∣yji − yhr
∣∣

njnh
(
Y j + Yh

) (5)

where Gjh is the gap of the Gini coefficient between the j sub-national area and the h sub-national
area, the contribution of the intra-regional Gini coefficient to the national-level Gini coefficient can be
expressed as

Gnb =
k

∑
j=2

j−1

∑
h=1

Gjh
(

PjSh + PhSj
)

Djh (6)

where Gnb is the contribution of the intra-regional Gini coefficient to the national-level Gini coefficient.

Gt =
k

∑
j=2

j−1

∑
h=1

Gjh
(

PjSh + PhSj
)(

1 − Djh

)
(7)

Djh =
djh − pjh

djh + pjh
(8)

djh =

∞∫
0

dFj(y)

y∫
0

(y − x)dFh(x) (9)

Pjh =

∞∫
0

dFh(y)

y∫
0

(y − x)dFj(y) (10)
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where Fj (Fh) is the h-th (j-th) sub-national cumulative distribution function; djh is the gross economic
affluence between the j-th and the h-th sub-national, such that Y j > Yh, djh is by definition a weighted
average of the income difference, yji − yhr for all income yji of members belonging to the j-th
sub-national with carbon intensities above yhr of members belonging to the h-th sub-national, i.e.,
Y j > Yh, Pjh is a first-order moment of transvariation between the j-th and the h-th subpopulations,
such that Yj > Yh is by definition the weighted average of the income difference, yhr − yji for all pairs
of economic units, one taken from the h-th and the other from the j-th subpopulations; i.e., Yhr > Y ji
and Y j > Yh. The word transvariation stands for the differences in income that are considered to have
opposite sign than the difference in the means of their corresponding subpopulations.

3.2. Data Source

Carbon dioxide emissions data in previous studies (e.g., [52–59]) were supplied by the Carbon
Dioxide Information Analysis Center (CDIAC) of the Oak Ridge National Laboratory, U.S. Department
of Energy [60]. Given that CDIAC provides national-level data of carbon emission, the provincial-level
carbon emission data in those studies were estimated according to the percentage of the provincial
energy consumption of China’s total energy consumption. This approach contains significant
uncertainty. In this study, national-level and provincial-level carbon emission data come from the
China Emission Accounts and Datasets (CEADs), which provide Chinese national and provincial
carbon emissions (http://www.ceads.net/) [61–63]. Data of energy consumption and gross domestic
production (GDP) stem from the China Energy Statistical Yearbook and the China Statistical Yearbook,
respectively. The real GDP used in this paper used a constant price of 2000 RMB. Carbon intensity was
expressed in units of carbon dioxide per RMB 10,000 GDP in 2000 constant prices.

4. Analysis Results and Discussion

4.1. National-Level Carbon Intensity Gini Coefficient

The trend of the Gini coefficient of carbon intensity in China from 2000 to 2014 is shown in
Figure 1. The Gini coefficient of carbon intensity increased due to a compound annual growth rate
of 2.58%, suggesting an increasing difference of carbon intensity between various provinces in China.
As shown in Figure 1, the trend of the Gini coefficient of carbon intensity can be divided into two phases:

Phase I (2000–2006): The Gini coefficient of carbon intensity increased with fluctuations during
the first phase; in particular, the Gini coefficient decreased from 2000 to 2001, followed by a rapid
increase from 2001 to 2004, and a final increase from 2004 to 2006.

Phase II (2007–2013): the Gini coefficient of carbon intensity increased steadily from 0.34 in 2007 to
0.49 in 2014. Furthermore, the compound annual growth rate of the Gini coefficient of carbon intensity
reached 5.43% per year between 2007 and 2014, whereas the compound annual growth rate was only
0.19% per year between 2000 and 2006.

Figure 1. Trajectory of national-scale carbon intensity Gini coefficients.

http://www.ceads.net/
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The increase in national-level carbon intensity Gini coefficient might be related to the increase
in difference of provincial-level carbon intensity. The difference between the province with the
most-intensive carbon intensity and the province with the least-intensive carbon intensity increased
from 0.07616 kg/yuan in 2000, increasing to 0.1542 kg/yuan in 2007 and 0.2027 kg/yuan in 2014.
In 2014, the top five provinces with the most-intensive carbon intensity were Shan Xi province, Ningxia
Hui Autonomous Region, The Xinjiang Uygur Autonomous Region, Inner Mongolia Autonomous
Region, and Gui Zhou Province, whereas the bottom five provinces with the least carbon intensity were
Beijing City, Shanghai City, Guangdong Province, Fujian Province, and Jiangsu Province; respectively.
The change of carbon intensity in these top and bottom provinces are shown in Figure 2. Industrial
structure resulted the big difference of carbon intensity among the different provinces in China,
the developed regions are focused on the lower-intensive industries like high-tech industry and
modem service industry, which can emission less carbon to obtain relatively more economic output.
In contrast, underdeveloped regions are focused on the high-intensive industries like traditional
manufacturing industry, which will emit more carbon to obtain a relatively lower GDP. For example,
the Hainan province is tourism-dependent, and Shanghai, Beijing, Guangdong, Chongqing are mostly
focused on high-tech industry. In addition, the industry transfer has accolated the difference between
the different regions, the industry transfers from the East to West and Center are focused on high-carbon
industry, for example mining industry, chemical industry, electric coal water production and supply
industry, non-metallic mineral products industry, metal smelting, and products industry.

