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Abstract: When developing land to meet various human needs, conducting assessments of different
alternatives regarding their sustainability is critical. Among different alternatives of land-use,
devoting land to bioenergy is relatively novel, in high demand, and important for addressing
the energy crisis and mitigating carbon emissions. Furthermore, the competition and disputes
among limited land-use for bioenergy and the combination of food production and housing are
tense. Thus, which alternative of land-use is more sustainable is an important question, yet it is
still under-investigated. The main purposes of this study are to investigate the merits and problems
of land-use for bioenergy and to compare the relative sustainability of land-use for bioenergy,
food production, and housing based on habitants’ perceptions. Multi-criteria analysis is applied to the
case study in the context of China, evaluating multiple criteria in economic, environmental, and social
dimensions. Therefore, this study presents a comprehensive assessment of different scenarios of
land-use designed to be implemented and some implications for optimum land-use policies.
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1. Introduction

In the past three centuries, over half of the land surface on the earth has been impacted by various
anthropogenic activities [1]. Land is regarded as an essential natural resource for the survival and
prosperity of humanity. Meanwhile, land is also a key component of the environmental resources for
the maintenance of all terrestrial ecosystems. As a resource, which is usually used for exploitation,
land has become increasing scarce, and thus competition for land uses is becoming frequent,
acute, and complex [2,3]. Inappropriate land uses can lead to economic losses, social disruption,
and environmental degradation and can cause problems that hurt future generations [4,5]. Therefore,
sustainable land-uses are prominent on development agendas of both developed and developing
countries. To facilitate the long-term benign and favourable development of land, it is crucial to
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evaluate the sustainability of land-use for different purposes on economic, environmental, and social
dimensions [6,7].

Among different types of land-use, including conventional food production, housing,
and relatively novel bioenergy production, land devoted to bioenergy development is attracting
unprecedented attention worldwide [8–10]. Nations are developing land for bioenergy programmes
to improve energy security, reduce carbon emissions, and promote regional development. However,
the tension between land-use for bioenergy and that for food production and housing has triggered
considerable public concerns [11].

Despite the increasing global demand for bioenergy because of its multiple impacts, land area
devoted to bioenergy production is limited due to relatively scarce land resources [12]. For developing
bioenergy, land resources are pivotal, so it is claimed that more land devoted to food production and
housing should yield to bioenergy production, which may bring more benefits. However, the question
of whether it is relatively more sustainable to devote land to bioenergy is still under-examined.
The comprehensive sustainability of land-use deserves further assessment, which is the focus of
this study.

There are various factors and dimensions that are engaged in different land-use alternatives
evaluations. However, most current approaches have failed to explore the multiple criteria of
sustainability. Moreover, although many scholars argue that their studies will provide policy
implications for government, it is a common issue that government officials cannot understand
their incredibly over-complicate results presented with their too technical and sophisticated methods.
To solve these puzzles, this study employs a concise and effective approach, multi-criteria analysis
(MCA), to examine a full range of economic, environmental, and social sustainability criteria by
comparing land-use in bioenergy, agriculture, and housing. The results presented in this study are
straightforward and intuitive, which could be easily used for policy suggestions in considering the
sustainability of land-uses. Moreover, the holistic assessment framework presented in this study could
be easily applied more widely to policy practices in the sustainability evaluation on many other land
use–related projects.

This paper is structured as follows: Section 2 discusses the merits and problems of land-use for
bioenergy. Section 3 takes China as a case for investigation and conducts an assessment through a
multi-criteria analysis method. The results of land-use sustainability for bioenergy, compared with
land-use for food production and housing are shown in Section 4. Conclusions and implications are
presented in Section 5.

2. Merits and Problems of Land-Use for Bioenergy

More land is demanded because there are several key merits of using land for bioenergy
production. These merits include positive impact on promoting economic development (especially in
rural areas), reducing greenhouse gas emissions, and meeting energy demand across the world [13].
Many countries, especially Brazil, the US, and China, have made significant progress on developing
land for the bioenergy industry [11].

