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Abstract: A new model for risk assessment of agricultural drought based on information diffusion
method and variable fuzzy sets (IDM-VFS) was proposed. In addition, an integrated index system of
agricultural drought risk was established. In the proposed model, IDM was employed to calculate
the agricultural drought risk level classification standards, and then the VFS was adopted to assess
the dangerousness, sensitivity, vulnerability, and comprehensive risk of agricultural droughts. In the
present study, Nanpan River Basin was employed to assess the agricultural drought risk with
the proposed model. The results showed that KaiYuan, ShiZong, QiuBei, and ZhanYi have higher
dangerousness, due to water shortage. GuangNan have higher sensitivity and vulnerability because of
lower drought resistance level and higher crop planting proportion. The comprehensive agricultural
drought risk shows apparent regional characteristics: the central, western and northwestern counties
have lower risk than the eastern counties. Moreover, most areas of the Nanpan River Basin are of
moderate agricultural drought risk grade. The results are consistent with the actual situation of
Nanpan River Basin and verify the model’s effectiveness. The study can provide a scientific reference
in drought risk management for local governmental agencies.

Keywords: agricultural drought risk assessment; integrated index system; information diffusion
method (IDM); variable fuzzy sets (VFS); Nanpan River Basin

1. Introduction

Drought originates from a deficiency of precipitation over an extended period of time that results
in water shortage for some activity, or some group [1]. It is commonly classified into four typologies:
meteorological, agricultural, hydrological, and socio-economic. In recent decades, droughts have
occurred more frequently and imposed adverse impacts on natural and human systems [2,3]. China
is one of the countries that is most prone to drought disaster [4]. For example, from 2009 to 2011,
severe droughts swept China from north to south and from east to west, which caused huge economic
and societal losses [5–9]. Drought has become an important factor affecting China’s agricultural and
sustainable development. The Nanpan River Basin (NRB), located in the southeast of Yunnan-Guizhou
Plateau slopes is one of the regions that suffer most from serious and frequent droughts [10]. Therefore,
it is important to assess the risk of droughts, which can help to improve the prediction ability of
droughts and to reduce the losses caused by droughts.

In order to mitigate losses caused by drought, it is necessary to assess this phenomenon adopting
scientific methods. Drought index is a quantitative method that can characterize drought levels
through assimilating data from one or several indices into a single numerical value [11]. The WMO
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(World Meteorological Organization) defines drought index as “an index which is related to some
of the cumulative effects of a prolonged and abnormal moisture deficiency” [12]. Over the years,
several drought indicators have been developed to characterize droughts [13–19]. Most of these
studies have focused on a single drought index, e.g., Palmer Drought Severity Index (PDSI) [13],
Surface Water Supply Index (SWSI) [14], SPI Standardized Precipitation Index (SPI) [15], and
Standardized Precipitation Evapotranspiration Index (SPEI) [16]. However, agricultural drought
disaster is a multivariate phenomenon that contains interactive physical linkages including antecedent
moisture conditions, soil type, slope, and the intensity of the precipitation event [20]. Hence, several
integrated drought indicators that combine different drought variables have proposed by researchers.
For example, Safavi et al. [17] developed an integrated index using multiple factors including land
use, slope and soil type, precipitation, surface water storage, environment needs and other factors.
Rajsekhar et al. [18] constructed a multivariate drought index (MDI) through combing hydrological and
meteorological information with precipitation, evapotranspiration, runoff, and soil moisture factors.
Waseem et al. [19] developed the antecedent condition-based multivariate drought index (AMDI) that
includes climatic water balance, antecedent moisture conditions and other factors.

