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Abstract: An accurate estimation of soil organic matter (SOM) content for spatial non-point prediction
is an important driving force for the agricultural carbon cycle and sustainable productivity. This study
proposed a hybrid geostatistical method of extreme learning machine-ordinary kriging (ELMOK),
to predict the spatial variability of the SOM content. To assess the feasibility of ELMOK, a case
study was conducted in a regional scale study area in Shaanxi Province, China. A total of 472 topsoil
(0–20 cm) samples were collected. A total of 14 auxiliary variables (predictors) were obtained from
remote sensing data and environmental factors. The proposed method was compared with the
ability of traditional geostatistical methods such as simple kriging (SK) and ordinary kriging (OK),
in addition to hybrid geostatistical methods such as regression-ordinary kriging (ROK) and artificial
neural network-ordinary kriging (ANNOK). The results showed that the extreme learning machines
(ELM) model used principal components (PCs) as input variables, and performed better than both
multiple linear regression (MLR) and artificial neural network (ANN) models. Compared with
geostatistical and hybrid geostatistical prediction methods of SOM spatial distribution, the ELMOK
model had the highest coefficient of determination (R2 = 0.671) and ratio of performance to deviation
(RPD = 2.05), as well as the lowest root mean square error (RMSE = 1.402 g kg−1). In conclusion,
the application of remote sensing imagery and environmental factors has a deeper driven significance
of a non-linear and multi-dimensional hierarchy relationship for explaining the spatial variability
of SOM, tracing local carbon sink and high quality SOM maps. More importantly, it is possibly
concluded that the sustainable monitoring of SOM is a significant process through the pixel-based
revisit sampling, an analysis of the mapping results of SOM, and methodological integration, which is
the primary step in spatial variations and time series. The proposed ELMOK methodology is a
promising and effective approach which can play a vital role in predicting the spatial variability of
SOM at a regional scale.
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1. Introduction

With rising concern regarding soil organic matter (SOM), it has generally been considered as
a critical indicator of agricultural sustainability [1]. SOM directly affects the sustainability of soil
quality such as soil nutrients and soil texture. It also indirectly impacts carbon emissions and, in turn,
climate change, which limits the productive forces of food and the carrying capacity of the ecological
environment [2–4]. That is, the sustainable connotation of SOM can be defined as: the SOM in the land
unit meets the needs and aspirations of the food productivity of the present, which coordinates with
the development of population growth and resource utilization without compromising the ability of
future generations to meet their own food needs [5,6]. With respect to the spatial variability of SOM
and associated disturbances (such as warming or land use change) for soil quality, digital soil mapping
is an effective way to estimate the value of a non-sampled area and to acquire the spatial variation of
SOM [7]. Furthermore, the soil mapping of SOM can improve the response time of disturbances and
the efficiency of the analysis of sustainable monitoring. Simultaneously, pixel-based mapping of SOM
can be more easily displayed at higher resolutions, and reduces the cost and time required for field
sampling by reducing the amount of sampling.

Selecting appropriate auxiliary variables is crucial for gaining a better understanding of soil
properties, which are closely related to the predicted precision and sustainable space-time fitting
for SOM. The most common of such auxiliary variables are environmental factors that are easy to
obtain such as climate, vegetation, topography, and soil type [8–11]. However, it is hard to obtain
a high prediction accuracy of SOM content when only considering environmental variables at the
local scale, because there is less spatial variation and a weak nonlinear relationship. In recent years,
remote sensing (RS) data has also been used to estimate the spatial variability of SOM because of the
advantage of its multi-spectrum feature, which has a satisfactory forecast effect [12,13]. Remote sensing
variables have a better spatial transitivity, but do not easily explain the driving mechanism behind
global change and the carbon sink of SOM in comparison with environmental variables. Furthermore,
few researchers simultaneously consider the RS data and the environmental variables, especially the
potential driving force among various factors and the expression of geographical connotations that
are applied to establish the prediction models, and the target data has a limited number of laboratory
observations of SOM. Therefore, it is of great importance to adequately develop theoretical approaches
for predicting the spatial variability of SOM from multi-source auxiliary variables (multi-spectral data
and other environmental factors) that are thoroughly taken into account in the modeling process.