However, using land for bioenergy production can be a double-edged sword, having triggered
a series of controversial issues. Criticisms on using land for bioenergy revolving around large scale
biofuel plantation have been reported, including the risks posed on private sectors, the environment,
and food security in developing countries. As listed below, three key disputes regarding the merits
and problems of land-use for bioenergy stand out among those addressed by the Food and Agriculture
Organisation of the United Nations and other extant literature [14–16].

2.1. Promoting Agricultural and Rural Development vs. Challenges for Private Sectors

With the improvement of technologies, it is cheaper to produce agricultural output, and the prices
for agricultural necessities are dropping. As the real prices of agricultural commodities experience a
long-term declining trend, the development of agriculture and rural areas faces difficulties in attracting
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investment from public and private sectors in many developing countries [14]. Against this backdrop,
with the increasing demand for bioenergy and thus the promotion of biofuel plantation, agricultural
and rural development are presented with great opportunities. First, increasing feedstock production
for producing bioenergy will boost the development of the agricultural sector in terms of employment
and local income. As agricultural activities are still labour-intensive, more demand for production work
requires larger labour force and may correspondingly raise wages. Furthermore, due to the significant
transportation cost, collection and conversion facilities could be constructed and operated locally,
which would further boost local economic activities and rural development. The aforementioned
positive impacts on agricultural and rural development could further attract investment in rural
infrastructure, healthcare, and education [17].

However, developing bioenergy as a new industry presents challenges for the private sector.
The return of initial investments may have to wait until the demand and production of bioenergy
grows to a large scale. Before achieving such scale, the cost of bioenergy may remain high and thus
bioenergy prices may not be as competitive as oil, which is a high potential risk for the private sector
in the new industry of bioenergy.

2.2. Reducing Carbon Emissions vs. Environmental Threats

Most life-cycle studies have found that substituting bioenergy for fossil fuels can help mitigate
some of the detrimental greenhouse gas effects [18]. Governments worldwide have also implemented
environmental policies to encourage a transition from petrol to bioenergy because it would reduce
carbon accumulation.

However, biofuel plantations are a driver of deforestation [19]. Several major hotspots of
bioenergy, including Latin America, Sub-Saharan Africa, and South-East Asia, are experiencing
deforestation problems resulting from inappropriate land-use by private bioenergy operators and
producers [20]. In addition, the biodiversity conservation issue is another substantial ecological and
environmental threat.

2.3. Meeting Energy Demand vs. Food Insecurity

As a renewable energy source that competes with and can replace fossil fuels in energy markets,
bioenergy is already substantially making contributions to meeting the world’s energy demand and is
estimated to meet approximately a quarter to a third of worldwide primary energy demand in 2050 [21].
However, as increasing production of bioenergy requires larger scale land-use, food insecurity becomes
one of the biggest concerns. The competition between bioenergy and food is twofold. (1) Competition
with food and food related demand: Among the two biggest bioenergy countries, 45.9% of corn
produced domestically were taken for bioethanol use in the US, and more than half of the total
sugarcane production has been used for bioethanol since 1990 [22]. (2) Competition with agricultural
resources: More bioenergy production demand requires more land and water, fertiliser, pesticides,
and other agricultural resources. In Southeast Asia, especially Malaysia, Indonesia, and Thailand,
land-use has changed greatly because of demand from bioenergy, competing with land and basic
resources for the cultivation of rice and other food crops, which leads to food insecurity issues [23].

3. Analysis of the Sustainability of Land-Use for Three Alternatives

As there are both merits and problems as discussed above, it is necessary to explore the
comprehensive sustainability of land-use in a specific context from different dimensions. A typical
developing country with tense dispute over land and bioenergy is chosen for investigation through
multi-criteria analysis.