According to the natural disaster system theory, the occurrence of drought is due to dangerousness
of hazard-formative factors, sensitivity of hazard-inducing environment, and vulnerability of
hazard-affected bodies. The dangerousness is used to describe the abnormal degree of nature and
society. The sensitivity is adopted to depict the responsiveness to nature hazards [21]. The vulnerability
is conceptualized as “The conditions determined by physical, social, economic and environmental
factors or processes which increase the susceptibility of an individual, a community, assets or systems
to the impacts of hazards” [22]. In order to assess agricultural drought risk effectively, this study
established the agricultural drought integrated index system with dangerousness indices, sensitivity
indices, and vulnerability indices. Therefore, the comprehensive agricultural drought risk is defined as
a composite function of dangerousness, sensitivity, and vulnerability based on the natural disaster
system theory.

Drought is a fuzzy phenomenon and is difficult to evaluate mainly because of the lack of
sufficient data [23]. Therefore, fuzzy and uncertainty theories have been introduced into the drought
risk assessment by some researchers, such as fuzzy comprehensive evaluation [24], information
diffusion [25], variable fuzzy sets (VFS) [26], and copula [27,28] et al. However, there are some
deficiencies in these approaches. For example, the fuzzy comprehensive evaluation cannot well
resolve the duplication information caused by related evaluation indices; the establishment of the
relative membership function of the variable fuzzy sets depends on physical analysis and expert
experience [29]. Taking into consideration these factors, there is a trend that combines the advantages
of different of methods to construct a new approach. For example, Li et al. [30] developed a composite
model based on improved information diffusion method and variable fuzzy sets to assess the disaster
risk. Ouyang et al. [31] put forward a composite method based on information diffusion method and
bootstrap to estimate the drought risk levels of drought-prone areas in Anhui province. Deng et al. [32]
put forward a composite model based on projection pursuit and information diffusion to assess the
risk of drought in the Qujing city of Yunnan province.

The variable fuzzy sets (VFS) can effectively eliminate the border effect on assessment results and
make full use of various index data to obtain comprehensive risk evaluation results. The information
diffusion method (IDM) can establish the level classification standards of drought risk assessment
indices, and help to determine the relative membership function. Hence, in this paper, VFS was
combined with IDM as an integrated model to assess the risk of agricultural drought. In the proposed
model IDM was employed to calculate the level classification standards of drought risk assessment
indices, and then the VFS was adopted to achieve the comprehensive risk evaluation of droughts.
In the support of integrated index system and IDM-VFS model, the Nanpan River Basin in Yunnan
province was taken as a case study area. The paper is organized as follows. Section 2 depicts the study
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area, followed by the data and methods in Section 3. Section 4 presents the main results and analysis.
The discussion and conclusions of the study are given in Section 5.

2. Overview of Study Area

Nanpan River Basin (Figure 1), which is located between 102◦14′E–106◦7′E and 23◦12′N–26◦27′N,
originates from the east side of Maxiong mountain. The river’s total length is 651 km, and its drainage
area is 43,311 km2 in Yunnan province. The river basin is significantly dominated by subtropical
monsoon climate and dry wet seasonal change. The annual mean temperature ranges from 13◦ to 20◦.
The mean annual precipitation is 921.1 mm. The precipitation mainly occurs from May to October,
which account for 86.7% of annual precipitation, and its uneven distributed making the river basin
prone to drought. The spatiotemporal distribution of runoff is similar to precipitation, with annual
average natural runoff 1.08 billion m3. In recent years, localized drought disasters have occurred
frequently and caused huge losses. Thus, drought has become one of the most important factors that
restrict the development of Nanpan River Basin.
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3. Data and Methods

3.1. Data Sources

The data were collected from Yunnan Statistical Yearbook, Kunming Statistical Yearbook, Qujing
Statistical Yearbook, YuXi Statistical Yearbook, Yearbook of HongHe Prefecture, The Almanac of
WenShan, Yunnan Water Conservancy Statistics Yearbook, Yunnan Water Resource Bulletin, Yunnan
Drought Planning Draft, and Yunnan Drought Briefing. Statistics were provided by the Yunnan Flood
Control and Drought Relief Headquarter, and the Yunnan Bureau of Hydrology and Water Resources.

