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Abstract: Measuring the spatial distribution of heavy metal contaminants is the basis of pollution
evaluation and risk control. Considering the cost of soil sampling and analysis, spatial interpolation
methods have been widely applied to estimate the heavy metal concentrations at unsampled
locations. However, traditional spatial interpolation methods assume the sample sites can be located
stochastically on a plane and the spatial association between sample locations is analyzed using
Euclidean distances, which may lead to biased conclusions in some circumstances. This study aims to
analyze the spatial distribution characteristics of copper and lead contamination in river sediments of
Daye using network spatial analysis methods. The results demonstrate that network inverse distance
weighted interpolation methods are more accurate than planar interpolation methods. Furthermore,
the method named local indicators of network-constrained clusters based on local Moran’ I statistic
(ILINCS) is applied to explore the local spatial patterns of copper and lead pollution in river sediments,
which is helpful for identifying the contaminated areas and assessing heavy metal pollution of Daye.

Keywords: heavy metal contamination; river sediments; network inverse distance weighted
interpolation; local indicators of network-constrained clusters

1. Introduction

Heavy metals are ubiquitous in the environment, as a result of both natural and anthropogenic
activities [1,2]. Over the past few decades, heavy metal pollution in aquatic ecosystems is a worldwide
environmental problem that has received increasing attention because of its adverse effects on
environment sustainability and human health [3–8]. Highly accumulated heavy metals in aquatic
systems, especially in sediments, have become one of the most challenging pollution issues owing
to the covert, persistent and irreversible nature of heavy metal pollution [9]. With rapid economic
development, China has experienced a vast increase in the exploitation and utilization of mineral
resources [10]. Nonetheless, despite the importance of mineral resources in China’s modernization,
heavy metal pollution has become increasingly serious and has been extensively explored in the
sediments of limnetic ecosystems in China [11–14]. Thus, it is important to investigate the pollution
levels and health risks of heavy metal pollution in the sediments of aquatic ecosystems.
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Mapping the spatial distribution of contaminants is the basis of pollution evaluation and risk
control [15]. Considering the cost of soil sampling and analysis, spatial interpolation methods,
such as inverse distance weighting, kriging, natural neighbor interpolation, splines, trend surface,
and triangulated irregular network (TIN)-based interpolation have been extensively applied in the
mapping process to estimate the heavy metal concentrations at unsampled sites [14,16–18]. Mapping
heavy metal pollution in soil has two main purposes; one is to analyze the spatial pattern of the
pollution status, and the other one is to identify the source of the contaminated areas. By analyzing
the spatial pattern of the pollution, the prediction results of the overall spatial trend of heavy metal
pollution should be as precise as possible. There are a number of studies on the performance of the
spatial interpolation methods mentioned above, indicating that interpolation accuracy is related to the
precise definition of the polluted area and its boundaries [15].

It could be said that spatial interpolation is empirically based on Tobler’s First Law of
Geography [19], indicating that attribute values at a location are more similar to those at near locations
than those at distant locations [20]. Most spatial interpolation methods assume the sample sites can
be located stochastically on a plane, and that the spatial association between sample locations can
be analyzed using Euclidean distances on a plane [15,21–23]. However, this assumption may not be
appropriate in some situations, such as sample sites for sediments alongside rivers [24], traffic-related
air quality monitoring alongside streets [25], and groundwater level prediction alongside coastlines [26].
Furthermore, these events are strongly restricted by networks (e.g., rivers, streets, and coastlines),
which can be termed network-constrained events, or network events, for short [21,27]. Euclidean
distance-based interpolation methods are likely to cause biased conclusions when analyzing the
network events [19,21], thus, the extension of the traditional interpolation methods on a plane to
network space has been proposed in recent years, and network-based spatial analysis methods are
widely applied in current research.

This study was conducted to analyze the spatial distribution of heavy metal pollution in the river
sediments located in Daye, China. Daye is an industrial city, a center of mining and metallurgy with
almost 65 mineral mines. However, due to extensive exploitation, the limnetic ecosystems of Daye have
been greatly damaged, with severe heavy metal pollution and deterioration of the water quality, which
has caused a variety of health risks [28,29]. Therefore, analyzing the spatial distribution of heavy metal
pollution in river sediments is necessary, both for pollution evaluation and the adoption of remedial
measures. Many studies have been conducted to assess soil heavy metal pollution in Daye using planar
spatial interpolation methods [28,30]. However, research focusing on the spatial distribution of the
river sediments’ heavy metal pollution, using network-based spatial analysis methods, is still limited.

The objectives of this study were: (1) to measure the spatial distribution of heavy metal contents
(copper and lead) in the river sediments using network inverse distance weighted interpolation;
(2) to detect the local-scale clustering of heavy metal pollution, using local indicators of the
network-constrained clusters method. The remainder of this paper is organized as follows. Section 2
introduces the materials and analysis methods, and details of the experiments and results are reported
in Section 3. The last section concludes the study.