The high-efficiency quantitative model is an indispensable technique for predicting the spatial
variability of soil properties, which is based on the application of multi-source auxiliary variables [14].
The explanatory ability of spatial variability between soil properties and auxiliary variables can
be efficiently described using traditional geostatistical methods such as simple kriging (SK),
ordinary kriging (OK), universal kriging (UK), and cokriging (CK) [15–17]. As a widely applicable
method, kriging interpolation has achieved a certain effect between observations and auxiliary
variables using spatial correlation and variation functions [18–20]. However, it is difficult to
determine the low degree of non-linear fitting between SOM and assistant variables because of
the interference of sampling density and the spatial autocorrelation of the multi-dimensional data.
In recent years, hybrid geostatistical methods that integrate a linear or non-linear algorithm and
geostatistics methodology have been broadly employed in different spatial productions of soil
properties. Regression kriging (RK) and neural network kriging (NNK) are typical modeling
approaches of hybrid geostatistical methods [21–23]. RK uses the summation of both regression
values, which represent the approximate ability between the soil dependent variable and auxiliary
parameters, and kriging values of the regression residuals, which reflect the spatial autocorrelation
of the soil properties [24–26]. Many RK applications have shown that RK has a better imitative effect
than the single kriging methods due to its simplicity, computational efficiency, and linear analysis
ability [27,28]. In fact, RK still displays a low prediction accuracy because of its weak analytical
ability in non-linear relationships and layer structures between target data and multi-source auxiliary
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variables. Since the development of artificial intelligence and machine learning, neural networks
(NN) have been used to solve the complex non-linear problems between soil properties and auxiliary
variables, which results in a higher precision than when using classic linear methods [29–31]. However,
traditional artificial neural networks (ANN) have a low implementation efficiency, which is needed to
adjust the complex parameters from the algorithm structure and to avoid the influence of a locally
optimal solution; in particular, they require a longer running time when the mapping resolution is
increased. Furthermore, a more efficient method is required to produce a significant advantage in
terms of the operation time, generalization quality, and layer-interrelating analysis between SOM and
multi-source auxiliary variables.

An extreme learning machine (ELM) is a single layer feed forward neural network (SLFN) which
was proposed by Huang (2004), and has the same single hidden layer structure as traditional NN [32,33].
The ELM algorithm has gradually been employed to determine soil properties such as soil heavy metals,
soil temperature, and soil moisture, due to its excellent generalization performance and global optimal
property [34–36]. Most prominently, ELM has a faster learning speed than classical artificial neural
networks (ANN) because it simplifies the training processes by randomly selecting the parameters.
Extreme learning machine ordinary kriging (ELMOK) calculates both ELM values, which represent the
approximate ability between the soil dependent variables and auxiliary parameters, and the ordinary
kriging values of the ELM residuals, which reflect the spatial autocorrelation of the soil properties.
However, little research has been conducted to explain the importance of auxiliary factors for the
spatial variation of SOM and to infer the geographical significance of hybrid geostatistical methods
from the aspect of their non-spatial algorithm essence. Therefore, the objective of this study was
to adopt a new integrating model of ELMOK combined with principal component analysis, and to
compare it with the performance of different geostatistical and hybrid geostatistical models for SOM
content mapping, simultaneously using RS data and environmental variables.

2. Materials and Methods

2.1. Study Area

The study area (33◦50′ to 34◦19′N and 109◦07′ to 109◦49′E) is located in the southeast of Xi’an,
Shannxi, China (Figure 1). We chose an area of approximately 305 km2, of which nearly 70% is
earmarked for agricultural production. The climate of the study area is a continental monsoon with a
mean annual temperature of 13.1 ◦C, a mean annual sunshine hours of 2148.8 h, and a mean annual
precipitation of 720.4 mm, of which nearly 85% falls from July to September. The topography is plain
and hilly, with an elevation ranging from 410 m to 2449 m. According to Chinese soil classification,
the main soil types of vegetable fields are brown soils and cinnamon soils (Dystrochrept and half ustalf
in the USDA Soil Taxonomy; Eutric luvisd and unsaturated cambisol in the FAO World Reference Base
for Soil Resources). This area is a historic agricultural zone in the central Shaanxi plain, where the
dominant planting structure is an irrigated farming system producing wheat, corn, and vegetables.

2.2. Soil Sampling and Analysis

It is essential that sampling occurs during the driest months, after crops have been harvested,
to reduce the interference of soil moisture, soil texture, cloud cover, and vegetation for the multi-spectral
information of the remote sensor. The base map of field sampling was overlaid pattern spots by
the present land-use map and soil type map (from the Lantian County Agricultural Technology
Popularization Center, China). Based on the sampling requirements of the “Rules for soil quality
survey and assessment, NY/T 1634-2008” [37], which was released by the Ministry of Agriculture
of the People’s Republic of China, they set one point per 66.66 ha and the topsoil depth is from 0
cm to 20 cm. We combined this with the actual situation of the study area, used a uniform random
sampling technique, and set one point per 60 ha. However, the sampling points should avoid the
interference of the land type such as buildings, ditches, scrap heaps, dunghills, cemeteries, and so on,
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whilst the distance from a railway or main street should exceed 350 m. A total of 472 topsoil (0–20 cm)
samples (Figure 1) were collected over the study area in November 2012, taking the coordinates,
soil type, and topography into consideration. All soil mixed samples included four corners of a
square within a 10 m length, each of approximately 2 kg, and these were mixed thoroughly. This was
developed in accordance with the technical requirements of the “Chinese agriculture Industry standard,
NY/T 1211.1-2006” [38] for measured soil organic matter, which was released by the Ministry of
Agriculture of the People’s Republic of China. All samples were naturally air dried at room temperature
and passed through a 2-mm nylon sieve after removing plant residues and stones. In the analytic
procedure, samples were oxidized by 0.4 mol L−1 potassium dichromate-sulfuric acid, then heated
to about 170–180 ◦C for 5 min ± 0.5 min, and any excess potassium dichromate was determined
by titration with standard 0.1 mol L−1 ferrous sulfate (FeSO4). Meanwhile, two blank experiments
were completed when analyzing each batch of samples. The SOM content was calculated by the
conventional carbon factor (1.724), as follows [39,40]:

