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Abstract:



Due to the intermittency of wind power generation, it is very hard to manage its system operation and planning. In order to incorporate higher wind power penetrations into power systems that maintain secure and economic power system operation, an accurate and efficient estimation of wind power outputs is needed. In this paper, we propose the stochastic prediction of wind generating resources using an enhanced ensemble model for Jeju Island’s wind farms in South Korea. When selecting the potential sites of wind farms, wind speed data at points of interest are not always available. We apply the Kriging method, which is one of spatial interpolation, to estimate wind speed at potential sites. We also consider a wind profile power law to correct wind speed along the turbine height and terrain characteristics. After that, we used estimated wind speed data to calculate wind power output and select the best wind farm sites using a Weibull distribution. Probability density function (PDF) or cumulative density function (CDF) is used to estimate the probability of wind speed. The wind speed data is classified along the manufacturer’s power curve data. Therefore, the probability of wind speed is also given in accordance with classified values. The average wind power output is estimated in the form of a confidence interval. The empirical data of meteorological towers from Jeju Island in Korea is used to interpolate the wind speed data spatially at potential sites. Finally, we propose the best wind farm site among the four potential wind farm sites.
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1. Introduction


The demand for wind energy is growing rapidly all over the world. According to the Global Wind Energy Council (GWEC), there will be 350 GW of wind power capacity installed by 2020 [1]. The European Wind Energy Association (EWEA) expects an increase of 320 GW in European wind power capacity by 2030 [2]. As wind generation capacity increases, various related technologies are considered. The maximum power point tracking (MPPT) of wind turbines is a way to obtain maximum output with certain wind resources using pitch control and dynamic operation [3,4,5]. The transient stability analysis of the microgrid or power system integrated with large wind farms is also under study [6,7]. In this paper, before considering stable operation and efficient control of the wind turbine, we focus on predicting the wind resources efficiently and estimating the output of the wind turbine at potential wind farm sites.



Before constructing new wind farms, it is essential to estimate the average wind power output or capacity factor in potential sites [8,9,10]. Generally, researchers use the wind energy density of the potential location or the turbine power curve provided by the manufacturer to estimate the wind power outputs or capacity factor. This approach can be a deterministic method and may be difficult to estimate the wind power output if there is no measured data at potential locations. In this paper, we propose a stochastic approach for wind power estimation using a spatial interpolation, terrain characteristic, and Weibull distribution. First, we introduce a method of spatial interpolation, called the Kriging method, and the wind profile power law to estimate the wind speed at a given point of interest. This spatial approach differs from various time series or neural network-based wind speed forecasting methods using historical data [11,12]. The spatial approach can predict the wind speed at different points of interest spatially using only the current wind speed data. Second, we propose the method for wind power estimation using a Weibull distribution. Finally, we apply our method based on empirical data from the meteorological towers from Jeju Island in South Korea. The unknown wind speed data for potential points can be estimated using spatial interpolation and empirical meteorological data at various points in Jeju Island. Later, estimated wind speed data is used to model the Weibull distribution. Any wind turbine power curve data can be used to estimate the average turbine output. Based on the proposed method, we propose the best one among the four potential wind farm sites.




2. Enhanced Ensemble Model Based on Spatial Techniques


We propose the stochastic method to select the best wind farm among the potential wind farm sites using the spatial method and Weibull distribution. When planning to build a wind farm, we consider the wind speed resources at potential sites. In most cases, however, it is difficult to obtain wind speed data for the sites. In this paper, we consider the case where we do not know the wind speed data of the area of interest. We apply spatial interpolation called the Kriging method to obtain wind speed data for specific sites, thereby reducing the estimation cost of selecting the proper wind farm. The flowchart for proposed method is shown in Figure 1.


Figure 1. Flowchart for the enhanced ensemble model.



[image: Sustainability 09 00817 g001]






2.1. Step 1: Establish the Wind Speed Database Using a Spatial Modeling


Spatial modeling is a modeling technique for analyzing spatially distributed physical phenomena and data. It is widely used in various fields such as Geographic Information System (GIS), ecology, energy, and engineering [13,14,15,16]. Spatial modeling can estimate the value of the specific site without the accumulation of historical data. It is a useful technique for considering the proper wind farm site in that it does not require time-consuming works to acquire wind resource data.



The Kriging is one of the spatial interpolation methods based on regression against observed [image: there is no content] values of neighbor data points, weighted according to spatial covariance values. The general formula for the Ordinary Kriging method is shown in Equation (1) [17,18].