3.2. Information Diffusion Method (IDM)

Information diffusion method (IDM) can transform a data sample point into a fuzzy set.
The principle of information diffusion is an affirmation: when a knowledge sample is given, it can be
adopted to calculate a relationship. The sample is called “non-diffusion estimation”. If and only if
the sample is incomplete, can the method make the diffusion estimation closer to the real relationship



Sustainability 2017, 9, 1124 4 of 16

than the non-diffusion estimation [33]. In drought risk assessment, the method can establish the
level classification standards of drought assessment risk indices to improve the evaluation accuracy.
In this paper IDM was employed to calculate the exceeding probability of every index, then based
on the national drought planning and drought data, the level classification standards of drought
risk assessment indices were established. There are many types of information diffusion methods,
e.g., double exponential jump diffusion, logarithmic diffusion, and the normal information diffusion
method. Huang and Wang [34] demonstrated that the normal IDM is better than the logarithmic and
exponential diffusion method under the small sample size condition. Therefore, in this paper the
normal IDM is adopted. The definition of information diffusion can be shown as follows:

Definition 1. Suppose X = {x1, x2, · · · , xn} is a random sample set, V is the universal field, and the
information diffusion method is a mapping µ : X×V → [0, 1] that satisfies the following three conditions [35]:

(1) ∀x ∈ X, let v∗ be the observed value of x, then µ(x, v∗) = max
v∈V

µ(x, v).

(2) ∀x ∈ X, ∀v′, v′′ ∈ V, if ‖v′ − x‖ ≤ ‖v′′ − x‖, then µ(x, v′) ≥ µ(x, v′′).
(3) ∀x ∈ X,

∫
V µ(x, v)dv = 1. If V is discrete, then ∑

V
µ(x, v)dv = 1.

The assessment model based on the information diffusion is shown as follows:
Let the index system for drought risk assessment be X = {x1, x2, · · · , xn}, xi(i = 1, 2, · · · , n) is

the observed value, the level domain for the drought risk is U = {u1, u2, · · · , um}, uj(j = 1, 2, · · · , m)

is a value in U. According to the national drought planning of China, the drought risk level is divided
into lowest risk, lower risk, moderate risk, higher risk, and highest risk, respectively. The information
carried by xi can be diffused into uj according to Equation (1).

fi(uj) =
1

h
√

2π
exp

[
−
(xi − uj)

2h2

]
· ·i = 1, 2, · · · , n, j = 1, 2, · · · , m (1)

Here, h is the diffusion coefficient, can be calculated as follows:

h =



0.8146(b− a), n = 5
0.5690(b− a), n = 6
0.4560(b− a), n = 7
0.3860(b− a), n = 8
0.3362(b− a), n = 9
0.2986(b− a), n = 10
0.6851(b− a)/(n− 1), n ≥ 11

(2)

where a = min
1≤i≤n

{xi}; b = max
1≤i≤n

{xi}.
Suppose:

Ci =
m

∑
j=1

fi(uj) (3)

Then, the normalized diffusion function gi(uj) can be obtained through Equation (4):

gi(uj) =
fi(uj)

Ci
(4)

Furthermore, let q(uj) =
n
∑

i=1
gi(uj) and Q =

m
∑

j=1
q(uj), then the probability of samples falls in uj

can be represented as follows:
p(ui) = q(uJ)/Q (5)

The exceeding probability of uj can be obtained through Equation (6).
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P(uj) =
m

∑
k=j

p(uk) (6)

Finally, according to drought grade probability classification standard, the level classification
standards of drought risk assessment indices can be obtained.