SOM =
c× (V0 −V)× 0.003× 1.724× 1.10

m
× 1000 (1)

where SOM is the soil organic matter content (g kg−1), V0 is the consumption volume of the ferrous
sulfate standard solutions in the blank experiments (mL), V is the consumption volume of the ferrous
sulfate standard solutions in the sample determination (mL), c is the concentration of ferrous sulfate
standard solution (mol L), 0.003 is the millimole mass of a quarter of the carbon atoms (g), 1.724 is
the conventional carbon factor, 1.10 is the oxidation adjusting coefficient, m is the mass of the dry
samples (g), and 1000 is the content of per kilogram conversion.
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Figure 1. Location of the study area in central China and the distribution of the training and
validation sites.

2.3. Auxiliary Variables

A Landsat 8 OLI image with nine bands was freely obtained from the National Aeronautics and
Space Agency (NASA) server at a spatial resolution of 30 m by 30 m (the eighth band is 15 m) [41].
We selected the OLI image of December 2014 from November 2012 to December 2015 as it had the
least cloud cover and avoided the information interference from the black stripe of Landsat 7 ETM+.
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The OLI image was geo-referenced to the same coordinate system as the SOM data set and was
processed through radiometric calibration and atmospheric correction in ESRI ENVI 5.2 (ESRI Inc.,
Redlands, CA, USA). The selected remote sensing auxiliary variables included a blue band (band 2),
green band (band 3), red band (band 4), NIR (band 5), SWIR (bands 6 and 7), and the normalized
difference vegetation index (NDVI) [42].

In this study, we used a digital elevation model (DEM) with a spatial resolution of 30 m, which was
obtained from Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital
Elevation Model version 2 (ASTER GDEMV2). The dataset was provided by the International
Scientific & Technical Data Mirror Site, Computer Network Information Center, Chinese Academy
of Sciences [43]. Furthermore, four topographic variables were derived from the DEM: (1) elevation
(ELE, m), (2) slope (SLO, ◦), (3) aspect (ASP), and (4) relief (REL, m). All of these terrain variables were
calculated using 3D analysis tools in ArcGIS 10.3 (ESRI Inc., Redlands, CA, USA).

Climate variables with a 1 km spatial resolution were derived from the Geospatial Data Cloud of
China, which included the monthly total precipitation and monthly mean temperature. These data
were further applied to calculate the average monthly precipitation (PREC, mm) and average monthly
temperature (TMEAN, ◦C). In order to use the same spatial resolution for the DEM and that used in the
subsequent analysis, the PREC and TMEAN were resampled to a 30 m spatial resolution, according to
the nearest neighbor assignment method in ArcGIS 10.3. The soil potential of hydrogen (pH) was
obtained from the mixed soil samples. The determination of the soil pH was achieved through a
calomel electrode with a sleeve type connection, which was interpolated into raster maps at a 30 m
resolution by the inverse distance weighted (IDW) method as soil property data [44].

2.4. Dimension-Reduced Processing

Since a reasonable amount and type of auxiliary variables not only simplifies the model structure,
but also analyzes the driving force of different variables, environmental variables and remote sensing
data were simultaneously considered to predict the spatial variability of soil organic matter (SOM).
In this study, the combined method of stepwise linear regression and principal component analysis
(SLR-PCA) was used for the dimension reduction processing of the auxiliary variables. The stepwise
linear regression (SLR) method is usually used to solve the linear relationship between multiple
independent variables, which can be applied as a type of variable screening to build subsequent
prediction models by removing weak significant variables and retaining high contribute rate variables.
Stepwise regression is adopted to eliminate variables step by step, and to find the optimal combination
of variables in a multi-variable regression relationship. Furthermore, principal component analysis
(PCA) was applied to reduce the dimensions of the quantitative auxiliary variables after SLR analysis,
in order to remove their multi-collinearity and normalized initial number within the range of
0.1–0.9 using Equation (2). The selected principal components (PCs) were constructed from linear
combinations of independent variables, which explained at least 80% of the total variance among the
original data sets. Afterwards, these PCs were used as input variables in the subsequent modeling
prediction of SOM. The SLR-PCA were performed with SPSS, version 22.0, 2013.

xi = 0.8×
[
(x− xmin)

xmax − xmin

]
+ 0.1, (2)

where xi is the rescaled data, and xmin and xmax are the minimum and maximum observed
data, respectively.