α*=∑i=1nλiαis.t ∑i=1nλi=1



(1)




where [image: there is no content] is the estimated value of the point of interest, n is a number of neighbor data points, [image: there is no content] is a weight with regard to spatial distances between two points. All weights must sum to one to avoid biased models in the ordinary Kriging method. This method can be expressed as shown in Figure 2 as below.


Figure 2. Graphical expression of the Kriging method.
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The estimated wind speed is corrected according to the height of turbine and the characteristics of the terrain. We use the wind profile power law in the proposed method. The wind profile power law is a relationship between the elevation and wind speeds. The wind profile power law equation is shown in Equation (2), where [image: there is no content] is the wind speed at measured height [image: there is no content], and [image: there is no content] is the wind speed at extrapolated height h [19].





[image: there is no content]



(2)







The wind speed shear exponent [image: there is no content] relies on the terrain characteristic of the installed wind turbine. The general wind speed shear exponents depending on the terrain characteristic are shown in Table 1 [20].



Table 1. Influence of terrain characteristic on wind speed shear [20].







	
Wind Speed Shear

	
Terrain Characteristic






	
0.95

	
Coastal waters of inland sea




	
0.121

	
Flat shore of ocean small islands




	
0.130–0.135

	
Open grasslands without trees




	
0.143

	
Open slightly rolling farm land




	
0.128–0.170

	
Open level agricultural land with isolated trees




	
0.200

	
Open fields divided by los stone walls




	
0.220

	
Rough coast




	
0.230

	
Gently rolling country with bushes and small trees




	
0.250–0.303

	
Level country uniformly covered with scrub oak and pine




	
0.357

	
Wooded and treed farm land











2.2. Step 2: Estimate the Average Wind Turbine Output Using a Weibull Distribution


A Weibull distribution is a putative statistical tool for analyzing wind speed data [21,22,23]. The two-parameter Weibull distribution consists of scale and shape parameters. The probability density function of a Weibull distribution is shown in Equation (3), where [image: there is no content] is the shape parameter, [image: there is no content] is the scale parameter, and variable [image: there is no content] is the wind speed.





[image: there is no content]



(3)







The cumulative density function of the Weibull distribution is represented by Equation (4), where each variable is the same as Equation (3) [24].





[image: there is no content]



(4)







There are various methods for estimating Weibull distribution parameters such as the linear least square method (LLSM), the maximum likelihood estimator (MLE), and the moments method [25]. For large and complex datasets, both the LLSM and the MLE provide almost consistent results. Extensive simulation shows that the MLE method is more accurate than the LLSM method for relatively few samples [26]. As a result, we selected the MLE method to estimate the Weibull distribution parameters. Simplified estimations of these parameters using the MLE method are shown in Equations (5) and (6) [25].





[image: there is no content]



(5)
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(6)




where [image: there is no content] is the wind speed and [image: there is no content] is the number of wind speed data. The variable [image: there is no content] is an unknown parameter that is estimated by maximizing the likelihood function, [image: there is no content]. After estimating the Weibull parameters, we can determine the confidence limits using the estimated variance-covariance matrix, which is the inverse of the Fisher information matrix. The confidence limits for Weibull parameters are calculated using Equations (7) and (8), where a matrix [image: there is no content] indicates the Fisher information matrix, [image: there is no content] is the estimated shape parameter, [image: there is no content] is the estimated scale parameter, and [image: there is no content] represents confidence interval level [27]. Each confidence limit is determined by the standard errors of the MLE method, and they are calculated as the square roots of the diagonal components from [image: there is no content] and [image: there is no content].





[image: there is no content]



(7)
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(8)








2.3. Estimation of Average Wind Turbine Output Using a Weibull Distribution


The proposed stochastic algorithm for estimating the average output of a wind turbine is shown in Figure 1. The two-parameter Weibull distribution is calculated from the wind speed data, which is estimated by the Kriging method. At this point, the Weibull distribution parameters have a specific confidence interval. The estimated wind speed can be classified according to wind speed values of turbine output data that is provided by the manufacturer. The classifications of the measured wind speed data are given probabilistically using the cumulative density function of the Weibull distribution. The probability can be calculated using Equation (9) after solving Equation (4). The wind turbine output that corresponds to the classifications of wind speed can be identified through the manufacturer’s power curve data. The average output of the turbine can be calculated using Equation (10).