3.3. Entropy Combination Weighted Method

The integrated index system of drought risk assessment includes a lot of indices. Each index plays
a different role in the integrated system. The index weight reflects the relative importance of each index
in the integrated index system. The entropy weight method is an objective method that determines
the importance of index based on the information carried by the given data. The more concentrated
information that one index provides, the less important the index is. The less concentrated information
that one index provides, the more important the index is. The ANP (Analytic Network Process) is a
subjective method to determine the weight of indices based on experts’ experience [36]. The Super
Decisions software can be adopted to determine the ANP weight of an index. Those two methods
have their own advantages and disadvantages. Therefore, in this paper, we use a combined method to
improve the reliability as follows:

ω = αω1 + (1− α)ω2 (7)

where ω is the combined weight, ω1 is the subjective weight calculated by ANP, ω2 is the objective
weight calculated by entropy weight method, α (0 < α < 1) is the coefficient, in this paper we set
α = 0.5. Then the combined weight vector ω can be calculated as follows:

ω = (ω1, ω2, · · · , ωm) (8)

where m is the number of sample indicators.

3.4. Variable Fuzzy Set Theory (VFS)

Chen proposed the Variable fuzzy sets (VFS) based on engineering fuzzy sets and the relative
membership degrees [37]. It extends the static fuzzy set proposed by Zadeh [38] and establishes the
dynamic variable fuzzy sets theory. The model can deal well with the variable fuzzy phenomena, such
as flood, drought, and so on. Therefore, in this paper after the calculations of the level classification
standards of drought risk assessment indices and the weight of each index, the VFS was adopted to
obtain the comprehensive risk values. The VFS model is shown as follows:

Assume A is a fuzzy concept in the domain of U(u ∈ U), A
∼

and A
∼

c are the attract ability of U

and the repellency of U, respectively. The relative membership degree (RMD) of A
∼

(∀u ∈ U) is µA
∼
(u),

which ranges from 0 to 1. The RMD of A
∼

c (∀u ∈ U) is µA
∼

c(u), which ranges from 1 to 0. RMD satisfies

µA
∼
(u) + µA

∼
c(u) = 1. The relationship between µA

∼
(u) and µA

∼
c(u) is shown in Figure 2.
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Let DA
∼
(u) = µA

∼
(u)− µA

∼
c(u), where DA

∼
(u) is defined as the relative difference degree function

of u to A
∼

that satisfy the mapping D : u→ DA
∼
(u) ∈ [−1, 1] . Due to µA

∼
(u) + µA

∼
c(u) = 1, then

DA
∼
(u) = 2µA

∼
(u)− 1 (9)

µA
∼
(u) = (1 + DA

∼
(u))/2 (10)

where 0 ≤ µA
∼
(u) ≤ 1, 0 ≤ µA

∼
c(u) ≤ 1.

Let V0 =

{
(u, D)

∣∣∣∣u ∈ U, DA
∼
(u) = µA

∼
(u)− µA

∼
c(u), D ∈ [−1, 1]

}
, A+ ={

u
∣∣∣u ∈ U, 0 < DA

∼
(u) < 1

}
, A− =

{
u
∣∣∣u ∈ U,−1 < DA

∼
(u) < 0

}
and A0 =

{
u
∣∣∣u ∈ U, DA

∼
(u) = 0

}
.

A+, A− and A0 are defined as the attracting sets, repelling sets and balance boundary of VFS V0,
respectively. For any element u in the set V0 is defined as VFS.

Suppose X0 = [a, b] is attracting sets of VFS V0. X = [c, d] is a certain internal containing
X0(X0 ⊂ X). [c, a] and [b, d] are the repelling sets of VFS. M is a point value which satisfies DA

∼
(u) = 1

in attracting sets [a, b], and M can be determined by actual problem or selected as the midpoint value
of interval [a, b] (see Figure 3).

Sustainability 2017, 9, 1124  6 of 16 

 
Figure 2. The relation of the relative membership degree function ( )A um


 and ( )cA

um


. 