2. Materials and Methods

2.1. Study Area and Data

Daye (29◦40′–30◦15′N, 114◦31′–115◦20′E) is a county-level city located in the east of Hubei
province, China (Figure 1), which has a subtropical monsoon climate, with an annual average
temperature and rainfall of 16.9 ◦C and 1385.8 mm, respectively. A total of 73 sediment samples
were randomly collected alongside the river network of Daye in May 2013 (Spring), with all of
the sites having collected surface sediment (0–15 cm). The samples have four types of sediment,
including sandy silt, sandy mud, silt sand, and gravelly sand. The geograpchical coodinates of
sample sites were recorded by a handheld global position system (GPS) and the positioning error
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is less than 10 m. Approximately 1 kg sediment was collected as samples and was cold-stored
in a plastic bag while being transported to a laboratory for chemical analysis. In the laboratory,
all of the sediment samples were air dried, ground, screened through a sieve of 2 mm mesh
size, and then digested by HCL-HNO3-HF-HCLO4, using the Chinese national standard method
(GB/T17140) [28]. The concentrations of copper (Cu) and lead (Pb) were analyzed by atomic absorption
spectrophotometer (SPSIC4510, Shanghai, China).

1 

 

 
Figure 1. The study area and location of the sample sites.

2.2. Network Inverse Distance Weighted Interpolation

Suppose a non-directed network N = (V, L), consisting of a set of nodes V = {v1, . . . , vnV} and a
set of links L = {l1, . . . , lnL}. Let z1, . . . , zn be the observed attribute values at sample points p1, . . . , pn

on L̃, expressed by L̃ = ∪nL
i=1li. An unknown value z0 at an arbitrary point p0(p0 6= p1, . . . , pn) on L̃

is predicted using known values in a neighborhood of p0, denoted by PN(p0). Thus, the unknown
value at p0 is predicted as the weighted average of the known attribute values at the points of a
neighborhood PN(p0), and the value at p0 is interpolated as:

ẑ0 = ∑
pi∈Pn(p0)

wizi (1)

and wi is calculated by

wi =
dS(p0, pi)

−α

∑pj∈PN
dS(p0, pj)

−α (2)

where α. is a predetermined positive parameter that decides how the weight decreases as the distance
increases, and dS(p0, pi) is the shortest-path distance from p0 to pi.

There are no definite rules for determining the value of α, and we applied the most popular choice
of α = 2, so that the data are inversely weighted at the squared distance [15]. The neighborhood
PN(p0) in this study was specified using the k-th nearest neighborhood, as defined by k nearest points
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from p0, where k is a predefined parameter [19]. Similarly, the choice of the number k of points in
PN(p0) is rather subjective and many empirical studies have demonstrated that the values of k can be
specified between 3 and 9 [19]. Because the sample size was limited, cross validation was applied in
this study. The mean absolute error (MAE) and the root mean square error (RMSE) calculated from the
measured and interpolated values at each sample site were used to assess the accuracy of predictions:

MAE =
1
n

n

∑
i=1
|z∗i − zi| (3)

RMSE =

√
1
n

n

∑
i=1

(z∗i − zi)
2 (4)

where z∗i is the interpolated value at location i, and n is the sample size. Small MRE and RMSE values
indicate fewer errors.

2.3. Local Indicators of Network-Constrained Clusters Approaches

Considering the fact that the application of planar analysis methods to network-constrained
phenomena could lead to improper pattern inferences, an exploratory methodology, namely local
indicators of network-constrained clusters (LINCS), was introduced to detect the local-scale clustering
of network events [21,31]. Two types of LINCS methods, namely ILINCS and GLINCS, are the network
extension of the local Moran’s I and the local Getis-Ord G statistics, respectively [31,32]. To detect the
spatial patterns at a much finer spatial resolution than that imposed by a given network, the links are
usually divided into shorter segments in LINCS methods [21,31].

The network autocorrelation analysis modifies the spatial weight matrix to reflect the network
connectivity between the links. The local Moran’s I statistic aims to assess the spatial autocorrelation
between a unit and its neighbors; however, the local G statistic measures the concentration of attributes
of a variable around a unit [33]. In the context of local-scale cluster detection in a network space,
each link is usually connected to a relatively small number of other links, thus, the randomization
assumption is preferred, and statistical inference based on the Monte Carlo simulation is recommended
in related studies [21,32,34]. In this study, the local-scale clustering of heavy metal pollution in river
sediments was analyzed using the ILINCS method, which incorporates a Monte Carlo simulation to
assess the statistical significance of the detected clusters. The GeoDaNet toolbox [35] is applied to
calculate the ILINCS in this research.