[image: there is no content]



(9)
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(10)







Here, [image: there is no content] is the number of classified wind speed dataset; [image: there is no content] is the upper limit of the [image: there is no content]th wind speed dataset; [image: there is no content] is the probability value corresponding to the wind speed range [image: there is no content]; and [image: there is no content] signifies the wind power output that corresponds with [image: there is no content]. The variable [image: there is no content] is the mean output of the wind turbine, and [image: there is no content] will have a specific range along the upper or lower limit of the Weibull distribution parameters.





3. Case Study: Stochastic Prediction of Wind Generating Resources in Jeju Island’s Wind Farms in South Korea


3.1. Empirical Data and Estimated Wind Speed Using a Spatial Interpolation


In this case study, we select Jeju Island, which has many potential sites for wind power generation. To apply the Kriging method, we use location information and wind speed data measured in the 10 meteorological (MET) towers in Jeju Island of South Korea. We consider the optimal wind farm among four potential wind farm sites. Figure 3 shows four potential wind farm sites and 10 neighbor meteorological towers in Jeju Island using Google Maps. Before applying the Kriging method, we collect latitude, longitude, and elevation data for 10 meteorological towers and four potential wind farm sites. This coordinate data used in this paper is shown in Table 2. The wind speed was measured at the meteorological towers on 5–15 February 2016 in one-hour intervals, and its time series plot is shown in Figure 4.


Figure 3. The location for four potential wind farms and 10 meteorological towers.



[image: Sustainability 09 00817 g003]





Figure 4. Measure wind speed data at 10 meteorological towers.
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Table 2. The coordinates data for Kriging method.







	
Name

	
Longitude (Degree)

	
Latitude (Degree)

	
Elevation (Meter)






	
MET Tower A

	
126.7090

	
33.4824

	
252




	
MET Tower B

	
126.1628

	
33.2938

	
71.5




	
MET Tower C

	
126.5297

	
33.5140

	
20.45




	
MET Tower D

	
126.7794

	
33.5616

	
34




	
MET Tower E

	
126.8777

	
33.5198

	
18




	
MET Tower F

	
126.9542

	
33.5228

	
6.36




	
MET Tower G

	
126.8168

	
33.3535

	
77.2




	
MET Tower H

	
126.8802

	
33.3867

	
17.75




	
MET Tower I

	
126.7692

	
33.5281

	
110.5




	
MET Tower J

	
126.4224

	
33.2914

	
425




	
Potential Wind Farm A

	
126.7151

	
33.5352

	
61




	
Potential Wind Farm B

	
126.8208

	
33.5570

	
10




	
Potential Wind Farm C

	
126.1663

	
33.3387

	
9




	
Potential Wind Farm D

	
126.8211

	
33.3992

	
141










We used wind turbine model HJWT-2000, which has been used in some wind farms in Jeju Island for simulation. The selected turbine model can be replaced depending on the turbine to be installed if a power curve data is available. The power curve data provided by the manufacturer is shown in Figure 5. The technical data of the turbine is shown below in Table 3.


Figure 5. Power curve data used in simulation.
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Table 3. Technical specifications of wind turbine.







	
Technical Specifications

	
Values






	
Cut-in speed

	
3.5 m/s




	
Rated speed

	
12.5 m/s




	
Cut-out speed

	
20 m/s




	
Rated power

	
2000 kW




	
Hub height

	
85 m




	
Wind turbine generation type

	
Doubly Fed Induction Generation (DFIG)




	
Pitch controller

	
Individual Pitch Control










We correct the estimated wind speeds at four potential sites based on the elevation of potential sites and hub height using Equation (2). We determine the wind shear exponent according to the terrain characteristic of potential sites. The determined wind shear exponents are shown in Table 4. The results of estimating the wind speeds at four potential sites using the Ordinary Kriging method and the wind profile power law are shown in Figure 6. At that time, the estimated Kriging parameters, which are the weights for each neighbor meteorological tower, are shown in Table 5.


Figure 6. Estimated wind speed for the four potential wind farm sites.



[image: Sustainability 09 00817 g006]






Table 4. Wind shear exponent based on the terrain characteristic.







	
Potential Wind Farm

	
Wind Shear Exponent [image: there is no content]






	
Site A

	
0.23




	
Site B

	
0.121




	
Site C

	
0.121




	
Site D

	
0.22










Table 5. Ordinary Kriging parameter information for the potential sites.