Let ( ) ( ) ( )cA A A
D u u um m= -
  

, where ( )AD u


 is defined as the relative difference degree function of 

u  to A


 that satisfy the mapping : ( ) [ 1,1]AD u D u Î -


. Due to ( ) ( ) 1cA A
u um m+ =

 
, then 

( ) 2 ( ) 1A AD u um= -
 

 (9) 

( ) (1 ( )) / 2A Au D um = +
 

(10) 

where 0 ( ) 1, 0 ( ) 1cA A
u um m£ £ £ £

 
. 

Let 0 {( , )| , ( ) ( ) ( ), [ 1,1]}cA A A
V uD u UD u u u Dm m= Î = - Î-

  
, { | ,0 ( ) 1}AA u u U D u+ = Î < <


, { | , 1 ( ) 0}AA u u U D u- = Î - < <


 

and 0 { | , ( ) 0}AA u u U D u= Î =


. A+ , A-  and 0A  are defined as the attracting sets, repelling sets 
and balance boundary of VFS 0V , respectively. For any element u  in the set 0V  is defined as 
VFS. 

Suppose 0 [ , ]X a b=  is attracting sets of VFS 0V . [ , ]X c d=  is a certain internal containing 0X

0( )X XÌ . [ , ]c a  and [ , ]b d  are the repelling sets of VFS. M  is a point value which satisfies 
( ) 1AD u =


 in attracting sets [ , ]a b , and M  can be determined by actual problem or selected as the 

midpoint value of interval [ , ]a b  (see Figure 3). 

 
Figure 3. Location relationships among points ,  x M  and internals [ , ],[ , ]a b c d . 

Suppose x  is a random point in interval X . Then when x  lies in the left side of M : 

( )

( )

( ) ; [ , ]

( ) ; [ , ]

x a
A M a

x a
A c a

D u x a M

D u x c a

b

b

-
-

-
-

ìï = Îïïíïï =- Îïî





 (11) 

When x  lies in the right side of M : 

( )

( )

( ) ; [ , ]

( ) ; [ , ]

x b
A M b

x b
A d b

D u x M b

D u x b d

b

b

-
-

-
-

ìï = Îïïíïï =- Îïî





 (12) 

In which 0b³ , generally, setting 1b= . 
Suppose 1 2{ , , , }nX x x x=   is the sample set of drought risk evaluation. The index eigenvalue 

of the sample j  can be expressed as 1 2( , , , )j j j mjx x x x  where m  is the number of sample 
indices. Then the sample set can be express as ( )ij m nX x ´= , where 1,2, ,i m=  , 1, 2, ,j n=  . h  is 
the total grade number. Then the relative membership degree matrix hU  and the integrated relative 
membership degree '

i hu  can be obtained as follows: 

( ) 1

( ) 0c

A

A

u
u











( ) 0

( ) 1c

A

A

u
u











( ) ( ) 0.5cA A
u u  

 

( ) ( )cA A
u u 

 

( ) ( )cA A
u u 

 
rMlM M

Ma bc dx

Figure 3. Location relationships among points x, M and internals [a, b], [c, d].

Suppose x is a random point in interval X. Then when x lies in the left side of M: DA
∼
(u) =

( x−a
M−a

)β; x ∈ [a, M]

DA
∼
(u) = −

( x−a
c−a
)β; x ∈ [c, a]

(11)

When x lies in the right side of M:
DA
∼
(u) =

(
x−b
M−b

)β
; x ∈ [M, b]

DA
∼
(u) = −

(
x−b
d−b

)β
; x ∈ [b, d]

(12)

In which β ≥ 0, generally, setting β = 1.
Suppose X = {x1, x2, · · · , xn} is the sample set of drought risk evaluation. The index eigenvalue

of the sample j can be expressed as xj = (x1j, x2j, · · · , xmj) where m is the number of sample indices.
Then the sample set can be express as X = (xij)m×n, where i = 1, 2, · · · , m, j = 1, 2, · · · , n. h is the total
grade number. Then the relative membership degree matrix Uh and the integrated relative membership
degree iu

′
h can be obtained as follows:

