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Abstract: To improve energy-use sustainability in cities, we proposed a set of urban energy
performance assessment indicators and influencing factors based on existing theory and literature.
An urban energy performance assessment and influencing factor model was also constructed by
the improved stochastic frontier analysis method, and panel data from provincial capitals in China
from 2004 to 2013 were considered as an example to carry out an empirical study. Chosen from
both endogenous and exogenous perspectives, the urban energy performance assessment indicators
and influencing factors take into consideration the capital, labor, energy, urban economic output,
urbanization level, population, area, urban climate, and travel selection. Because it considers both
random errors and the inefficiency levels of urban productions, the urban energy performance
assessment and influencing factor model could reduce the errors caused by two-stage performance
assessment and factor analysis, quantify the effects of assessment indicators and influencing
factors on urban energy performance, and reflect the actual performance of different cities.
Empirical results show that the urban energy performance of provincial capitals in China has
been increasing. Chinese provincial capitals also have great potential for energy saving. It was
necessary to include energy input as an assessment indicator when evaluating urban energy
performance. Population density and urban energy performance showed a negative correlation,
but the urbanization rate, temperature index, and household car ownership were positively related to
urban energy performance. The urban energy performance of Chinese provincial capitals gradually
decreased from east to west. Based on these results, several policy suggestions on urban energy
performance development are proposed.

Keywords: urban energy performance; stochastic frontier analysis; assessment and influencing
factor model

1. Introduction

With rapid urbanization and socioeconomic development, urban energy consumption has come
to account for 67% of global energy consumption [1]. As a form of investment, energy is significant
for development and construction in cities. However, excessive energy consumption may lead to a
series of problems such as environmental pollution, climate change [2], and energy supply security [3].
Moreover, production activities, residents’ living behaviors, socioeconomic levels, and development
patterns of different cities directly affect urban energy performance. Therefore, it is necessary to assess
urban energy performance and explain the reasons for performance differences, which have important
practical significance for transitioning to a green city and reducing inefficient energy use [4,5].
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Energy performance studies are the foundation of assessing urban energy performance, and various
studies around the world have focused on energy performance, considering mainly its connotations,
assessment indicators, influencing factors, and assessment methods. The basic connotation of energy
performance includes two aspects: energy efficiency and energy productivity [6,7]. Productivity
refers to the ratio between outputs and inputs in the process of production, whereas efficiency is
the ratio between actual and optimal outputs [8,9]. An actual production process involves not only
its energy input, but also other inputs and influencing factors, which should be comprehensively
analyzed. For this purpose, total factor energy efficiency and total factor energy productivity are
introduced. However, for specific evaluation objectives, the connotation of energy performance is
different. Herrando et al. believed that energy performance was related to the gap between building
energy demand and actual building energy consumption [10]. Tang et al. directly used energy intensity
to represent building energy performance, where energy intensity is the ratio of the energy use to
building area [11]. Johansson et al. described the roles of energy performance based on its concept and
compared the energy performance of various energy-saving methods in different areas at different
times by measuring energy consumption under the influence of various factors [12]. Hence, an energy
performance measurement should construct a production frontier based on input-output relationships
to reflect the two ratios: actual output to actual input, and actual output to optimal output. Additionally,
energy performance measurement is affected by many factors. Urban energy performance can be
regarded as the degree to convert inputs (including energy inputs) into optimal outputs under the
influence of a variety of factors and a particular set of social regulations [13].

Energy has been conducive to the development of nations, industries, factories, and products,
and therefore the content of energy performance assessment includes not only manufacturing, factory,
industrial, and national energy performance [14,15], but also building energy performance [16,17] and
lighting energy performance [18] at the micro level.

Energy performance assessment indicators and influencing factors vary according to the
assessment objectives, but in general can be divided into three categories: input indicators, output
indicators, and external influencing factors. The inputs refer to investments in the process of
development and production, including asset investments, material investments, the product mix, labor
inputs, energy inputs, and other investments [14–18]. Outputs are represented by economic outputs,
including industrial outputs, industrial added values, regional outputs, and other outputs [14–18].
The external influencing factors contain many aspects such as region, climate, geographical location,
and area [10–18].

The “Energy Star” program in the United States has used stochastic frontier analysis to measure
the energy performance of industrial companies and reveal the energy performance gap between
current enterprises and the best enterprise [13]. In addition, energy performance is reflected by
the ratio of economic output to energy consumption, but must consider input indicators, output
indicators, and various influencing factors in the measurement. As for micro-level assessment methods,
they are determined according to the characteristics and requirements of the assessment objectives.
For example, the energy performance of residential building walls should be assessed by combining
thermal insulation performance, the sunlight absorption rate, and other factors that directly affect
residential energy consumption [10].