2.5. Modeling MLR, ANN and ELM

In regression analysis, a multiple linear regression approach (MLR) was introduced to explore the
spatial variability of the soil organic matter (SOM) content with auxiliary variables by a least square
algorithm. As a linear equations fitting method, MLR generally found the appropriate equation for the
relationship between the input PCs and target data, and then resolved the coefficients of the fitting
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polynomial [19]. The artificial neural network (ANN) is a feed-forward multi-layer perceptron which
originated from the abstract neuron structure in the biological brain. Generally, the ANN model has
three layers (input layer, hidden layer, and output layer), which were used to estimate the non-linear
fitting relationship between SOM and multi-source auxiliary variables. The multiple linear regression
and ANN processes were performed using the MATLAB 2013b software (MathWorks, Natick, MA,
USA). Compared to the traditional function structure of ANN, the extreme learning machine (ELM)
does not require bias parameters in the output layer or the training of a multi-layer perceptron with
one hidden layer, which is equivalent to simply finding the least-squares solution of the linear system.
The output function of the SLFN of ELM can be defined as follows:

fL(x) =
L

∑
i=1

βih(wi · xj + bi) = h(x)β, (3)

where x ∈ Rd and fL(x) ∈ Rm are the model input and output, respectively; N is the number of input
vectors; wi is the weight in the hidden layer; and bi represents the bias parameters in the hidden layer.
β = [β1, . . . , βL]T is the output weight vector between the hidden layer of L nodes to the output nodes
of m; h(x) = [h1(x), · · · , hL(x) ] is the nonlinear feature mapping relation of ELM, with respect to
the input data from the row output vector of the hidden layer; and h(wi · xj + bi) is the output function
of the ith hidden node, which can be written as follows:

h(wi · xj + bi) = G(w, b, x), (4)

where G(w, b, x) represents the nonlinear mapping of continuous functions, namely the activation
function.

In the next stage of ELM learning, Equation (5) is used to minimize the approximation error in the
squared error sense between the hidden layer and the output layer:

min
β∈RL×m

||Hβ− T || 2, (5)

where || · || denotes the Frobenius norm, H is the hidden layer output matrix (random matrix) of
dimension N × L, T is the training data target matrix, and superscript T denotes the transpose.

The optimal least square solution can be calculated as follows:

β̂ = H†T, (6)

where H† is the Moore-Penrose generalized inverse of output matrix H.
The ELM algorithm has advantages in terms of the training time and accuracy via improving

the training data by converting them into batches of a fixed or not fixed length, and only updating
the weight without retraining the trained samples. The MATLAB 2013b software was used in ELM
modeling analysis.

2.6. Hybrid Geostatistical Methods

The hybrid geostatistical methods including regression-ordinary kriging (ROK), artificial neural
network-ordinary kriging (ANNOK), and extreme learning machine-ordinary kriging (ELMOK),
integrate a non-spatial method (MLR, ANN, and ELM models) and a spatial interpolation approach of
ordinary kriging. The implementation of these methods includes three steps: Firstly, the MLR,
ANN, and ELM model between the target data and the PCs which is derived from the initial
auxiliary variables is established; secondly, the residuals of MLR, ANN, and ELM are computed
by a semivariogram and kriging, respectively; and finally, the prediction of each non-spatial method
and the ordinary kriging prediction of the residual is calculated.
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The implementation of residual kriging is achieved according to the MLR, ANN, and ELM
prediction, and a residual error can be written as follows:

r(xi) = Z(xi)− Ẑ(xi), (7)

where r(xi) is the residual error at the sampling site xi; Z(xi) is the measured value; and Ẑ(xi)

represents the estimation data by the MLR, ANN, and ELM model, respectively. The OK method is
given by:

r̂(xi) =
n

∑
i=1

λir(xi), (8)

where r̂(xi) is the estimated r at a site xi with ordinary kriging. r(xi) and n are the MLR or ELM residual
values at site xi and the number of soil samples, respectively, and λi is the optimal weight. In the
spatial modeling of residual kriging, an experimental semivariogram is usually used to measure the
average dissimilarity between the points separated through a lag distance, which is defined as follows:

γ̂(h) =
1

2N(h)

N(h)

∑
i=1

[r(xi)− r(xi + h)] 2, (9)

where γ̂(h) is the experimental semivariogram, which is measured by the lag distance h between r(xi)

and r(xi + h), and N(h) is the number of pairs of sampling sites separated by h. ArcGIS 10.3 was used
to implement the spatial interpolation and geostatistical computations.