	
Neighbor Site

	
Weights ([image: there is no content]) for Potential Wind Farm A

	
Weights ([image: there is no content]) for Potential Wind Farm B

	
Weights ([image: there is no content]) for Potential Wind Farm C

	
Weights ([image: there is no content]) for Potential Wind Farm D






	
MET Tower A

	
0.7219

	
0.0087

	
−0.7748

	
0.5461




	
MET Tower B

	
−0.1026

	
0.1034

	
0.6325

	
−0.1165




	
MET Tower C

	
0.0977

	
0.0460

	
−0.0223

	
0.1281




	
MET Tower D

	
0.1735

	
0.1601

	
−0.0230

	
0.1263




	
MET Tower E

	
0.1218

	
0.2223

	
−0.1326

	
0.2505




	
MET Tower F

	
0.2174

	
0.0235

	
−0.2519

	
0.2429




	
MET Tower G

	
−0.0841

	
0.0817

	
0.4461

	
−0.0330




	
MET Tower H

	
0.1588

	
0.0531

	
−0.1071

	
0.2632




	
MET Tower I

	
−0.4763

	
0.2393

	
1.3864

	
−0.5911




	
MET Tower J

	
0.1667

	
0.0553

	
−0.0863

	
0.1674











3.2. Estimate the Average Wind Turbine Output Using a Weibull Distribution


We estimate the Weibull distribution parameters based on the estimated wind speed data for four potential wind farms using Equations (5)–(8). Each Weibull parameter has 97.5% confidence limits according to Equations (7) and (8), and the results are shown in Table 6. In Table 6, we show the mean value and 97.5% confidence limits of the estimated Weibull distribution parameters.



Table 6. Estimated Weibull distribution parameters.







	
Potential Wind Farm

	
Value

	
Shape Parameter

	
Scale Parameter






	
Site A

	
Mean value

	
2.5073

	
6.8842




	
97.5% Confidence interval

	
[image: there is no content]
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Site B

	
Mean value

	
2.4589

	
7.7656




	
97.5% Confidence interval

	
[image: there is no content]
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Site C

	
Mean value

	
2.3920

	
9.3654




	
97.5% Confidence interval

	
[image: there is no content]

	
[image: there is no content]




	
Site D

	
Mean value

	
2.6308

	
6.1867




	
97.5% Confidence interval

	
[image: there is no content]

	
[image: there is no content]










The probability density function of estimated wind speed can be calculated based on the estimated Weibull distribution parameters. Figure 7 shows the probability density function of estimated wind speed for Potential Wind Farm C, where upper and lower bound represent values of the confidence level 0.975.


Figure 7. Probability density function of estimated wind speed for Potential Wind Farm C.
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In this paper, the estimated wind speed data is divided into approximately intervals of 0.5, from 1 to cut-out speed, with respect to the turbine output from the power curve data. In our selected wind turbine, the wind speed can be divided into 39 datasets. 8 samples of simulation results for Potential Wind Farm C using Equations (9) and (10) is shown in Table 7 and Table 8, wherein the confidence level of probability is 97.5%.



Table 7. Samples of estimated probability of the wind speed and power curve data for simulations.







	
Set No.

	
Wind Speed (m/s)

	
Probability (Lower)

	
Probability (Mean)

	
Probability (Upper)

	
Turbine Output (kW)






	
9

	
5

	
0.039035

	
0.040732

	
0.042758

	
103.36




	
10

	
5.5

	
0.042055

	
0.044388

	
0.047103

	
164.52




	
11

	
6

	
0.044505

	
0.047403

	
0.050724

	
241.67




	
12

	
6.5

	
0.046346

	
0.049701

	
0.053495

	
325.1




	
13

	
7

	
0.047553

	
0.051231

	
0.055328

	
429.92




	
14

	
7.5

	
0.048124

	
0.05197

	
0.056176

	
549.42




	
15

	
8

	
0.048073

	
0.051924

	
0.056032

	
711.73




	
16

	
8.5

	
0.047433

	
0.051125

	
0.054935

	
846.29










Table 8. Estimation of expected turbine outputs based on Weibull distribution.







	
Set No.

	
Wind Speed (m/s)

	
Turbine Output (Lower) (kW)

	
Turbine Output (Mean) (kW)

	
Turbine Output (Upper) (kW)






	
1

	
1

	
0.00

	
0.00

	
0.00




	
...

	
...

	
...

	
...

	
...