Current studies of urban energy performance are mainly related to the assessment of urban
energy efficiency and urban sustainable development. Li and Li [19] used data envelopment analysis
to estimate the total factor energy efficiency and change trends for 210 prefecture-level cities in
China from 1995 to 2006. They studied the relationships among average temperature, resource
endowment, industrial structure, technological level, policy, and energy efficiency using the Tobit
model, in which the effect of each factor on energy efficiency under different conditions was also
varying. Caputo et al. [20] indicated that energy efficiency solutions were closely related to other
sustainability solutions for air quality, local microclimate, the quality of the public realm, and others.
Xie and Mo [21] found that the energy efficiency of Chinese prefecture-level cities was invariant with
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scale and investigated the effects of spatial correlation on area distribution of urban energy efficiency.
Li et al. [22] identified an urban energy efficiency hierarchy and analyzed its level transitions using a
multi-level frontier DEA technique and considering data for 49 environmentally protected cities in
China as an example. They also constructed a set of four ordered probit models and indicated that
a number of factors such as energy technology, energy integration, environmental elements, water
resources, and population could affect this hierarchy. Kilkis [23] used the SDEWES system to evaluate
sustainable development using thirty-five indicators in seven aspects from a more comprehensive
perspective. Yang et al. [24] proposed a linear dimensionless coordinate system to evaluate the
urban sustainable development levels of 287 cities in the eastern, central, and western parts of China;
the level of sustainable development in eastern cities was higher than that of central and western
cities. Ding et al. [25] used the TOPSIS-Entropy method to perform a quantitative assessment of the
sustainable development of Chinese cities at the prefecture level and analyzed their spatial distribution
based on an index system incorporating social, economic, and environmental factors. Liang et al. [26]
used principal components analysis to extract the main influencing components of sustainable urban
development and proposed a method to evaluate it based on the Grey TOPSIS methodology. It is clear
that the evaluation of urban sustainable development is a comprehensive evaluation of the economic,
social, environmental, cultural, and other aspects of cities.

The general situation and differences of urban energy performance in Chinese provincial capitals
should be determined because Chinese provincial capitals are typical representatives of Chinese cities.
At present, these studies related to energy performance in Chinese provincial capitals mainly reflect the
aspects described below. Chen and Xu [27] studied relationships between air pollution and economic
growth in Chinese provincial capitals and divided these relationships into six main types. Based on the
hypothesis of an environmental Kuznets curve, they concluded that the relations between the three
main kinds of pollutants in cities and urban economic growth were relatively weak. The relationships
between the three main kinds of pollutants and industry showed an inverted U shape, whereas the
relationships between the three main kinds of pollutants and tertiary industry showed a U shape.
In addition, some researchers had analyzed the annual and daily variation of gases and particulate
pollutants [28,29]. Fang et al. [30] pointed out that carbon dioxide emission levels were positively
correlated with urban regional growth and that carbon dioxide emission levels were also associated
with urban continuity and urban shape. Combining with the major function zoning strategy of cities, Du
et al. [31] studied the competitiveness of Chinese provincial capitals from the four aspects of economics,
social culture, environment, and geography. Fan and Qi [32] combined economic, environmental,
and social equity indices to measure sustainable development in major cities in China. This study
emphasized the sustainable development tendencies of Chinese cities and their driving factors.

From the analyses just described, the following conclusions can be drawn. First, energy
performance assessment has been widely implemented in countries, enterprises, products, buildings,
and home appliances. However, studies of urban energy performance assessment are relatively
few. Second, the energy performance assessment indicators and influencing factors used varied
with different assessment objectives. Therefore, the selection of urban energy performance
assessment indicators and influencing factors should be based on urban characteristics and assessment
requirements. Third, assessment and factor analysis of urban energy efficiency are typically carried
out by different methods separately, which increases calculation errors and ignores the impacts of
random factors. Urban sustainable development assessment focuses on multiple aspects of cities.
Because energy is an important input and a basic part of urban sustainable development, exploring
its performance is essential to analyzing urban sustainable development. Fourth, Chinese provincial
capitals can reflect the energy performance of Chinese cities at all levels, but few studies exist on
energy performance assessment of provincial capitals. Studies related to Chinese provincial capitals
often focus on urban air pollution, urban climate change, and urban sustainable development.

Therefore, the innovations of this research are the following: first, the research field of energy
performance has been extended to cities. Urban energy performance assessment not only considers
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urban energy efficiency, but also takes into account urban energy productivity, providing references for
urban sustainable development assessment. Second, urban energy performance assessment indicators
and influencing factors, once selected based on theory and literature analysis, could be used to construct
a performance assessment system and to analyze the effects of various factors on energy performance.
Chosen from an endogenous perspective, assessment indicators were used to measure urban energy
performance. Concluded from an exogenous perspective, influencing factors were used to explain the
reasons for performance differences. Third, an urban energy performance assessment and influencing
factor model was constructed by the improved stochastic frontier analysis method. This model
quantified the relations between actual outputs and inputs as well as between actual and optimal
outputs with the help of a production frontier, comprehensively considered the impacts of random
errors and the inefficiency levels of urban productions on energy performance, and incorporated
performance assessment and factor analysis into a system that could effectively reflect the energy
performance levels of cities, make assessment results more accurate and objective, and reduce the errors
caused by two-stage study. Fourth, based on panel data for Chinese provincial capitals from 2004 to
2013, empirical research could periodically update the various levels of urban energy performance and
help to propose corresponding policy recommendations to improve urban energy performance.

2. Methods and Data

2.1. System of Urban Energy Performance Assessment Indicators and Influencing Factors

Production function was used to investigate the relationship between inputs and outputs.
Because it introduces various elements and extends the evaluation scope from enterprises and
departments to countries and regions, production function has become an important economic
model for studying development and production. Hence, production function was used in this
study to examine the relationship between each city’s inputs and outputs. With economic and social
development, material investments are becoming more and more abundant, and therefore the classic
production function should be combined with energy inputs.

IPAT (impact, population, affluence, and technology) [33] theory is an environmental impact
factor theory proposed by Ehrlich and Commoner in the 1970s based on classical Malthusian theory.
The environment is closely related to energy use, and therefore the theory also provides a reference
for studying urban energy performance influencing factors, but the factors influencing urban energy
performance are not limited to the elements in this theory. The production function and IPAT theory provide
a substantial theoretical basis for selecting urban energy assessment indicators and influencing factors.