Finally, the hybrid geostatistical methods of ROK, ANNOK, and ELMOK were obtained as
the respective sum of the Ẑ(xi) (representing MLR estimates, ANN estimates, and ELM estimates,
respectively) and ordinary kriging estimates of the residuals r̂(xi), as follows:

Ẑsum(xi) = Ẑ(xi) + r̂(xi), (10)

where Ẑsum(xi) (including ROK, ANNOK, and ELMOK models) is the final spatial optimum estimation
of the SOM content.

2.7. Accuracy Evaluation of Prediction Performance

In order to evaluate the prediction results and the performance of different modeling methods,
four quantitative measures of the mean error (ME), root mean square error (RMSE), coefficient
of determination (R2), and ratio of performance to deviation (RPD) were computed in this study.
The formulas of the RPD indexes were calculated as follows:

RPD =
STD

RMSE
, (11)

where STD is the standard deviation of the SOM measurement (g kg−1), the increasing RPD values
mean that the quality of the prediction model can be interpreted more accurately according to three
classes: the accurate prediction of the model (RPD≥ 2), the fairly acceptable prediction (1.4 < RPD < 2),
and the worst performance of the prediction model (RPD ≤ 1.4) [45,46].

An independent test data set (142 samples, 30% of the total) was randomly conducted by using
the “create subset” function of Geostatistical Analyst in ArcGIS 10.3. The ELMOK is a pixel-based
mapping method that needs a one-to-one correspondence between the pixel value of the auxiliary
variables and the samples of SOM. Once the validation set was changed, the training set and the
corresponding pixel value of the auxiliary variables were changed accordingly. Not only did it need to
re-modeled and re-trained as the model lacked robustness and stability, but it also avoided over-fitting
because the sample variations disrupted the one-to-one relationships between the pixel value of the
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auxiliary variables and the samples of SOM. In other words, the first subset produced was random,
yet the validation set was independent in the subsequent process of modeling analysis [14,31].

3. Results

3.1. Descriptive Statistics

Table 1 summarizes the descriptive statistics of SOM and the auxiliary variables at all sites
in the study area. The SOM content for all the sample sites showed a range of 9.1 to 24.6 g kg−1,
with a mean of 15.02 g kg−1 and standard deviation of 2.87 g kg−1. The Kolmogorov-Smirnov (K-S)
test showed that the P value was 0.435, indicating that the target data was normally distributed.
The coefficient of variation (CV) of the OIL bands ranged from 26.66% (Band 6) to 30.6% (Band 2),
whereas the NDVI index (CV = 34.38%) exhibited a moderate variability. The CV of the environmental
auxiliary data showed a broad range, such as the high variability (CV > 35%) of SLO (CV = 68.33%),
ASP (CV = 47.47%), and REL (CV = 58.65%), the moderately variability (15 < CV > 35%) of ELE
(CV = 15.43%), and the low variability (CV < 15%) of PREC (CV = 2.73%), pH (CV = 3.27%),
and TMEAN (CV = 2.41%). These strong variations could be attributed to the variable land covers,
great height differences, and other environmental elements over the research area.

Table 1. Descriptive statistics of SOM and auxiliary variables at the sampling sites.

SOM and
Auxiliary Variables Units Minimum Maximum Mean Std.Dev. CV (%)

SOM g kg−1 9.10 24.61 15.02 2.87 19.11
Band 2 Dimensionless 111.70 1036.60 492.18 147.18 29.90
Band 3 Dimensionless 139.52 1253.33 692.67 201.97 29.16
Band 4 Dimensionless 150.62 1632.99 887.66 268.397 30.24
Band 5 Dimensionless 237.27 3042.71 1767.31 540.87 30.60
Band 6 Dimensionless 287.53 3039.49 1851.88 493.741 26.66
Band 7 Dimensionless 217.11 2598.27 1557.97 436.452 28.01
NDVI Dimensionless 0.05 0.66 0.32 0.11 34.38
ELE m 440.00 885.00 623.58 96.23 15.43
SLO ◦ 2.00 68.67 17.68 12.08 68.33
ASP Dimensionless 5.31 350.92 182.48 86.63 47.47
REL m 2.00 39.00 10.52 6.17 58.65

PREC mm 47.67 54.58 51.36 1.40 2.73
TMEAN ◦C 23.40 26.10 24.87 0.60 2.41

pH Dimensionless 6.80 8.90 7.35 0.24 3.27

Note: Std.Dev. stands for standard Deviation; SOM: soil organic matter; CV: coefficient of variation.

3.2. SLR-PCA Analysis of Auxiliary Variables

The SLR model was used to screen eight auxiliary variables from all of the original data,
which included B4, B6, B7, NDVI, ASP, ELE, PREC, and TMEAN. The determination coefficients
(R2) of the SLR between the selected variables and SOM content were 0.257, and the significance
probability value showed that p < 0.0001.