3. Results and Discussions

3.1. Sample Characteristics

Statistical analyses, including descriptive statistics, histograms, P-P plots (normal probability
plots), and Q-Q plots (normal quantile–quantile plots) were applied in this study and implemented
using IBM SPSS Statistics 21. Summary statistics for Cu and Pb contents in river sediments are
provided in Table 1. In the study area, the concentrations of Cu and Pb were much higher than the
average Chinese soil background value [18], and also higher than the suggested local background
value (30.7 mg/kg and 26.7 mg/kg), which might have resulted from the distribution of the sample
sites. In this study, sample sites were located along the river network, thus, the sediment sample could
be easily influenced by floods carrying heavy metal contents.
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Table 1. Characteristics of Cu and Pb contents in the river sediment sample set (n = 73).

Heavy Metal Content Min Max Mean Median Standard Deviation Background Value

Cu (mg/kg) 121.00 9490.00 1705.92 1007.00 2195.42 20.7 1

Pb (mg/kg) 18.50 5810.00 621.15 109.00 1270.96 23.5 1

1 Base value of Hubei Province.

Figure 2 shows the sample data distribution and normality tests results of the total Cu and Pb
contents. The histograms suggest that there are some samples with extreme values. The results of the
normal P-P plot and Q-Q plot of the total Cu and Pb contents indicate that the sample data of both
heavy metal contents are asymmetrical with a peak, and positively skewed. Therefore, the kriging
interpolation method was not applied here because of its normality assumption.
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3.2. Accuracy of Interpolation Methods

The computation of network inverse distance weighted interpolation (netIDW) was implemented
in the ESRI ArcGIS 10.2, using Microsoft Visual C# 2010. The river network was split into shorter
segments using a network segmentation algorithm, with a standard length of 100 m [21,34]. In order to
analyze the effect of the number of points in the neighborhood on pollution assessment, the parameter
k in netIDW used 4–7 in this study. In addition, planar interpolation methods, including inverse
distance weighting (IDW), local polynomial interpolation (LP), and radial basic functions (RBFs), were
evaluated in this study [15]. Specifically, the weight power of IDW used 1–4, the regression coefficient
of LP used 1–3, and five radial basis functions, namely completely regularized spline (CRS), inverse
multi-quadratic function (IMQ), multi-quadratic function (MQ), spline with tension (ST) and thin-plate
spline (TPS), were applied in this study.

The values of the mean absolute error (MAE) and root mean square error (RMSE) are summarized
in Table 2. According to the results of cross validation, netIDW is more accurate than other methods,
with LP having the biggest estimated error and netIDW5 having the minimum error. NetIDW is
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sensitive to the number of points in the neighborhood, which controls how the predicted value is
weighted by the known attribute values at the points of a neighborhood. A polynomial is usually
applied to measure the trends and patterns in the data, rather than as an interpolation method [15].
IDW and RBFs are two widely used interpolation methods that predict a value that is identical to the
measured value at a sampled location. IDW creates a surface from measured samples based on the
extent of similarity, and the maximum and minimum values in the interpolation surface that can only
occur at sample locations. However, based on the degree of smoothing, the RBFs can predict values
above the maximum and below the minimum measured values [15,36].

Table 2. The interpolation accuracy of different methods.

Methods
Mean Absolute Error (MAE) Root Mean Squared Error (RMSE)

Cu Pb Cu Pb

netIDW4 4.099 1.360 7.432 3.583
netIDW5 3.251 1.066 5.993 2.882
netIDW6 3.616 1.213 6.676 3.283
netIDW7 3.580 1.116 6.543 2.044

IDW1 131.107 50.370 171.801 78.105
IDW2 7.415 3.410 15.946 6.903
IDW3 7.318 3.509 16.672 9.532
IDW4 7.530 3.610 17.747 8.636
LP1 554.623 263.887 913.455 479.400
LP2 465.478 205.400 825.466 444.118
LP3 305.627 136.610 598.253 332.665

RBF-CRS 23.405 8.102 37.788 12.566
RBF-IMQ 24.315 8.339 38.999 12.752
RBF-MQ 22.719 8.030 37.000 13.300
RBF-ST 18.594 6.450 28.288 9.902

RBF-TPS 24.320 8.505 35.192 12.580

3.3. Spatial Variation of the Cu and Pb Contaminations

In this section, we first measure the spatial distribution of Cu and Pb in river sediments using
network inverse distance weighted interpolation, as shown in Figure 3. The results indicate there is
an uneven distribution of heavy metal contamination in sediments along the river network. High
concentration of Cu and Pb in river sediment is mainly located close to smelters, which is also strongly
correlated to the tailing area of Daye. Mining industries that are located at the upper reach of the
river have a significant impact on the spatial distribution of the heavy metal contents. The Tieshan
tailing area and its adjacent smelters are a major source of Cu and Pb pollution, which may deteriorate
the water quality of Tianzi Lake and bring great harm to the water ecological environment of Daye.
In addition, the Daye Non-Ferrous Metal Company located in the upper reach of the rivers that flow
into Tianzi Lake, could be the major source of Cu and Pb emission [28].