Cities, countries, and industries belong to the macro level, and therefore the selection of urban
energy performance assessment indicators and influencing factors must also address the energy
performance assessment indicators and influencing factors of countries and industries. Moreover,
urban energy efficiency assessment indicators and influencing factors, as well as urban sustainable
development assessment indicators, help to build a system of indicators and influencing factors for
urban energy performance assessment. The results of a literature analysis addressing these assessment
indicators and influencing factors are given in Table 1.

Table 1. Literature analysis of studies related to urban energy performance assessment indicators and
influencing factors.

Field of Study Authors Assessment Indicators and Influencing Factors

National energy
performance and
Industrial energy

performance

Chang et al.
(2016) [15]

Assessment indicators: capital investment, labor input, energy use, gross
domestic product, carbon emissions

Li (2015) [6] Assessment indicators: capital investment, labor input, energy use, gross regional
product, regional carbon dioxide emissions

Boyd et al.
(2008) [13] Assessment indicators: product output, raw material cost, energy use
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Table 1. Cont.

Field of Study Authors Assessment Indicators and Influencing Factors

Influencing factors: production capacity, working hours, cooling and heating
requirements, other external factors

Boyd and
Zhang

(2013) [14]

Assessment indicators: labor input, economic output, energy consumption

Influencing factors: production capacity, productivity

Urban energy
efficiency

Keirstead
(2013) [34]

Assessment indicators: annual household income, annual carbon dioxide
emissions, household electricity consumption

Influencing factors: area, population, heating days, cooling days, the number of
households with two cars, the number of family members

Xie and Mo
(2013) [21]

Assessment indicators: urban capital investment, the number of urban employees,
energy consumption

Influencing factors: natural endowments, average temperature, industrial
structure, government, energy price, level of technology advancement

Li and Li
(2010) [19]

Assessment indicators: capital investment, labor input, energy consumption,
gross regional product

Influencing factors: urban mining workers as a proportion of all employees,
average temperature, proportion of industrial output value in the gross regional
product, proportion of foreign direct investment in all foreign investment, energy
price, fiscal expenditure proportions, the number of friendly cities around a city,
the number of secondary administrative regions in a city, regional preferential
policies

Li et al.
(2016) [22]

Assessment indicators: Input elements (including capital, area, and labor),
resource consumption (including electricity and water), desirable outputs,
undesirable outputs

Influencing factors: Population, science, technology, and education expenditures,
foreign capital, power consumption

Urban sustainable
development

Yin et al.
(2014) [35]

Assessment indicators: water consumption, energy consumption, built-up land
area, the number of employees, pollution emissions (including waste water, CDD,
CO2, SO2, soot, industrial dust, and solid waste), gross domestic production

Yang et al.
(2017) [24]

Assessment indicators: land for urban construction, urban green space, fossil
energy use, water consumption per capita, absolute emissions per capita, sewage
emissions, life expectancy, financial inputs to education, gross domestic product
per capita, Engel’s coefficient

Kilkis
(2015) [23]

Assessment indicators: energy consumption and climate, popularity of energy
saving and emission reduction measures, utilization potential of renewable energy,
water and environmental quality, carbon dioxide emissions and the industrial
situation, urban planning and social welfare, research, innovation and sustainable
development policy

Ding et al.
(2016) [25]

Assessment indicators: water coverage, education quality, the number of
health-care workers and beds per capita, total retail sales of consumer goods per
capita, industrial wastewater emissions

Liang et al.
(2016) [26]

Assessment indicators: environmental capacity, government supports, culture
and entertainment, social security, economic development

From the analysis in Table 1, it is clear that the energy performance assessment indicators
of countries and industries focus mainly on four aspects (capital, labor, energy consumption, and
economic output) and that their influencing factors include production capacity, region, climate, cooling
and heating demand, and the production environment. Through comprehensive analysis of urban
energy efficiency assessment indicators and influencing factors, it can be concluded that these indicators
and factors are mainly related to area, population, temperature, heating demand, employment,
household travel selection, urbanization, fiscal expenditure, and technology development. In addition,
urban sustainable development assessment indicators have been extended to include resource
utilization, climate change, environmental quality, and industrial and social development.
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Based on the connotation of urban energy performance and the theoretical and literature analysis
summarized above, urban energy performance assessment indicators should be used to analyze the
relations between inputs and outputs from the endogenous perspective, whereas the influencing
factors should be determined from the exogenous perspective to explain performance differences.
Therefore, this study has regarded cities as the main production objects, taken capital, labor, and
energy as the input indicators after introducing energy input into the elements of the basic production
function, considered urban economic output as the output indicator, and determined the influencing
factors including urbanization level, population, area, urban climate, and travel selection. In Figure 1,
the peripheral annular region represents the exogenous variables of urban energy performance, which
are the influencing factors; the internal circular region represents the endogenous variables of urban
energy performance, which are the assessment indicators.
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Figure 1. System of urban energy performance assessment indicators and influencing factors.

On this basis, considering the characteristics and availability of urban statistical data, total fixed
asset investment, the number of urban employees, and urban energy consumption were chosen
as input indicators, and gross regional product was chosen as the output indicator. In addition,
urbanization rate, population density, temperature index (the temperature index is calculated by using
cooling degree days in American energy performance indicators), and household car ownership per
one hundred urban resident households were selected as the influencing factors. The specific contents
of the model are shown in Table 2.

Table 2. Representation forms of urban energy performance assessment indicators and influencing factors.