[Uh] = (µA
∼
(u))

ih
, i = 1, 2, · · · , m , h = 1, 2, · · · , c (13)

iu
′
h =

1 +


m
∑

i=1

[
ωi

(
1− µA

∼
(u)ih

)]p

m
∑

i=1

(
ωiµA

∼
(u)ih

)p


α
p

−1

, i = 1, 2, · · · , m , h = 1, 2, · · · , c (14)
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where, ωi is the weight of index that can be calculated by Equation (8); α is the optimal rule parameter,
α = 1 is the least single method and α = 2 is the least square method; p is the distance parameter, p = 1
is Hamming distance and p = 2 is Euclidean distance. iu

′
h is the non-normalized relative membership

degree; Let the matrix of iu
′
h is U′ =

(
iu
′
h
)
. Then the normalized relative membership degree iuh can

be obtained through Equation (15), and the matrix of iuh is U =
(

iuh
)
.

iuh = iu
′
h/

c

∑
h=1

iu
′
h (15)

Finally, by adopting ranking feature value method, drought risk grade values of samples can be
obtained through Equation (16).

H = (1, 2, · · · , c) ·U (16)

3.5. Assessment Steps Basedon IDM-VFS Model

(1) The combination weight of each drought index can be calculated by Equations (7) and (8).
(2) Based on the IDM model, the level classification standards of drought risk assessment indices

can be calculated.
(3) According to the matrix of drought risk indices level classification standard, the interval matrix

Iab = ([a, b]ih), the bound matrix Icd = ([c, d]ih), and the point value matrix M = (Mih) of index i and
grade h can be obtained, where i = 1, 2, · · · , m, h = 1, 2, · · · , c. Then based on Equations (10)–(15),
the relative membership degree matrix Uh and the integrated relative membership degree iuh can be
obtained. Finally, based on the equation of (16), the grade characteristic values (H) of the samples can
be calculated.

(4) The grade of drought risk can be obtained through Equation (17)

R = W × H (17)

where, R is the comprehensive risk of each region; W is the combinations weight.

4. Results and Analysis

4.1. Agricultural Drought Index System

The reasonable indices of agricultural drought risk assessment should be able to accurately
describe the drought extent, and contain a clearly physical mechanism such as precipitation,
evapotranspiration, soil, and so on. According to the natural disaster system theory and the actual
situation of Nanpan River Basin, an integrated risk assessment indicator system of agricultural drought
was established (see Figure 4). The entire index system is divided into three subsystems: dangerousness,
sensitivity, and vulnerability.

The dangerousness indices describer the abnormal degree of nature and society. Among them the
extreme precipitation and temperature are the main inducement of droughts. Generally, the higher
the dangerousness the easier the drought disaster appears. That is, precipitation anomaly percentage
(I11: %), homogenization of precipitation and temperature (I12), soil moisture from November to April
(I13: %), per capita water resources (I14: m3/person) and reservoir water storage capacity (I15: %) are
chosen to describe the dangerousness subsystem. Among them, soil moisture from November to April
is determined by rate of water content of soil weight and the relative moisture of soil; reservoir water
storage capacity is equal to reservoir water storage capacity at the end of year divided by average
water storage capacity.

The sensitivity indices mainly describe the responsiveness to drought. The sensitivity of
hazard-inducing environment includes: climate, soil, economic development level, basic irrigation
facilities and other natural, social, economic and ecosystems. The greater the sensitivity, the larger
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the losses of drought. The rural per capita net income (I21: Yuan), agricultural irrigation water
consumption per acre (I22: m3/mu), water quantity per acre (I23: m3/mu), rate of irrigated cultivated
land (I24: %), water-saving irrigation proportion (I25: %), security area ratio (I26: %), electromechanical
drainage and irrigation area ratio (I27: %), drought relief investment level (I28: %) and emergency
response ability (I29) are chosen to depict the sensitivity subsystem. Among them, the drought relief
investment level refers to the level of actual investment that is needed in order to mitigate the loss
caused by drought and emergency response ability refers to the ability of the region to respond to
drought. Both factors are determined by experts’ experience.