SLRSOM = 1.932 + 0.122B4 + 0.211B6 + 0.193B7 + 0.361NDVI − 0.306ELE − 0.773ASP −
0.126PREC − 0.206TMEAN

The results of PCA by applying correlation analysis with varimax rotation for eight auxiliary
variables from SLR analysis are shown in Table 2. The first three extracted components accounted for
84.6% of the total data variation in order to maintain most of the information of the eight primitive
variables. The component matrix showed that the first component (PC1 explained 40.14%) was
mainly constructed from remote sensing data, which was loaded heavily on B4, B6, B7, and TMEAN,
with little contribution from climatic factors. The second and third PCs (PC2 explained 31.34% and PC3
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explained 13.13%) were strongly associated with environmental variables and a few remote sensing
factors, including ELE, ASP, PREC, and NDVI. According to the result of SLR-PCA, the first three PCs
were selected as predictors for MLR, ANN, and ELM.

Table 2. Results of principal component analysis.

Auxiliary Variables PC1 PC2 PC3

B4 0.75 0.64 0.13
B6 0.74 0.60 −0.07
B7 0.71 0.60 0.29

NDVI −0.17 −0.31 0.73
ELE −0.71 0.64 −0.01
ASP −0.20 0.02 0.64

PREC −0.69 0.66 0.017
TMEAN 0.73 −0.66 0.013

Eigenvalue 3.21 2.51 1.05
Variance explained (%) 40.14 31.34 13.13

Cumulative variance (%) 40.14 71.48 84.60

3.3. Prediction of SOM Content by MLR, ANN and ELM Models

An MLR model was derived to predict the SOM content using three PCs, which are the principal
components converted from the auxiliary variables. As can be seen in Table 3, the determination
coefficients (R2) of the MLR for both the training data set and the test data set were 0.317 and 0.292,
respectively, which showed the barely satisfactory effect of linear fitting and indicated the complex
variability between the SOM content and the multi-source factors.

SOM = 0.2582 − 0.5979 × PC1 + 0.3076 × PC2 + 0.0781 × PC3

Table 3. Assessment of the MLR for predicting SOM content by PCs.

Training Data Set Testing Data Set
D-W a

ME (g kg−1) RMSE (g kg−1) R2 ME (g kg−1) RMSE (g kg−1) R2

MLR 11.32 2.19 0.317 12.53 2.25 0.292 1.651
a Durbin-Watson statistics.

For ANN and ELM, all the PCs were used as input variables. In order to demonstrate the
practical use of the ELM as an efficient learning prediction method, the data set was divided into two
independent groups (training data set included 330 samples and testing data set included 142 samples)
and simultaneously controlled the hidden-layer nodes to avoid the over-fitting of the optimal unbiased
estimation. In fact, the implementation of ELM should achieve a balance between the precision and
simplification of the model parameters, which adjusted the neuron numbers. The derived accuracy of
the ANN and ELM models from the ME values displayed a stable precision and small overestimation
with six PCs, and between 18 and 30 neurons. The results revealed that the optimized ANN and ELM
network architectures were 3-26-1 and 3-23-1 with the sigmoid kernel function, respectively, indicating
that there were three input nodes in the input layer, 23 hidden-layer nodes, and one output-layer
node, as shown in Table 4. For the best ELM model, the values of ME and RMSE were 6.93 g kg−1

and 1.531 g kg−1, respectively, for the SOM content. Compared with the MLR and ANN model,
the ELM had larger R2 and lower RMSE values, which could explain 58.3% of the variances in the
SOM. More importantly, the run time of the ELM model was faster than ANN, which exhibited an
efficient analytic ability between the correlative factors and SOM content. The prediction performance
of ELM was comparable to, but better than, the regression and ANN reported by Li et al. (2010) [28]
and Mirzaee et al. (2016) [13].
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Table 4. Parameters and evaluation statistics for the most significant ANN and ELM models.

Methods Selected
Architecture a

Training Data Set Testing Data Set
Run

Time (s)ME
(g kg−1)

RMSE
(g kg−1) R2 ME

(g kg−1)
RMSE

(g kg−1) R2

ANN 3-26-1 9.04 1.766 0.476 8.56 1.692 0.491 52
ELM 3-23-1 7.16 1.618 0.561 6.93 1.531 0.583 160

a Number of the nodes in input layer, hidden layer, and output layer, respectively.