System Element Representation Form

Assessment indicators Input indicators

Capital Total fixed asset investment

Labor The number of urban employees

Energy Annual energy consumption

Output indicator Economic output Gross regional product

Influencing factors

Urbanization level Urbanization rate

Population Population density
Area

Urban climate Temperature index

Travel selection Household car ownership per one
hundred urban resident households
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2.2. Urban Energy Performance Assessment and Influencing Factor Model Based on Stochastic
Frontier Analysis

Stochastic frontier analysis reflects performance levels by the gap between actual production
and the production frontier. An optimal production frontier could provide a standard to compare
urban energy performance [36]. Neoclassical production theory is the foundation of explaining the
stochastic frontier analysis model. In economics, the textbook definition of production function refers
to the maximum output that can be obtained from the given input x. However, many assessment
objects may not reach the production frontier of the maximum output in a realistic situation. Because
stochastic shocks can also affect production function, the stochastic frontier analysis model can be set
as Equation (1):

Yi = xiα + Vi −Ui, i = 1, 2, . . . N (1)

where Yi indicates the production of the i-th assessment object, xi represents the inputs of the i-th
assessment object, α represents parameters to be estimated, Vi is a random error variable caused by
measurements and various uncontrollable random factors, Ui is an non-negative random variable that
is supposed to account for inefficiency, and Vi and Ui are dependent on each other. This model was
first proposed by Aigner, Lovell, and Schmidt (1977) [37].

This initial model framework was gradually applied to a large number of empirical studies.
Moreover, it was optimized in various ways. These ways included not only the distributional
estimation of inefficiency item, such as the truncated normal distributions or two-parameter gamma
distributions, but also the consideration of time-varying efficiency and panel data. Battese and Coelli
(1992) [38] proposed a time-varying stochastic frontier analysis model for panel data. Then, they also
extended this model in 1995 [39]. The improved stochastic frontier analysis model could not only
estimate the efficiency level for each assessment object, but also analyze the influences of factors on the
efficiency level [37]. According to the connotations of urban energy performance, this paper used the
improved stochastic frontier analysis method to build an urban energy performance assessment and
influencing factor model [40,41].

The model can be described as follows:

yit = f (xit, α) exp(vit − uit) (2)

where f (xit, α) indicates the production frontier, y indicates the output, x indicates the inputs, α

represents the parameters to be estimated, i and t represent city and time, respectively, i = 1, 2, ···, N,
and t = 1, 2, ···, T. vit and uit are independent of each other. vit is a random error variable caused
by measurements and various uncontrollable random factors and obeys vit ∼ N

(
0, σ2

v
)
, a normal

distribution. uit is a non-negative variable, and represents the inefficiency of urban production. uit is
obtained by truncation at zero of the N

(
zbitθb, σ2

u
)

distribution. According to Equation (2), it can
be concluded that: if the u of a city in a certain time equals 0, this city is in the production frontier.
The energy performance of this city is set as P̂it. Thus, the calculation formula of urban energy
performance is:

EP = Pit/P̂it = E[ f (xit, α) exp(vit − uit)]/(E[ f (xit, α) exp(vit )uit = 0]) = exp(−uit) (3)

where EP represents urban energy performance. In order to facilitate calculation, the logarithm of both
sides in Equation (2) is available. Therefore, Equation (2) can be rewritten as Equation (4):

ln yit = ln f (xit, α) + vit − uit (4)

The inefficiency item, the uit, is set as a function of various variables affecting urban energy
performance. This function can be expressed as:

uit = wit + zbitθb (5)
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where zbit represents the values of each variable that affects the inefficiency degree of urban production,
θb is a coefficient vector, b represents the number of variables, and wit represents random errors and
obeys wit ∼ N

(
0, σ2), a truncated normal distribution. The point of truncation is

(
zbitθb, σ2

u
)
. If a

coefficient is positive, it shows that the influencing factor has a negative impact on urban energy
performance; otherwise, the factor has a positive impact. The absolute values of the coefficients
represent the degree of influence.

The above model is estimated by the method of maximum likelihood. The specific calculation
process is presented in Battese and Coelli (1993) [39,42]. Because the error term of the stochastic frontier
production function is different from the classical assumption of the least square method, σ2

v and σ2
u

are be replaced by s2 and γ. Set up s2 = σ2
v + σ2

u and γ = σ2
u/s2. Thus, γ must lie between 0 and 1. It

represents the proportion of inefficiency items in all random variables. The greater the γ, the greater
the influence of uit on the production.

In the stochastic frontier analysis model, the likelihood ratio test can be used to measure the
rationality of the production function, the robustness of the distribution hypotheses for random error
item and inefficiency term, and the validity of exogenous influencing factors. The statistic obtained by
the maximum likelihood ratio test can be expressed as:

LR = −2{ln[L(H0)/L(H1)]} = −2{ln[L(H0)− lnL(H1)]} (6)

where L(H0) and L(H1) represent the maximum likelihood function values of the original hypothesis
(H0) and the alternative hypothesis (H1) respectively. If LR > χ2(2α), H0 would be accepted; otherwise,
H1 would be accepted.

The Cobb-Douglas production function and Translog production function are often used to
construct the production function in the stochastic frontier analysis model [43,44]. Based on the above
productions, we constructed the stochastic frontier analysis models and tested them. It was concluded
that the Cobb-Douglas production function is more suitable for building the urban energy performance
assessment and influencing factor model. Therefore, Equation (4) can be rewritten as:

ln yit = α0 +
K

∑
k=1

αklnxkit + vit − uit, uit > 0 (7)

where k represents the number of inputs. The above urban energy performance assessment indicators
and influencing factors were respectively added to Equation (7) and Equation (5) for calculations.
Hence, α1, α2, and α3 respectively represent the coefficients of elasticity of capital investment, labor
input, and energy. θ1, θ2, θ3, and θ4 respectively represent the coefficients of the urbanization rate,
population density, the temperature index, and household car ownership. To eliminate the influence
of dimensionality and variance on the data, the values of urban energy performance influencing
factors in Equation (5) were taken as logarithms, so that the meanings of the coefficients were
changed accordingly.