The fact that Cu and Pb have a similar distribution indicates that they might have a similar
source in the sediment of this river basin, as shown in a previous study [28]. The spatial distribution
characteristics of Cu could be explained by industry waste residue resulting from Cu-Sulfur separation
processes, which will stay in the waste residue if not used efficiently. The spatial concentration of Pb is
probably associated with the wastewater discharged from the smelting industry. Previous monitoring
results have demonstrated that wastewater discharged through smelting industries was abundant
in Pb in the study area [37]. However, to identify the real pollution sources of Cu and Pb, further
monitoring work on potential pollution sources needs to be implemented in this area.

Only visual inspection of spatial concentrations of Cu and Pb contaminations was provided in
the results of the network inverse distance interpolation. Therefore, the ILINCS method was then
applied in this study, to further explore local spatial patterns of Cu and Pb contaminations in the river
sediment. Figure 4 presents the results from the ILINCS method, given 999 conditional permutations
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and a significance level of 0.01. There is significant network autocorrelation of Cu contaminant in
river sediments, and high–high spatial clusters located in the upper reach of the rivers that flow into
Tianzi Lake (Figure 4a). These results indicate that smelters may be the main source of Cu emission,
in comparison to the Tieshan tailing area. The distribution of high–high spatial clusters of Pb is similar
to that of Cu (Figure 4b), which indicates that Cu and Pb could have common pollution sources. In this
study, the river network was split into shorter segments, with a standard length of 100 m. However,
it is worthwhile searching for the most effective scale of clustering, by examining multiple values of
standard length that would reduce potential biases, caused by a presumed cluster size [21].
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Effectiveness of pollution evaluation depends on accurate and efficient mapping of heavy metals in
river sediment. Generally, a larger number of samples will produce a more accurate map. However, due
to the cost of sample collection and chemical analysis, sampling on a large scale is usually impractical,
and therefore, the sampling design is essential for heavy metal pollution evaluation [15,38]. In this
study, sediment samples were randomly collected alongside the river network of Daye. Although
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random sampling has several limitations, it is the simplest and most fundamental of probability-based
sampling design, and is often used as a first step in other sampling processes [38]. Additional sampling
in the region with a high concentration of heavy metals should be done to draw further conclusions.
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4. Conclusions

This study was aimed at analyzing spatial distribution characteristics of Cu and Pb contamination
in river sediments of Daye, using network spatial analysis methods. The results showed that Cu
and Pb contents were unevenly distributed in river sediments, and that the network inverse distance
interpolation method was more accurate in assessment, than planar interpolation methods with
smaller MAE and RMSE. The ILINCS method was then applied to analyze local spatial patterns
of Cu and Pb pollution in river sediments. The results showed that there is significant high-high
network autocorrelation in the study region, which is useful in determining sources of pollution in the
contaminated areas, as well as in the pollution assessment of Daye.
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There are several factors that affect soil pollution mapping, including the number of soil samples,
the distance between sampling locations, and the choice of interpolation method [39]. The results
of spatial interpolation demonstrate that all of the interpolation techniques have an influence on the
pollution area estimation. Even with the same type of interpolation method, the results varied with the
parameters of the method. The objective of the interpolations was to estimate the spatial concentrations
of heavy metal contents as accurately as possible. In order to minimize the estimated error of global
mean, spatial interpolation methods tend to smooth out the original data, which probably contributes
towards the high pollution risk area being underestimated, and the clean area overestimated [15].
Therefore, the pollution area estimated by interpolation methods should be further investigated.

This study was conducted in Daye, which was regarded as a ‘resources-exhausting city’ by the
Chinese government in 2008. Mining and smelting operations in this region are significant causes
of heavy metal contamination in the environment. The findings of this study can be used as an
indicator in pollution evaluation, and can assist decision makers to identify the pollution sources for
heavy metals. However, there are two main problems that need to be addressed in further research.
First, although network inverse distance weighted interpolation outperformed planar interpolation
methods, identifying a reach as contaminated should not merely be based on the result of interpolation
results. It is suggested that the spatial distribution of heavy metal contents is largely influenced by the
natural environment and human activities [2], which should be considered in subsequent analysis.
In order to acquire a more reliable pollution assessment, additional sampling at the uncertainty region
is necessary. Second, because soil pollution usually has similar pollution sources, the joint distribution
of heavy metal contents should be investigated further, to explore the spatial association of heavy
metal contaminations. The two problems will be considered together for more comprehensive and
detailed results.
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