The vulnerability indices reflect the anti-disaster capability. The higher the value vulnerability
of hazard-affected bodies, the greater the loss will be. The agricultural population density (I31:
person/km2), crop planting proportion (I32: %), grain output per unit area (I33: kg/mu), agricultural
output value density (I34: ten thousand/km2), drought rate (I34: %) and hazard rate (I35: %) are
selected to depict the vulnerability subsystem. Among them, the crop planting proportion is equal
to crop areas divided by land areas; agricultural output value density is equal to gross agricultural
production divided by land areas.
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4.2. Evaluate Drought Risk Based on IDM-VFS Model

Based on the agricultural drought risk assessment index system and IDM-VFS model, firstly the
ANP was combined with entropy to determine the weight of drought risk indices; then the information
diffusion model was adopted to determine the level classification standards of drought risk assessment
indices; and then the VFS model was employed to calculate the drought risk values in dangerousness,
sensitivity, and vulnerability, respectively. Finally, the comprehensive drought risk grade was obtained
and the risk zoning map was drawn. For demonstration purposes, Shilin has been chosen as an
example to discuss the risk assessment of drought in detail.

4.2.1. The Index Values of Shilin from 2000 to 2010

For better readability, the index values were shown in terms of dangerousness, sensitivity, and
vulnerability, respectively (see Tables 1–3).
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Table 1. Index values of dangerousness for drought risk assessment in Shilin.

Year
Precipitation

Anomaly
Percentage (%)

Homogenization of
Precipitation and

Temperature

Soil Moisture
from November to

April (%)

Per Capita Water
Resources

(m3/person)

Reservoir
Water Storage
Capacity (%)

2000 6.25 1.44 58.14 1849.19 −38.07
2001 4.47 1.39 76.86 1997.33 −35.85
2002 14.23 0.85 69.07 2232.97 −13.73
2003 −2.56 −1.32 51.76 1844.74 −25.11
2004 −3.95 1.49 62.40 2104.12 10.25
2005 −9.24 0.02 59.38 2034.91 26.95
2006 −5.10 −0.78 52.36 1678.53 28.76
2007 2.44 1.34 69.07 2093.22 5.34
2008 −6.78 1.62 68.63 2139.32 38.48
2009 −34.74 −3.74 35.05 1221.31 −2.25
2010 −29.03 −2.32 50.29 1530.61 5.25

Table 2. Index values of sensitivity for drought risk assessment in Shilin.

Year

Rural Per
Capita Net

Income
(Yuan)

Agricultural
Irrigation

Water
Consumption

Per Acre
(m3/mu)

Water
Quantity Per

Acre
(m3/mu)

Rate of
Irrigated

Cultivated
Land (%)

Water-
Saving

Irrigation
Proportion

(%)

Security
Area
Ratio
(%)

Electromechanically
Drainage and

Irrigation Area
Ratio (%)

Drought
Relief

Investment
Level

Emergency
Response

Ability

2000 1831 358.70 5306.44 28.26 52.55 11.65 8.25 10.05 50
2001 1995 354.44 5770.84 28.30 52.64 11.63 8.23 8.43 55
2002 2166 361.57 6579.76 28.62 52.66 11.85 8.30 9.70 55
2003 2312 413.94 5518.92 28.96 52.61 11.94 8.85 12.75 60
2004 2741 314.20 6336.76 29.34 52.68 11.95 8.60 12.47 60
2005 3089 368.43 6262.12 29.81 52.14 12.14 8.53 14.51 65
2006 3339 278.66 5285.88 30.67 53.90 12.81 8.98 17.24 70
2007 3708 221.14 6616.81 31.37 61.40 13.04 9.08 15.86 70
2008 4216 211.06 6750.69 31.26 65.44 13.05 8.97 18.35 75
2009 4790 199.24 3832.90 31.12 66.15 13.74 8.87 16.47 75
2010 5704 100.18 4780.11 31.15 69.80 13.77 8.80 14.65 80

Table 3. Index values of vulnerability for drought risk assessment in Shilin.