Based on the above model, FRONTIER Version 4.1 is used to conduct these calculations [45,46].
The calculation process mainly includes three steps: firstly, the ordinary least square estimation of the
production function are carried out. α1, α2, and α3 estimators would be unbiased. Secondly, α0 and s2

are adjusted based on the corrected ordinary least squares method. According to the α parameters
(excepting the intercept) set to the ordinary least squares values and the adjusted α0 and s2, γ is
searched by a two-phase grid search method. γ lies between 0 and 1. The range can be searched to
offer a good beginning value in the latter iterative process. Thirdly, the above selected value of γ

could be used as the starting value for iterative calculation, and the maximum likelihood estimates are
obtained. The results of urban energy performance assessment and parameter estimation could be
obtained by the specific software.
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2.3. Study Areas and Data Sources

According to the consistency and availability of sample data, this study selected panel data
from 30 provincial capitals in China from 2004 to 2013. These cities included Beijing, Tianjin,
Shijiazhuang, Taiyuan, Hohhot, Shenyang, Changchun, Harbin, Shanghai, Nanjing, Hangzhou, Hefei,
Fuzhou, Nanchang, Jinan, Zhengzhou, Wuhan, Changsha, Guangzhou, Nanning, Haikou, Chongqing,
Chengdu, Guiyang, Kunming, Xi’an, Lanzhou, Xining, Yinchuan, and Urumqi. On the one hand,
these cities reflect different levels of energy performance in Chinese cities, so that differences in
energy performance can be analyzed and compared and the urban energy development experience
of advanced cities can be transferred to others. On the other hand, the urban energy performance
assessment of Chinese provincial capitals can reflect the level of China’s urban energy performance
and can provide a basis for international comparison [30]. The data were obtained from the statistical
yearbook of each city, the Chinese urban statistical yearbook, and the economic and social development
statistics database.

3. Results

3.1. Assessment Results

The urban energy performance of each city was calculated based on the urban energy performance
assessment and influencing factor model. The calculation results are listed in Table 3. The average
energy performance of Chinese provincial capitals was 0.498 between 2004 and 2013. The value of γ is
0.99, and it means that the deviation of cities in relation to the production frontier are mainly from the
inefficiency item.

Table 3. Urban energy performance assessment results for provincial capitals in China.

City/Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Beijing 0.312 0.474 0.487 0.516 0.578 0.571 0.606 0.658 0.675 0.692
Tianjin 0.442 0.521 0.570 0.551 0.576 0.553 0.578 0.595 0.613 0.620

Shijiazhuang 0.400 0.357 0.360 0.387 0.424 0.340 0.340 0.382 0.363 0.362
Taiyuan 0.340 0.393 0.410 0.439 0.453 0.477 0.493 0.541 0.494 0.472
Hohhot 0.446 0.510 0.541 0.576 0.603 0.694 0.785 0.881 0.848 0.798

Shenyang 0.514 0.469 0.503 0.545 0.550 0.535 0.558 0.587 0.587 0.560
Changchun 0.585 0.419 0.441 0.404 0.416 0.460 0.460 0.640 0.534 0.522

Harbin 0.376 0.389 0.402 0.439 0.449 0.413 0.404 0.437 0.372 0.357
Shanghai 0.562 0.569 0.678 0.711 0.755 0.778 0.875 0.900 0.886 0.870
Nanjing 0.411 0.467 0.519 0.564 0.608 0.560 0.574 0.568 0.614 0.592

Hangzhou 0.625 0.628 0.641 0.660 0.589 0.556 0.560 0.568 0.556 0.551
Hefei 0.394 0.499 0.439 0.393 0.381 0.384 0.391 0.429 0.421 0.399

Fuzhou 0.528 0.444 0.465 0.423 0.438 0.446 0.422 0.482 0.483 0.464
Nanchang 0.423 0.386 0.406 0.446 0.458 0.415 0.427 0.439 0.468 0.434

Jinan 0.566 0.534 0.550 0.557 0.553 0.561 0.591 0.641 0.640 0.647
Zhengzhou 0.332 0.354 0.400 0.401 0.462 0.427 0.430 0.453 0.461 0.430

Wuhan 0.452 0.455 0.454 0.480 0.504 0.489 0.508 0.563 0.610 0.618
Changsha 0.380 0.419 0.426 0.438 0.522 0.517 0.501 0.576 0.630 0.667

Guangzhou 0.644 0.736 0.801 0.852 0.909 0.870 0.899 0.936 0.935 0.968
Nanning 0.412 0.423 0.459 0.531 0.527 0.823 0.525 0.522 0.461 0.484
Haikou 0.517 0.473 0.304 0.502 0.502 0.472 0.485 0.486 0.477 0.446

Chongqing 0.289 0.326 0.341 0.342 0.365 0.416 0.442 0.518 0.300 0.296
Chengdu 0.446 0.400 0.421 0.380 0.430 0.445 0.506 0.529 0.554 0.397
Guiyang 0.288 0.294 0.302 0.308 0.324 0.316 0.309 0.300 0.332 0.269
Kunming 0.553 0.486 0.509 0.480 0.452 0.432 0.403 0.460 0.478 0.468

Xi’an 0.361 0.349 0.339 0.290 0.347 0.351 0.356 0.405 0.386 0.365
Lanzhou 0.358 0.374 0.403 0.423 0.450 0.535 0.429 0.427 0.502 0.516
Xining 0.331 0.419 0.422 0.468 0.376 0.423 0.445 0.457 0.428 0.390

Yinchuan 0.227 0.349 0.368 0.414 0.483 0.550 0.526 0.534 0.532 0.512
Urumqi 0.438 0.478 0.527 0.607 0.618 0.604 0.650 0.797 0.629 0.546
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3.2. Descriptive Statistical Analysis

Table 4 shows the energy performance statistics of Chinese provincial capitals from 2004 to 2013.