3.1. Case: China

This study focuses on the sustainability of land devoted to bioenergy in the largest developing
country, China, where land for bioenergy production is in highly demand. China is developing
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bioenergy to address energy security problems and decrease dependency on fossil fuels in order to
sustain its economic development. With heavy and continuously rising energy demands, China
overtook the US to become the largest oil importer in 2015. As energy is a driver of industrial
development, since 2000 the Chinese government has actively launched a series of bioenergy projects
and subsequently listed bioenergy industry as one of the seven national strategic emerging industries
in 2010. According to the Statistical Review of World Energy (2015), after rapid ascents, the amount of
biofuel production peaked at 2083.42 million tonnes oil equivalent in 2014. The relationship between
the amount of bioenergy production Mbiofuel(t) and Year t can be predicted as Mbio f uel(t) = 165.1×
t−330,373, where R2 = 0.985, illustrating that time (t) has a goodness of fit that well fits the set of
observation. There is a linear relationship between Mbioenergy(t) and t, showing a linear growth potential
in the volume of bioenergy production (see Figure 1).
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Figure 1. The amount of biofuel production in China, 2002–2014. Note: Data source: Statistical Review
of World Energy (http://datacatalog.worldbank.org/).

Furthermore, as China has become the global top carbon dioxide producer, this novel type of
energy is important for the mitigation of greenhouse gas emissions [18]. The relationship between the
amount of carbon dioxide Mcarbon(t) and Year t could be predicted as: Mcarbon(t) = 9× 10−44× e0.0572t,
R2 = 0.9663. There is an exponential relationship between Mcarbon(t) and t, showing an exponential
growth potential in the amount of carbon dioxide (see Figure 2). To mitigate the negative effect
caused by the exponential growth of carbon emissions, China must urgently start to use more
environmental-friendly energies, such as bioenergy.
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Figure 2. The amount of carbon dioxide emission in China, 1960–2011. Note: Data source: The World
Bank’s Open Data (http://datacatalog.worldbank.org/).

Nonetheless, in China, bioenergy production is proposed to be developed on marginal, degraded,
or residual lands in remote areas to avoid competing with food production and housing. Yet,
prescriptions for harvesting bioenergy crops on marginal land encounter issues such as low
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productivity, ecological threats, multiprocessing difficulties, and transportation costs. For instance,
underutilised lands tend to demand more water and nutrients to maintain productivity [24].
For developing bioenergy, land resources are pivotal. The relationship between the amount of arable
land Mcarbon(t) and Year t could be predicted as: MArable land(t) = −0.0009× t2 + 3.6497× t− 3660.8,
where R2 = 0.9599. There is an inverse quadric function relationship between Marable land(t) and t,
showing a slightly downward trend in the amount of arable land since the year of 2000 (see Figure 3).
Consequently, given the fact that there is decreasing amount of arable land, bioenergy must compete
fiercely with food and housing for limited land resources in China. The question of whether it is
relatively more sustainable to devote land to bioenergy must be assessed comprehensively.
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Figure 3. The amount of arable land in China, 1960–2011. Note: Data source: The World Bank’s Open
Data (http://datacatalog.worldbank.org/).

3.2. Methodology: Using the Multi-Criteria Analysis

To examine the sustainability of land development, this study adopts multi-criteria analysis
(MCA) due to the multiple criteria and different alternatives involved in evaluation and decision
making in this case. This method is actively used as both a quantitative and qualitative approach
to comprehensive sustainability assessment and policy evaluation in a variety of studies [25,26].
MCA enables decision makers to examine a full range of dimensions, including social, economic,
technical, environmental, and financial dimensions [27,28]. Moreover, MCA is advantageous for
measuring several different alternatives. As this study assesses land-use sustainability for three
alternatives (bioenergy, food production, and housing) at multiple dimensions, after comparing with
other potential methods, such as Cost Benefit Analysis (CBA), Environmental Impact Assessment (EIA),
Social Impact Assessment (SIA), it is more suitable to use MCA because of its unique strengths [27].

The major steps of MCA in this study are as follows: specifying dimensions and attributes
of sustainability, identifying indicators for each attribute, deciding the importance of and assigning
weight to each indicator, giving scores to each indicator, calculating the weighted score of each indicator
and overall sustainability scores, and finally comparing the sustainability of the three alternatives.

3.3. Specifying Criteria of Sustainability

The main sustainable land development criteria considered in this study are from three
dimensions: economic, environmental and social, as frequently adopted in the mainstream
sustainability studies [29,30].