	
9

	
5

	
6.4220

	
6.7013

	
7.0345




	
10

	
5.5

	
10.1633

	
10.7273

	
11.3835




	
11

	
6

	
14.4687

	
15.4109

	
16.4903




	
12

	
6.5

	
19.9249

	
21.3676

	
22.9984




	
13

	
7

	
26.1265

	
28.1473

	
30.3983




	
14

	
7.5

	
34.2512

	
36.9885

	
39.9819




	
15

	
8

	
40.6840

	
43.9425

	
47.4197




	
16

	
8.5

	
47.3906

	
51.0800

	
54.8862




	
...

	
...

	
…

	
…

	
…




	
39

	
20

	
0.0000

	
0.0000

	
0.0000




	
Expected turbine output

	
935.8888

	
985.9220

	
1,023.7511










In Table 8, the average turbine output represents one-hour electric generation. This simulation procedure can be applied equally to the remaining three potential wind farms. As a result, we estimate the average wind turbine outputs of four potential wind farms for February 2016 in Jeju Island. In addition, the capacity factor can be calculated in Equation (11).





[image: there is no content]



(11)







The simulation results for the four potential wind farms are shown in Table 9. It is estimated that Potential Wind Farm C has the highest efficiency in February.



Table 9. Turbine output estimation of four potential wind farms in February.







	
Value

	
Potential Wind Farm A

	
Potential Wind Farm B

	
Potential Wind Farm C

	
Potential Wind Farm D






	
Average output

	
562.94

	
736.18

	
985.92

	
418.91




	
Confidence interval

	
512.82~611.47

	
684.95~782.32

	
935.88~1,023.75

	
375.62~463.55




	
Capacity Factor

	
0.281

	
0.368

	
0.493

	
0.209










We also simulate the turbine output in May, September, and December using the proposed method. Each month represents different wind speeds, which can reveal the seasonal effects. The simulation results for the four months are shown in Table 10 and Figure 8.


Figure 8. Comparison for Turbine output estimation at four potential wind farms.
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Table 10. Turbine output estimation of four potential wind farms in season.







	
Potential

Wind Farm

	
February

(kWh)

	
May

(kWh)

	
September

(kWh)

	
December

(kWh)






	
Site A

(Confience interval)

	
562.94

(518.82~611.47)

	
178.94

(147.74~214.06)

	
65.56

(53.02~80.33)

	
388.90

(340.15~438.22)




	
Site B

(Confience interval)

	
736.18

(684.95~782.32)

	
261.67

(220.82~305.40)

	
114.53

(95.16~136.95)

	
521.60

(467.91~572.70)




	
Site C

(Confience interval)

	
985.92

(935.88~1,023.75)

	
404.61

(353.13~455.61)

	
186.61

(160.68~215.64)

	
787.75

(734.56~832.57)




	
Site D

(Confience interval)

	
418.91

(375.62~463.55)

	
127.84

(103.98~155.53)

	
51.56

(41.64~63.21)

	
290.52

(250.53~333.25)










As a result, Potential Wind Farm C represents the highest efficiency of the turbine output. Considering only the generation output, we can purpose the Site C among the four potential wind farms as a new wind farm.





4. Conclusions


Wind energy is rapidly increasing globally due to its high economic efficiency and lack of carbon. In terms of planning a new wind farm, a flexible and economical estimation of wind turbine output is needed to select potential installation sites. In this paper, we use one of the spatial interpolation methods called Kriging to estimate wind speed. When considering new potential wind farms, wind speed data for most new spots do not exist. Using our proposed method, when estimating the wind power, it has the economic advantages of not requiring the installation of additional meteorological towers or the accumulation of historical data to evaluate wind resources at given points of interests. The proposed method can estimate wind power when a desired turbine is installed at any desired point based on the spatial approach. In this paper, we simulate the method to propose the best wind farm in terms of electrical generation in Jeju Island in South Korea. We use wind speed measured in 10 existing meteorological towers and coordinate data at potential wind farms in Jeju Island. From the simulation results, Potential Wind Farm C is selected as the best wind farm. Considering the seasonal and spatial characteristics of wind, Potential Wind Farm C is expected to generate higher outputs than other potential wind farms. This estimated output depends on the general power characteristics of the wind resource and turbine only and can be improved using pitch control and dynamic turbine operation. In our proposed method, the estimated wind power is provided with deterministic and probabilistic outputs. Such a method benefits from the operational aspects of the wind integrated power systems. Probabilistic outputs can indicate uncertainties in estimated power generation to system planners and operators when properly selecting new wind farm sites and operating the grid after the selected wind farm is installed. In the future, we will consider laminar wind condition and turbulence in the calculation of the optimal probability function of wind speed and perform a verification of the methodology based on the measured output data from the selected wind farm site.
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