Table 4. Energy performance statistics for Chinese provincial capitals from 2004 to 2013.

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Maximum 0.644 0.736 0.801 0.852 0.909 0.870 0.899 0.936 0.935 0.968
Minimum 0.227 0.294 0.302 0.290 0.324 0.316 0.309 0.300 0.300 0.269

Mean 0.432 0.446 0.463 0.484 0.503 0.514 0.516 0.557 0.542 0.524
Standard deviation 0.104 0.091 0.109 0.118 0.120 0.132 0.139 0.150 0.150 0.159

The maximum, minimum, mean, and standard deviation of energy performance for each year
are shown in Figure 2. Reflecting a rising curve, the maximum urban energy performance rose from
0.644 in 2004 to 0.968 in 2013, an increase of 0.324. As for the minimum, it did not change significantly
after rising to 0.294 in 2005. From 2004 to 2013, the mean value and standard deviation of energy
performance in Chinese provincial capitals gradually increased. The increase in the mean value was
0.1, and the increase in the standard deviation was 0.55.
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Table 5 shows the energy performance statistics for the Chinese provincial capitals.

Table 5. Energy performance statistics for the provincial capitals.

City Maximum Minimum Mean

Beijing 0.692 0.312 0.5569
Tianjin 0.62 0.442 0.5619

Shijiazhuang 0.424 0.340 0.3715
Taiyuan 0.541 0.340 0.4512
Hohhot 0.881 0.446 0.6682

Shenyang 0.587 0.469 0.5408
Changchun 0.640 0.404 0.4881

Harbin 0.449 0.357 0.4038
Shanghai 0.900 0.562 0.7584
Nanjing 0.614 0.411 0.5477

Hangzhou 0.660 0.551 0.5934
Hefei 0.499 0.381 0.413

Fuzhou 0.528 0.422 0.4595
Nanchang 0.468 0.386 0.4302

Jinan 0.647 0.534 0.584
Zhengzhou 0.462 0.332 0.415

Wuhan 0.618 0.452 0.5133
Changsha 0.667 0.380 0.5076
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Table 5. Cont.

City Maximum Minimum Mean

Guangzhou 0.968 0.644 0.855
Nanning 0.823 0.412 0.5167
Haikou 0.517 0.304 0.4664

Chongqing 0.518 0.289 0.3635
Chengdu 0.554 0.380 0.4508
Guiyang 0.332 0.269 0.3042
Kunming 0.553 0.403 0.4721

Xi’an 0.405 0.290 0.3549
Lanzhou 0.535 0.358 0.4417
Xining 0.468 0.331 0.4159

Yinchuan 0.550 0.227 0.4495
Urumqi 0.797 0.438 0.5894

According to the maximum of each city, Guangzhou, Shanghai, Hohhot, and Nanning had higher
maximum values (greater than 0.8), whereas the maximum values for Shijiazhuang, Harbin, Nanchang,
Zhengzhou, Guiyang, and Xi’an were lower compared to other cities. As for the minimum, the gap
between different cities was less than that for the maxima. The minimum values for Guangzhou,
Jinan, Hangzhou, and Shanghai were higher, but those of Yinchuan, Guiyang, Chongqing, and Xi’an
were lower. Overall, Guangzhou, Shanghai, Hohhot, and Hangzhou had higher levels of energy
performance, but the average levels of Shijiazhuang, Xi’an, Guiyang, and Chongqing on energy
performance were relatively low, as shown in Figure 3.
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3.3. Analysis of Urban Energy Performance Assessment Indicators and Influencing Factors

The coefficient estimation results for the assessment indicators and influencing factors in the urban
energy performance assessment and influencing factor model are listed in Table 6. The T values for
every variable in Table 6 show that the input indicators and influencing factors have passed significance
tests and prove that the evaluation and influencing factor model is reasonable and effective.
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Table 6. Coefficients of elasticity of the input indicators and influencing factors.

Variable Coefficient Standard Deviation T Value

α1 Total fixed asset investment 0.536 0.027 19.628
α2 The number of urban employees 0.412 0.033 12.642
α3 Annual energy consumption 0.092 0.024 3.908
θ1 Urbanization rate −0.362 0.063 −5.747
θ2 Population density 0.036 0.020 1.848
θ3 Temperature index −0.024 0.009 −2.650

θ4
Household car ownership per one hundred

urban resident households −0.063 0.016 −3.923

Analytical results for the input indicators show that the sum of the coefficients of elasticity
for total fixed asset investment, the number of urban employees, and urban energy consumption
was greater than one, which shows that the energy performance of Chinese provincial capitals was
increasing. In addition, the three inputs had significant impacts on urban energy performance and
were positively correlated with the output; in other words, the output will increase as these inputs
increase. The coefficients of elasticity of total fixed assets investment, the number of urban employees,
and urban energy consumption were 0.536, 0.412, and 0.092, which indicates that the effects of capital
and labor input on the output were significantly higher than that of the energy input.