To specify the attributes at these three dimensions, with reference to Erzurumlu and
Erzurumlu’s [31] resource policy study, 12 main attributes are selected and adopted from the fourth
generation of Sustainability Reporting Guidelines released in May 2013 by the Global Reporting
Initiative (GRI, website: www.globalreporting.org). The GRI Sustainability Reporting Guidelines is one
of the most widely used comprehensive sustainability reporting standards, providing the world’s most
universally applicable reporting and disclosure to assist the decision-making of academia, industrial

http://datacatalog.worldbank.org/
www.globalreporting.org
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circles, governments, civil society groups, and individuals. Under the 12 attributes, this study identifies
20 indicators referring to the principle of the GRI and the existing literature (see Table 1).

Table 1. Criteria of sustainability.

Dimension Attributes Indicators References

Economic
Economic performance

Profits

[29,31–33]

Land productivity
Operating costs control
Government revenues

Indirect economic impacts Promotion on infrastructure
Local industrial development

Environmental

Biodiversity Biodiversity conservation

[29–33]

Resource use
Materials saving
Renewable materials use

Emissions
Greenhouse gas reduction
Other noxious gas reduction

Effluents Water discharge reduction

Waste Waste discharge reduction

Energy Energy conservation

Social

Employment Employment opportunity

[27,31,32,34]
Societal living standard Poverty alleviation

Wellbeing

Social responsibility Health
Satisfaction in local area

Human rights Equality

3.4. Weighting Indicators

Another key step of MCA is to decide how important of each indicator. Each of these indicators
may not have the same effect on sustainability. In reality, each indicator has varying the weights in
different attributes under economic, environmental and social dimensions are various. For example,
economic indicators like Profits could have larger weights than social indicators like Poverty Alleviation
or vice versa [35]. In order to assign the weights of indicators, as group judgments are more valid than
individual judgments, decisions from a structured group of individuals on the weights of indicators
will be more accurate [36]. To have a scientific result, according to the widely-used Delphi method and
the analytic hierarchy process (AHP) method in multiple criteria decision making, a group of experts
were invited for deciding the weights of each indicator [37–39]. In this study, ten experts in eight
related fields participated, including four researchers, a CEO, an investor, and two senior government
officials (see Table 2).

Table 2. Experts for weighting the factors.

Fields Number Brief Introduction of the Experts

Agriculture 2 A CEO of an agricultural company and a researcher in Agriculture in China
Bioenergy 1 A Chinese researcher in Bioenergy at a UK university
Housing 1 A director in a Chinese real estate company
Land Planning 1 A Chinese researcher in Land Economy at a UK university
Environment 1 A researcher in Environmental Policy at a UK university
Investment 1 A founder of a financial company in China
Sociology 1 A researcher in Sociology at a Chinese university
Government 2 Two senior government officials in China
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Experts assigned weights to three dimensions, 12 attributes, and 20 indicators respectively
according to their judgments. The weight of each indicator weightie, i ∈ (1, 2, 3, . . . , 20), e ∈
(1, 2, 3, . . . , 10), is ranging from 0 to 1 with the sum of weights of 20 indicators as 1 (∑k

i=1 weightie = 1,
weightie ∈ [0, 1], k = 20), where the sequence of indicator is i and the sequence of expert is e.
If some expert considers some attributes and indicators to be irrelevant, zero weight would be assigned.
After collecting experts’ weighting results, the mean of each indicator is calculated as the final approved

weight of each indicator weighti (Wi) via the formula: weighti =
∑m

i=1 weightie
m , m = 10. The results of the

final approved weights of the 20 indicators are listed below (see Table 3). In terms of the distribution of
responses, most standard deviations of indicators are from 0.73 to 2.41, indicating the weights assigned
by the ten experts to each indicators do not have much dispersion.

Table 3. Indicators and weights.

Dimension Wd Attributes Wa Indicators Wi (Std. Dev.)