Figure 2. Carbon intensity of selected provinces in China during 2000–2014.

4.2. Sub-National-Level Carbon Intensity Gini Coefficient

China’s National Development and Reform Commission, which is the country’s top economic
planner and guardian, has divided China into three economic-geographic regions based on economic
performance and geographical location. These three economic-geographic regions are Eastern China,
Central China, and Western China. Eastern China includes the following 11 provincial-level areas:
Beijing, Tianjin, Shanghai, Liaoning, Hebei, Shandong, Jiangsu, Zhejiang, Fujian, Guangdong,
and Hainan. Central China includes the following eight provincial-level areas: Shanxi, Henan,
Anhui, Hubei, Hunan, Jiangxi, Jilin, and Heilongjiang. Western China includes the following
11 provincial-level areas: Shaanxi, Gansu, Ningxia, Qinghai, Xinjiang, Sichuan, Chongqing, Guizhou,
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Yunnan, Inner Mongolia, and Guangxi. These three economic-geographic regions have been widely
used in numerous studies [64–71]. To further understand China’s inequality of carbon intensity,
we calculated the Gini coefficients for Eastern China, Central China, and Western China.

4.2.1. Intra-Regional Carbon Intensity Gini Coefficient

Figure 3 shows intra-regional differences of the carbon intensity Gini coefficient for Eastern China,
Central China, and Western China. The trajectory of the intra-regional carbon intensity Gini coefficient
is rising for Eastern China, declining for Central China, and rising for Western China. To be specific,
the carbon intensity Gini coefficient of Eastern China fluctuated from 2000 to 2004, then steadily declined
from 2004 to 2011, and finally followed a slight increase from 2011 to 2014. In Central China, the carbon
intensity Gini coefficient first increased from 2000 to 2004 and then decreased from 2004 to 2007,
finally increasing from 2007 to 2014. In Western China, the carbon intensity Gini coefficient decreased
from 2000 to 2003, and then sharply increased from 2003 to 2004, further increasing steadily from
2004 to 2011, and finally reaching a stable plateau from 2001 to 2014. The inequality of the intra-regional
carbon intensity Gini coefficient in Eastern China was most pronounced, followed by Central China,
and Western China in 2000. However, the inequality of intra-regional carbon intensity of Central China
has become the leader, followed by Central China, and Eastern China in 2014.

Figure 3. Trajectories of equality of intra-regional carbon intensity Gini coefficient.

Our findings (Figure 3) are similar to those of previous studies. Previous study reported that
the difference in carbon intensity in Central China was the largest, followed by Western China
and Eastern China [72]. These trajectories of intra-regional carbon intensity Gini coefficient may be
related to industrial transfer. Some energy-intensive and carbon-intensive industrial sectors were
relocated to some provinces of energy resource enrichment in Central China. Economic growth
and carbon emission in those provinces thus were accelerated. However, the accelerating economic
growth and carbon emission might not occur in other provinces with poor energy resources. As a
result, the intra-regional carbon intensity Gini coefficient in Central China became largest during
the study period. In Eastern China, the service industry has gradually become the largest industry.
As we know, the service is less-carbon-intensive, the difference of carbon intensity among provinces
in Eastern China thus decreased. As a result, the intra-regional carbon intensity Gini coefficient
declined. With the implementation of the western development strategy, the difference of economic
growth rate and carbon emission among provinces in Western China gradually increased. To be more
special, the difference of carbon intensity in the southwest region is greater than that in the northwest
region [73]. Thus, the intra-regional carbon intensity Gini coefficient increased.
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4.2.2. Inter-Regional Carbon Intensity Gini Coefficient

Figure 4 displays trajectories of the inter-regional carbon intensity Gini coefficient. As shown in
Figure 4, the inter-regional carbon intensity Gini coefficient was highest between Eastern China and
West China, followed by Eastern China and Central China, and Central China and Western China both
in 2000 and in 2014.

Figure 4. Trajectories of inequality of inter-regional carbon intensity Gini coefficient.

In terms of a long-term evolution, the inter-regional carbon intensity Gini coefficient between
Eastern China and Central China, Eastern China and Western China, and Central China and Western
China follow similar tendencies. Their inter-regional carbon intensity Gini coefficients increased from
2000 to 2014. However, the inter-regional carbon intensity Gini coefficient in Eastern China and Central
China decreased from 2004 to 2007. The annual average growth rate of the inter-regional carbon
intensity Gini coefficient between Central China and Western China was highest, followed by Eastern
China and Central China, and by Eastern China and Central China. The compound annual growth
rate of the inter-regional carbon intensity Gini coefficients between Eastern China and West China,
Eastern China and Central China, and Eastern China and Central China were 4.72%, 4.22% and 3.90%
per year, respectively.