θ1, θ2, θ3, and θ4 respectively represent the influence of urbanization rate, population density,
temperature index, and household car ownership on urban energy performance. If θb is positive, this
means that this variable is negatively correlated with urban energy performance, whereas if θb is
negative, this variable is positively related to urban energy performance. It is clear that population
density had a negative impact on urban energy performance, but that urbanization rate, temperature
index, and household car ownership had positive impacts on urban energy performance. In addition, it
can also be seen from the absolute values of the variable coefficients that urbanization had the greatest
impact on urban energy performance. The influences of population density, temperature index, and
household car ownership on urban energy performance were relatively small.

3.4. Analysis of Urban Energy Performance Differences

To compare the differences among these thirty provincial capitals in China, the urban energy
performance results were classified using SPSS software. The clustering method uses the Ward method
to measure the similarity between classes with the aid of Euclidean distance. Think of each city as a
class, and then reduce one class every time. For each reduction, the sum of squares of deviations would
increase. Two classes that minimize the increase of the sum of squares of deviations are chosen to
combine until all the cities fall into one class. According to the results, these thirty cities were divided
into four clusters, as shown in Table 7.

Table 7. Classification results for Chinese provincial capitals based on urban energy performance using
the Ward clustering method.

Classification Cities

1 Guangzhou, Shanghai, Hohhot

2 Beijing, Tianjin, Shenyang, Nanjing, Hangzhou, Jinan, Wuhan, Changsha, Nanning, Urumqi

3 Taiyuan, Changchun, Harbin, Hefei, Fuzhou, Nanchang, Zhengzhou, Haikou, Chengdu,
Kunming, Lanzhou, Xining, Yinchuan

4 Shijiazhuang, Chongqing, Guiyang, Xi’an

Figure 4 depicts the energy performance changes of Chinese provincial capitals. Cities within
each subfigure were obtained from Table 7. The characteristics of urban energy performance are
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different for each type. The first class of cities is characterized by high performance and high growth.
The energy performances of these cities ranged from 0.45 to 0.97. Figure 4a shows that the urban
energy performance of Guangzhou and Shanghai was about 0.6 in 2004 and about 0.9 in 2013, an
increase of 50% compared with 2004. The energy performance of Hohhot generally increased in recent
years and reached 0.8 in 2013. The second class had high energy performance, but showed a steady
upward trend. The energy performance range of these cities was from 0.31 to 0.82. In 2004, the energy
performance of these cities was concentrated between 0.31 and 0.63; although their performance
increased to 0.48–0.7 in 2013, their growth was relatively small (Figure 4b). These cities are mostly
in central and eastern China and have a high level of economic development. The urban energy
performance of the third class was relatively low and showed a U-shaped change trend, as shown
in Figure 4c. In other words, the urban energy performance of this class was higher in 2004–2006
and 2010–2013, but lower in 2006–2010. The energy performances of these cities was between 0.23
and 0.64. These cities are located in the central part of China. The cities in the fourth class had the
lowest performance, and their volatility in different years was larger than other classes (Figure 4d).
The maximum of the urban energy performances in this class was less than 0.52, and this value existed
in only a few years. The minimum of urban energy performance in this class was 0.27. These cities are
mainly distributed in northwestern and southwestern China.

1 

 

 

  

(a) (b) 

  

(c) (d) 

Figure 4. Energy performance changes of Chinese provincial capitals within different classes. (a) 

Energy performance changes of cities within the first class; (b) Energy performance changes of cities 

within the second class; (c) Energy performance changes of cities within the third class; (d) Energy 
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Figure 4. Energy performance changes of Chinese provincial capitals within different classes. (a) Energy
performance changes of cities within the first class; (b) Energy performance changes of cities within the
second class; (c) Energy performance changes of cities within the third class; (d) Energy performance
changes of cities within the fourth class.

4. Discussion

The urban energy performance assessment indicators and influencing factors selected in this
paper have passed the coefficient test, which fully demonstrates the relations of each indicator and
factor to urban energy performance. The assessment indicators and influencing factors incorporate
climate change, economic growth, energy consumption, and other aspects that are also the focus
of current research on Chinese provincial capitals and cover the main variables used by Chen and
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Xu [27], Fang et al. [30], Du et al. [31], and Fan and Qi [32]. Compared with other assessment methods,
the urban energy performance assessment and factor analysis model constructed by the improved
stochastic frontier analysis method can fully consider the energy performance differences of cities
and random errors and fully reflect the dual roles of assessment indicators and influencing factors on
urban energy performance, making the assessment results more objective and accurate.

From 2004 to 2013, the average energy performance of Chinese provincial capitals was 0.498, which
shows that Chinese provincial capitals had an energy-saving potential of 50% under constant outputs.
In other words, the energy-saving potential of Chinese provincial capitals was great. The increases
in the standard deviation indicated that the gap between the energy performances of different cities
has increased in recent years. Between 2004 and 2013, the maxima of all provincial capitals showed a
rising trend, which indicates that the cities with higher energy performance still had growth potential
and attained large increases. The lack of significant changes in the minimum from year to year shows
that the average values of energy performance in provincial capitals showed an increasing trend, but
that the growth rate was less than the maximum. Therefore, the urban energy performance of Chinese
provincial capitals was still improved by those cities with higher performance. In the long run, the
gap in urban energy performance among provincial capitals will gradually increase. The maximum
energy performance in each provincial capital reflects the highest performance level of each city in
recent years and also provides a benchmark for future energy performance improvements.