The residuals were obtained using the difference between the measured SOM data and the results
of the MLR, ANN, and ELM prediction data. As can be seen in the estimated values of the SOM content,
which were plotted against the measured values for the training sites and validation sites (Figure 2),
the scatter plots of the ELM model displayed a better compactness and fewer outliers in comparison
with the other methods. To further analyze the model performance by the relationship between the
residuals and predicted SOM, a histogram of the residuals, a Gauss fitting curve, and the residuals
versus the estimated SOM content were plotted in Figure 3. The result of the Kolmogorov-Smirnov (K-S)
test showed that the distribution of residuals had a good fit with a normal distribution, which was 0.42,
0.37, and 0.32 in the MLR, ANN, and selected ELM models, respectively. Additionally, the graph also
indicates that the residuals randomly display isotropic characteristics around zero (0). Furthermore,
it is essential to perform an analysis of the distribution of residuals, because it was directly used to
calculate the experimental semivariograms for the spatial autocorrelation of kriging interpolation.
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Figure 3. MLR, ANN, and ELM diagnostics of the residuals: histogram ((a) MLR model, (c) ANN
model, and (e) ELM model) and residuals versus estimated SOM value ((b) MLR model, (d) ANN
model, and (f) EKM model).

3.4. Spatial Prediction of SOM Content by Geostatistical Methods

As shown in Table 5, the best-fit parameters of OK determined the various semivariograms and
spatial dependence of the residuals for the SOM content. The nugget/sill ratio, namely the nugget
effect (NE), was used to describe the degree of spatial dependence and random variation for the SOM
content, and was divided into a strong spatial correlation (NE ≤ 25%), moderate spatial dependence
(25% < NE ≤ 75%), and weak spatial dependence (NE > 75%). Additionally, interpolation methods,
including ordinary kriging, residuals kriging of regression, residuals kriging of ANN, and residuals
kriging of ELM, were conducted to predict the SOM content in the study area. The NE of this study
showed that all methods had a moderate spatial dependence. Table 6 shows the statistical results of
the geostatistical methods in the test data set, and the OK approach illustrates a better performance for
the production of SOM content in comparison with simple kriging (SK).

Table 5. Semivariogram model parameters for SOM content and residuals of MLR, ANN, and ELM.

Variogram Model Range (km) Nugget Sill Nugget/Sill

Semivariograms of SOM Exponential 4.57 0.031 0.115 0.270
Residuals of MLR Exponential 3.34 0.345 0.979 0.352
Residuals of ANN Exponential 3.60 0.503 1.166 0.431
Residuals of ELM Exponential 3.06 0.478 1.213 0.394
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Table 6. Accuracy assessment statistics for interpolation methods at the test sites.

Interpolation Methods ME (g kg−1) RMSE (g kg−1) R2 RPD

SK 15.95 3.26 0.192 0.88
OK 11.05 2.071 0.363 1.39

ROK 9.97 1.974 0.422 1.45
ANNOK 6.22 1.463 0.611 1.96
ELMOK 5.37 1.402 0.671 2.05

3.5. Spatial Prediction of SOM Content by Hybrid Geostatistical Methods

According to Equation (10), the hybrid geostatistical methods of MLROK, ANNOK, and ELMOK
were used to implement the prediction of SOM content. As shown in Table 6, the ELM-kriging
approach had a lower RMSE (1.402 g kg−1) and a high R2 (0.671) for the prediction of the SOM
content in comparison with the geostatistical methods, and the ratio of performance to deviation (RPD)
was 2.05. Figure 4 shows the estimated values of the SOM content, which were plotted against the
measured values for the training sites and test sites. The scatter plots of the ELMOK model exhibits
less outliers and a better compactness in comparison with the other models. In short, ELM-kriging
obtains a better estimation accuracy of the SOM content than the other methods. As can be shown
in Figure 5, these four prediction methods had a similar distribution trend of the SOM content in the
general spatial patterns, and the main concentration of high SOM values was in the southeast of the
study area. However, transitions among the spatial heterogeneity of local SOM had better gradients in
the prediction maps produced by ELMOK than by the other methods. In addition, the ranges of the
SOM content (both the lower values and the higher values) in the estimated maps by ELMOK were
much closer to the measured values, which had a deeper nonlinear analytic ability for SOM.
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4. Discussion

4.1. Driving Force Analysis of Auxiliary Variables for SOM

In order to further determine the driving forces of multi-source auxiliary variables, we observed
the effects of different factors for the spatial variability of soil organic matter by adding or deleting
collaborative variables, which was based on the idea of the stepwise regression in MLR, ANN, and ELM
prediction models. By adding or removing the amounts of variables (the type of each variable to be
added or deleted should be the same in the three models), we obtained the variation trend of the
coefficient of determination (R2) of the three models from one to 14 variables, and then drew the
distribution box diagram according to the coefficient of each model. As can be seen in Figures 6 and 7,
according to the R2 of each model with a different number of variables, the interpretative ability of
three models for SOM content from better to worse were: ELM > ANN > MLR. When the number
of variables was less than eight, the R2 showed obvious attenuation. However, when the number of
variables gradually increased from 8 to 14, the R2 of the three models did not significantly improve.
In addition, the mean value of R2 between the auxiliary variables and soil organic matter in the three
models in descending order were: ELMOK > ANNOK > ROK.