The gap of inter-regional carbon emission is significantly increasing; the industry transfer has
caused this phenomenon [74]. Similarly, scholars have generally agreed that the inter-regional industry
transfer from East to West and Center resulted the pollution and carbon leakage phenomenon [1,2]
mainly due to the industry transfer focused on the high carbon and high energy consuming industries
and related manufacturing [3]. Industry transfer is not the root of the transfer of carbon pollution,
however, more accurately the high-carbon industry transfers leads to pollution transfer. Especially
after 2008, the gap of inter-regional carbon emission is more obvious, that is because the coastal
industry accelerated the industry transfer after the financial crisis in 2008.

From the specific industry transfer and carbon transfer, the industry transfers from the East to
West and Center are focused on the high-carbon industry, for example mining industry, chemical
industry, electric coal water production and supply industry, non-metallic mineral products industry,
metal smelting, and products industry. Especially the production and supply of electric coal water
supply industries, with a small amount of industry transfer contributing to a larger amount of carbon
transfer. The Central and Western regions are the net rolled in industry transfer areas, the Eastern coast
of the net rolled out transfer area, the southern coast regions show the performance of the transfer
of consumption, export transfer, while the Central and Western regions show the performance of
consumption exit, export exit into. From the view of inter-regional carbon transfer, the carbon intensity
of the regional industry in China shows the East as being highest, followed by the Center and West.
Therefore, the spatial trend of carbon transfer is basically similar with the trend of industry transfer.
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4.3. Drivers for Inequality of the Carbon Intensity Gini Coefficient

Figure 5 displays the drivers of inequality of the carbon intensity Gini coefficient. As shown
in Figure 5, trans-variation intensity was the leading contributor for the increasing national-scale
carbon intensity Gini coefficient. It was followed by the inter-regional carbon intensity Gini coefficient,
which was always higher than that of the intra-regional and inter-regional carbon intensity Gini
coefficients. It should be noted that the inter-regional carbon intensity Gini coefficient offset the increase
in national-level carbon intensity Gini coefficient between 2000 and 20003. In 2014, the contributing
rate of transvariation intensity to national-level carbon intensity Gini coefficient was 71.71%, whereas
the contributing rates of intra-regional and inter-regional carbon intensity Gini coefficient were 24.82%
and 3.47%, respectively.

Figure 5. Contributing rates to national-scale carbon intensity Gini efficient.

5. Conclusions and Policy Implications

5.1. Conclusions

With the use of the Gini coefficient and its subgroup decomposition method, we investigated the
inequality of carbon intensity in Chin from 1995 to 2013. The main conclusions are listed below:

1. At a national level, the inequality of carbon intensity Gini coefficient is rising throughout China.
In particular, the growth rates of carbon intensity coefficient are accelerating since 2007.

2. At an inter-regional level, long-term trends of the carbon intensity Gini coefficient in Central
China and Western China increased, while they decreased in Eastern China.

3. At an intra-regional level, the carbon intensity Gini coefficient increased between Eastern China
and Western China, Eastern China and Central China, and Central China and Western China.

4. The leading contributing factor for the observed increase of the national-scale carbon intensity
Gini coefficient was the trans-variation intensity.

5.2. Policy Implications

The Chinese government promised that carbon dioxide emissions will reach a peak, and that
carbon intensity will be reduced by 60–65% until 2030. Specific goals for each province and
administrative level must be scientifically calculated in order for the country to meet this national goal.
Local governments at all levels should then implement the appropriate action necessary to achieve
these specific goals. Every province and administrative region must be assessed and held accountable,
and accordingly, the following policy suggestions are proposed:

Due to the ever-increasing inter-provincial carbon intensity difference in China, using the same
carbon reduction goal for each province is not only unscientific, but also unfair. Considering the
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tremendous differences, and from a perspective of policy-making costs, a uniform carbon emission
reduction policy can be applied to Eastern China with its comparatively small inter-provincial
differences; however, for Western and Central China with greater differences, local governments at all
levels should be actively encouraged to participate in the formulation of regulations and strategies
to reduce carbon emissions and participate in carbon trading. China’s five major energy bases all
have high carbon intensity values. To achieve China’s national carbon intensity goal, it is important to
improve the energy utilization efficiency of provinces with abundant energy.

In addition, China is currently promoting nationwide industrial transformation and transfer.
Numerous high-carbon-emission enterprises are moving from coastal to inland areas. Different industries
differ greatly in their energy consumption; however, in energy-output provinces, unsophisticated
industrial structures lead to high carbon emissions. To achieve a balanced development, the more
economically developed provinces should compensate for provinces that have fewer resources and
energy output or an undeveloped economy, and consequently, the eastern coastal regions should
compensate for the central and western regions, to promote social and economic development in
these areas.
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