At present, the energy performance of Chinese provincial capitals is increasing, but further
efforts should be made to enhance it, further verifying the conclusions reached by Xie and Mo [21].
The coefficients of elasticity for urban energy performance assessment indicators indicates that energy
input is also an important investment in promoting socioeconomic development. The marginal
effect of population density on economic development has been gradually reduced, but increases in
population density still resulted in more energy consumption. As a result, urban energy performance
decreased in this case. A higher urbanization level is bound to enhance investments in science,
technology, education, and infrastructure, leading to sustainable use of renewable energy and high
quality of life for residents and strengthening the population agglomeration effect, which could help
reduce urban energy consumption and further elevate urban energy performance. The temperature
index was calculated using American cooling degree days. This factor comprehensively reflects
urban temperature and urban heating requirements. If the temperature index increases, urban
heating requirements and urban energy consumption will decrease, and therefore the urban energy
performance will improve. Household car ownership in Chinese provincial capitals was still rising
between 2004 and 2013 despite the introduction of vehicle driving restrictions and new energy-efficient
vehicle promotion policies, indicating that the popularity of new energy-efficient vehicles gradually
increased and that the increase in car ownership did not result in more energy consumption [47].
Therefore, household car ownership is negatively correlated with urban energy performance.

It is concluded that the energy performance of different provincial capitals in China varies widely
from the urban energy performance assessment results, as shown in Table 3. According to the locations
of cities within each class in Table 7, the cities with higher energy performance are mostly in eastern
China, the cities with moderate energy performance are located in central part of China, and the
cities with lower energy performance are mainly distributed in northwestern and southwestern
China. Thus, the urban energy performance of Chinese provincial capitals decreases from east to
west. In recent decades, China’s economy has continued to develop, and social living standards have
been continuously improved [48,49]. Thanks to the excellent geographical location, environmental
condition and policy support (such as coastal development strategy, market economic reform), the
total economic output and per capita income of southeast coastal areas in China are significantly better
than those of central and western regions. The gap between the eastern and western regions continues
to expand [31,50]. The economic and social development in the southeast coastal areas has increased
the concentration of labor and capital [51], so the level of urbanization and the population pressure has
increased [52]. In addition, the innovation efficiency and technical level of these areas have also been
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developed [53]. Especially in the three major economic zones, the level of economy, social security,
infrastructure construction, and technological innovation in these regions is better than that in other
regions [25,53,54]. Through the above analysis, we can draw a conclusion that the socioeconomic
development level of eastern coastal areas in China is better than that of the western areas, and
uneven regional development has gradually become a major challenge for China’s development [55].
The regional characteristics of socioeconomic development in China are similar to the distribution
characteristics of urban energy performance. Therefore, it is speculated that there is a correlation
between socioeconomic development level and urban energy performance.

5. Conclusions and Policy Recommendations

Urban energy performance assessment indicators and influencing factors were selected based
on literature analysis, the production function, and IPAT theory. Then the urban energy performance
assessment and influencing factor model was constructed using the improved stochastic frontier
method to carry out a case study with Chinese provincial capitals as examples. Conclusions can be
drawn as follows:

1. The selection of urban energy performance assessment indicators and factors is of great
significance in measuring urban energy performance. On the basis of input-output relationships,
the performance measure could reasonably quantify the role of energy and highlight the
importance of energy investment. The set of influencing factors covering urbanization level,
population, area, urban climate, and travel selection represents the main factors related to urban
energy performance.

2. As an assessment objective, urban energy performance could be scientifically calculated using the
improved stochastic frontier analysis method. This method can effectively measure the influences
of random errors and combine performance assessment and factor analysis into a system. Its
statistical characteristics can be used to test the parameters and make the assessment results more
objective and accurate.

3. The urban energy performance of Chinese provincial capitals experienced an overall upward
trend from 2004 to 2013. However, there was an increase in the performance differences among
the cities. Chinese provincial capitals are in the process of increasing their energy performance
and have great energy-saving potential. The analytical results for the assessment indicators
and influencing factors show that it is important to introduce energy input to evaluate urban
energy performance. Population density and energy performance are negatively related, but
urbanization rate, the temperature index, and household car ownership are positively related
to energy performance. The effect of urbanization on urban energy performance is significantly
higher than that of other factors. The urban energy performance values of Chinese provincial
capitals are different from one another and gradually decline from east to west. Compared with
developing cities, developed cities still have certain performance advantages.

Based on these conclusions and on current problems with global urban energy performance, this
paper proposes the following policy recommendations:

1. Assessment of urban energy performance is of great significance for urban energy use. Therefore,
it is necessary to build an urban energy performance assessment tool based on the assessment
model proposed in this paper. With the aid of this urban energy performance assessment tool,
urban resources can be reasonably allocated based on assessment results to improve infrastructure
and technology development for cities with different performance levels.

2. Empirical results show that urbanization has a leading role in urban energy performance.
Against the background of new urbanization, the urbanization contents have evolved to include
production activities, transportation, infrastructure, residents’ quality of life, and other aspects.
Therefore, from the perspective of production activities, the advantages of labor agglomeration
must be emphasized, the urban economic structure should benefit from urban development, and
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clean energy should be reasonably explored and used. Regarding the transport and infrastructure
level, it is important to advocate for green travel modes and improve the use of urban land
resources. As for residents’ quality of life, healthy lifestyles should be promoted. Residents
should change their living habits and try their best to save energy.

3. Chinese provincial capitals are in an increasing stage of urban energy performance and have great
energy-saving potential. Therefore, the development concept of green cities should be established
to strengthen the development of urban energy. In the development process, technological
progress is an important condition, especially in urban traffic and urban climate. The development
of new energy vehicles and the use of energy-saving appliances are easy ways to reduce the
pressure on urban energy and decrease urban environmental problems, but their foundation lies
in the use of new technologies and new energy. Therefore, no effort should be spared to develop
new energy sources and energy-saving equipment.
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