Economic 36.50
Economic performance 22.03

Profits 9.14 (1.94)
Land productivity 3.98 (1.93)
Operating costs control 4.29 (1.64)
Government revenues 4.62 (2.13)

Indirect economic impacts 14.48
Promotion on infrastructure 6.14 (2.17)
Local industrial development 8.34 (2.41)

Environmental 33.50

Biodiversity 6.00 Biodiversity conservation 6.00 (2.12)

Resource use 5.35
Materials saving 2.70 (1.09)
Renewable materials use 2.65 (0.73)

Emissions 7.30
Greenhouse gas reduction 3.92 (3.08)
Other noxious gas reduction 3.39 (1.91)

Effluents 6.00 Water discharge reduction 6.00 (2.35)

Waste 4.75 Waste discharge reduction 4.75 (1.62)

Energy 4.10 Energy conservation 4.10 (1.43)

Social 30

Employment 9.95 Employment opportunity 9.95 (3.31)

Societal living standard 10.07
Poverty alleviation 5.23 (2.27)
Wellbeing 4.85 (2.37)

Social responsibility 6.00
Health 3.81 (1.93)
Satisfaction in local area 2.19 (0.84)

Human rights 3.98 Equality 3.98 (1.91)

3.5. Survey and Data

The relationship between land-use and its sustainability is complex. After examining the
existing literature and data sources, there is not sufficient effective data for measuring the multiple
criteria, especially at the social dimension, indicating that it is difficult to find corresponding data to
directly score the indicators. Due to limited data availability, this study designs a questionnaire
to collect relevant data and scores indicators from stakeholders to support the empirical study
via a survey in order to overcome the general difficulty of MCA in quantitative evaluation [25].
The engagement of the stakeholders in MCA methods is a practical approach in collecting data
measuring sustainability. For example, two recent studies assess the sustainability of electrokinetic
bioremediation and the sustainability of common types of roadside noise barriers by involving the
support of stakeholders [40,41]. The survey uses the Likert scale for grading, with the score ranging
from −3 to 3, representing from not sustainable to sustainable. It is a straightforward way to get
information about the sustainability of different land-use alternatives.

Among 600 questionnaires sent to the relevant Chinese stakeholders nationwide, 154 questionnaires
were completed and returned with a return rate of 25.67%. After excluding invalid questionnaires,
there are 140 valid questionnaires, covering stakeholders from 27 provinces of China, with 55% from
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rural areas, which has a relatively high representativeness for assessing China’s case of land-use.
54.29% of samples are from East China, 45.71% of them are from West and Central China. Of the valid
questionnaires, 53% of them are from male respondents, and 47% of them are from female respondents.
Among them, most of the stakeholders are in financial investment and real estate activities, agriculture,
and energy.

After collecting the data and scores of indicators given by stakeholders for each alternative of
land-use, in order to testify the results of this survey, this study used reliability and validity tests for
further analysis.

(1) Reliability test

The scale reliability of the results can be tested by calculating the interitem Cronbach α, which is
widely used for measuring each interitem covariance and scale reliability coefficient. This study uses
STATA 14.1 software to calculate the interitem covariance. As indicated in Table 4, the values of alpha
are higher than 0.8, which are higher than the normal acceptable value (0.7) [42,43]. The Cronbach’s
alpha indicates good internal consistency in the scale and they measure the same thing. Therefore, the
Cronbach α confirms the scale reliability in this study [44,45].

Table 4. Scale reliability test.

Group Average Interitem Covariance Number of Items Scale Reliability Coefficient

Total 0.600 60 0.961
Bioenergy-Economic 0.741 6 0.825

Food-Economic 0.870 6 0.814
Housing-Economic 0.646 6 0.703

Bioenergy-Environmental 1.146 8 0.918
Food-Environmental 1.012 8 0.911

Housing-Environmental 2.037 8 0.955
Bioenergy-Social 0.989 6 0.872

Food-Social 1.024 6 0.874
Housing-Social 1.024 6 0.874

(2) Validity test

The validity of this survey can be analysed through construct validity. As shown in Table 5,
the overall KMO value is 0.852, and the value of each item is higher than the normal acceptable value
(0.7) [46], indicating that this survey is suitable for factor analysis. Moreover, using Bartlett’s test of
sphericity, as each p value is 0 with statistical significance, it illustrates that this survey conforms to
unit matrix and can be used for factor analysis. Combining the results of KMO and Bartlett’s test,
this survey is practical and suitable for factor analysis with relatively high construct validity.