Based on the result of the driving force analysis of the auxiliary variables, the TMEAN, ELE, B4,
and NDVI factors had the greatest influence on the spatial variability of SOM, which were not only
consistent with its impact on global change, but also reflected the significant responding relationship
between soil organic matter and global change. Furthermore, the analysis result of the remote sensing
variables was similar to the report of Mirzaee et al. (2016), in which B4 and NDVI had a greater
influence on the spatial variability of soil organic matter. This may be due to vegetation and organic
matter containing a major carbon source, thus forming a potential strong correlation and driving force.
As a result, there is a significant multi-dimensional hierarchy relationship between the environmental
variables and remote sensing data, and the more types of the variables there are, the more obvious
nonlinear relationship between the SOM and auxiliary variables is.
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4.2. Sustainable Monitoring of Digital Mapping for SOM

The estimated results of the SOM content by ELMOK were much closer to the measured values,
which were demonstrated an acceptable range for monitoring site-specific SOM and its quality
evaluation in comparison with [8,13,14]. Generally, a higher resolution and higher precision of
SOM can capture its changes more acutely in a regional spatial range, while it is difficult to reflect the
continuous dynamic changes because only one year of data is used. However, there is not a unified
standard for the sustainable monitoring of SOM, so how can we understand and realize its sustaining
value? The sustainable monitoring of SOM can be defined using two aspects: Firstly, in the vertical aspect
(sustainable monitoring of time series of data driven), the ELM model can be used in the sustainable
prediction for SOM, which overcomes the interference of sample density and multi-collinearity among
auxiliary variables. Simultaneously, the ELM has the capability to auto-analyze the nonlinear relationships
between multi-source auxiliary variables and SOM by self-learning. Secondly, in the horizontal aspect
(sustainable monitoring of special non-point), the integration of ELM and kriging can realize the special
sustainability of SOM monitoring in a site-specific prediction, which includes the continuous distribution
of SOM and the monitoring of variability. There are several possible routes which can be followed for the
sustainable monitoring of SOM based on a revisit sampling period and method design.

(1) The sustainable monitoring of SOM includes the continuity of spatial variation and time
series. It is difficult to collect samples by an accurate point-to-point method in future years and for the
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same study area. Perform pixel-based revisit sampling is an effective procedure. On the one hand,
for auxiliary variables, it is easy to obtain the values of pixels which correspond with the sampling
points; On the other hand, for the digital mapping, it is practical to use the range of pixels instead
of the sampling point location, because the specific resolution of the non-point source of SOM is the
ultimate objective in different scales. Using the pre-existing mapping results of SOM as the basic map
of sampling design, the SOM content using the auxiliary variables can be predicted several years later,
which will reduce the quantity of sampling points and reduce both the cost and time.

(2) Perform the integrated approach, which included the hybrid geostatistical method and spatial
downscaling based on ensemble learning thinking [47]. The integrated approach realized the win-win
relationships, which not only absorbed the advantages of the machine learning-kriging method such
as a high efficiency, high accuracy, and geostatistical significance, but also combined the advantages
of the spatial downscaling approach, such as an easy availability, spatial variation, and adaptation
of multi-scale.

(3) Perform a deep analysis for the mapping results of SOM in different years. It is essential to
capture the regional changes which became observably high or low for the SOM content from the
mapping results in different years. There may be some reasons which caused this change, such as the
cropping system, soil type, auxiliary variables, and so on. Furthermore, the sustainability of spatial and
temporal monitoring of SOM should have a closer relationship with soil health and climate change.

5. Conclusions

In this study, an extreme learning machine approach was used to predict the spatial distribution
of SOM content with multi-source auxiliary variables of remote sensing, topographic, climate, and soil
properties at a regional scale. A two-stage integrated process was proposed that incorporated an ELM
model with residual estimation by ordinary kriging, which was compared to the interpolation methods
of ANNOK and ROK for assessing its feasibility, efficiency, and prediction accuracy. The results
indicated that the prediction accuracy of SOM content was raised by ELMOK, with a lower RMSE
value (1.402 g kg−1) and higher R2 (0.671) in comparison with the other methods. Additionally,
a driving force analysis of the auxiliary variables identified TMEAN, ELE, B4, and NDVI as the most
important factors affecting the spatial variability of SOM. This finding could prove a deeper driven
significance for the nonlinear and multi-dimensional hierarchy relationship between auxiliary variables
and SOM, and gave preference to select the optimized feature factors in similar areas. More importantly,
for the sustainable monitoring of SOM, there are several possible routes that are based on pixel-based
revisit sampling, an integrated approach of the hybrid geostatistical method, and spatial downscaling
so that they are adapted to the different scales, and which analyze the changes of mapping results of
SOM in time series. The proposed ELM-ordinary kriging methodology is a promising and efficient
approach for predicting the spatial variability of SOM at a regional scale.
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