Table 5. Bartlett’s test of sphericity.

Group Det Chi-Square Degree of Freedom p-Value KMO

Total 0.000 7026.399 1770 0 0.852
Bioenergy-Economic 0.152 256.907 15 0 0.871

Food-Economic 0.158 251.051 15 0 0.837
Housing-Economic 0.247 190.470 15 0 0.724

Bioenergy-Environmental 0.006 687.250 28 0 0.900
Food-Environmental 0.011 608.366 28 0 0.918
Housing-Environmental 0.000 1065.263 28 0 0.936

Bioenergy-Social 0.056 393.325 15 0 0.857
Food-Social 0.042 430.255 15 0 0.844

Housing-Social 0.042 430.255 15 0 0.844
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4. Results

4.1. Scores of Indicators

Based on the data collected, the means of the scores of the 20 sustainability indicators for bioenergy,

food production, and housing are calculated via the formula: scorei(xt) =
∑n

i=1 scoreij (xt)
n , n = 140.

The score of each indicator scoreij(xt), i ∈ (1, 2, 3, . . . , 20), j ∈ (1, 2, 3, . . . , 140), ranges from −3 to 3
(scoreij(xt) ∈ [−3, 3]), where the sequence of indicator is i, the sequence of stakeholders is j.
xt, t ∈ (1, 2, 3), represents the alternatives of land-use.

The results of the means of the 20 indicators are shown in Figure 4 below. (1) Economic
dimension: Land-use for housing is more sustainable regarding profits, government revenues and
infrastructure promotion and local industrial development. Compared with food, the economic
performance of bioenergy is much higher in most of the economic indicators, including profits,
land productivity, government revenues, promotion on infrastructure and local industrial development.
(2) Environmental dimension: The environmental performance of bioenergy is the most outstanding,
and food production scores slightly lower, while housing contributes little to sustainability of land
use. (3) Social dimension: In terms of employment opportunity, poverty alleviation, wellbeing,
and satisfaction in local area, land use for housing scores higher than bioenergy and food production,
while overall, bioenergy has a good performance in the social dimension.
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Figure 4. Scores of indicators.

4.2. Overall Sustainability Scores of Three Alternatives

In order to calculate weighted score of indicators and overall sustainability score of three
alternatives, the scores and weights of indicators were acquired through questionnaires on stakeholders’
opinions and from experts respectively, and their means scorei(xt) and weighti are used to calculate the
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final overall score S(xt), as shown in the formula: S(xt) = ∑k
i=1 weighti × scorei(xt), ∑k

i=1 weighti = 1 ;
weighti ∈ [0, 1], scorei(xt) ∈ [−3, 3], k = 20.

After calculating the total weighted scores, the overall sustainability scores of land-use for three
alternatives are Sbioenergy (0.96) > Sfood (0.65) > Shousing (0.39). This result indicates that the overall
sustainability score of land-use for bioenergy is the highest, and that land-use for housing is the lowest.
As shown in Figure 5, bioenergy scores are slightly lower than housing in the economic dimension,
but are almost doubles that of food production. In the environmental dimension, bioenergy shows
the highest sustainability, followed by food production, while housing has a negative impact on
the environment. With regard to sustainability in the social dimension, bioenergy ranks lower than
housing and higher than food production.

Sustainability 2017, 9, 801  10 of 13 

used to calculate the final overall score S( ) , as shown in the formula: S( ) = ∑ ℎ ×( ), ∑ ℎ = 1	; ℎ ∈ 0,1 , ( ) ∈ −3,3 , = 20. 
After calculating the total weighted scores, the overall sustainability scores of land-use for three 

alternatives are Sbioenergy (0.96) > Sfood (0.65) > Shousing (0.39). This result indicates that the overall 
sustainability score of land-use for bioenergy is the highest, and that land-use for housing is the 
lowest. As shown in Figure 5, bioenergy scores are slightly lower than housing in the economic 
dimension, but are almost doubles that of food production. In the environmental dimension, 
bioenergy shows the highest sustainability, followed by food production, while housing has a 
negative impact on the environment. With regard to sustainability in the social dimension, bioenergy 
ranks lower than housing and higher than food production. 

 

Figure 5. The sustainability of land-use for three alternatives. 

5. Conclusions and Implication 

This study quantitatively examines the sustainability of land-use in a holistic manner. After 
investigating the merits and problems of land-use for bioenergy, this study evaluates the 
comprehensive sustainability of land-use for bioenergy, food production, and housing by comparing 
the relative sustainability in the economic, environmental, and social dimensions. Due to multiple 
criteria and different alternatives involved in evaluating the comprehensive sustainability of land-
use, most current methods and data sources cannot be applied in addressing this problem. This study 
mainly adopts an approach that is both quantitative and qualitative: multi-criteria analysis (MCA), 
with support from Delphi method, the AHP method, and surveys, to examine a full range of 
sustainable indicators of three land-use alternatives. The results of this study show that bioenergy is 
one of the most sustainable land-use alternatives for the public. Land-use for food production is also 
sustainable. However, traditional agricultural land-use is less sustainable than bioenergy, to a certain 
extent. 

To conclude, through an investigation of the case in China, the result of this study indicates that 
developing bioenergy is relatively more sustainable. Thus, from a sustainability point of view, land-
use for bioenergy should be encouraged, which could be referenced as a support for policy evaluation 
in land allocation issues. 

Although the result of the land-use sustainability is straightforward from a methodological 
perspective, certain constraints and limitations remain in this study. When using MCA, for instance, 
weights of indicators measured by experts are based on their preference, which has a probability of 
being relatively subjective. Moreover, due to data unavailability in multiple factors, the scores of 
indicators are surveyed by questionnaires rather than official statistical data. The case study is also 
limited by the number of stakeholders and geographical distribution. Stakeholders from the general 
public may inaccurately estimate essential options without adequate appropriate knowledge. 

0.30 
0.41 

0.25 

0.96 

0.16 
0.30 

0.19 

0.65 

0.34 

-0.23 

0.28 
0.39 

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

Economic Environmental Social Overall

Bioenergy Food Housing

Figure 5. The sustainability of land-use for three alternatives.

5. Conclusions and Implication

This study quantitatively examines the sustainability of land-use in a holistic manner.
After investigating the merits and problems of land-use for bioenergy, this study evaluates the
comprehensive sustainability of land-use for bioenergy, food production, and housing by comparing
the relative sustainability in the economic, environmental, and social dimensions. Due to multiple
criteria and different alternatives involved in evaluating the comprehensive sustainability of land-use,
most current methods and data sources cannot be applied in addressing this problem. This study
mainly adopts an approach that is both quantitative and qualitative: multi-criteria analysis (MCA),
with support from Delphi method, the AHP method, and surveys, to examine a full range of sustainable
indicators of three land-use alternatives. The results of this study show that bioenergy is one of the
most sustainable land-use alternatives for the public. Land-use for food production is also sustainable.
However, traditional agricultural land-use is less sustainable than bioenergy, to a certain extent.

To conclude, through an investigation of the case in China, the result of this study indicates that
developing bioenergy is relatively more sustainable. Thus, from a sustainability point of view, land-use
for bioenergy should be encouraged, which could be referenced as a support for policy evaluation in
land allocation issues.

Although the result of the land-use sustainability is straightforward from a methodological
perspective, certain constraints and limitations remain in this study. When using MCA, for instance,
weights of indicators measured by experts are based on their preference, which has a probability of
being relatively subjective. Moreover, due to data unavailability in multiple factors, the scores of
indicators are surveyed by questionnaires rather than official statistical data. The case study is also
limited by the number of stakeholders and geographical distribution. Stakeholders from the general
public may inaccurately estimate essential options without adequate appropriate knowledge.
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