Year
Agricultural

Population Density
(Person/km2)

Crop Planting
Proportion (%)

Grain Output
Per Unit Area

(kg/mu)

Agricultural Output
Value Density (Ten

Thousand/km2)

Drought
Rate (%)

Hazard
Rate (%)

2000 119.82 12.99 327.11 13.42 2.30 2.21
2001 120.24 12.93 326.26 15.13 10.22 9.12
2002 117.14 12.90 322.38 16.42 34.21 29.28
2003 117.74 13.00 313.41 17.21 11.17 7.49
2004 119.23 13.98 316.03 37.34 6.92 4.63
2005 119.40 14.54 309.08 38.55 2.13 1.66
2006 125.36 14.73 304.00 38.79 17.95 15.66
2007 121.13 14.83 303.14 44.42 13.85 8.12
2008 121.67 16.48 281.59 52.68 20.05 16.05
2009 122.38 16.81 274.03 56.14 15.67 4.18
2010 125.00 17.96 258.09 59.15 35.19 31.74

4.2.2. Determine the Weight of Agricultural Drought Risk Indices

Index weight was determined by combined entropy weight method and ANP. The weight of
agricultural drought risk assessment indices was shown in Table 4.
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Table 4. Weight of agricultural drought risk assessment indices.

Index Weight Index Weight

Precipitation Anomaly Percentage (%) 0.0439 Security Area Ratio (%) 0.0196

Homogenization of Precipitation
and Temperature 0.0537 Electromechanical Drainage and

Irrigation Area Ratio (%) 0.0552

Soil Moisture from November to April (%) 0.0900 Drought Relief Investment Level (%) 0.0157

Per Capita Water Resources (m3/person) 0.0743 Emergency Response Ability 0.0652

Reservoir Water Storage Capacity (%) 0.0618 Agricultural Population Density 0.0248

Rural Per Capita Net Income (yuan) 0.0803 Crop planting Proportion (%) 0.0230

Agricultural Irrigation Water Consumption
Per Acre (m3/mu) 0.0534 Grain Output Per Unit Area (kg/mu) 0.0594

Water Quantity Per Acre (m3/mu) 0.0594 Agricultural Output Value Density
(ten thousand/km2) 0.0703

Rate of Irrigated Cultivated Land (%) 0.0302 Drought Rate (%) 0.0399

Water-saving Irrigation Proportion (%) 0.0212 Hazard Rate (%) 0.0584

4.2.3. Calculate the Level Classification Standards of Agricultural Drought Risk Assessment Indices

The level classification standards of each agricultural drought risk assessment index are
determined by IDM. Firstly, the index values were taken as samples of information diffusion, then the
exceeding probability of each indicator were calculated; finally, the level classification standards of
each drought risk assessment index were obtained (see Table 5).

Table 5. Level classification standards of each agricultural drought risk assessment index.

Index
Drought Level Standards

First Level
Lowest

Second Level
Lower

Third Level
Moderate

Forth Level
Higher

Fifth Level
Highest

Precipitation Anomaly Percentage (%) >−9.1 −24.5–−9.1 −33.1–−24.5 −44.5–−33.1 <−44.5

Homogenization of Precipitation
and Temperature >−0.3 -0.7–−0.3 −1.3–−0.7 −2.6–−1.3 <−2.6

Soil Moisture from November to April (%) >70 56–70 44–56 33–44 <33

Per Capita Water Resources (m3/person) >5180 3680–5180 1680–3680 680–1680 <680

Reservoir Water Storage Capacity (%) >80 50–80 30–50 −10–30 <−10

Rural Per Capita Net Income (yuan) >5500 4275–5500 2775–4275 1048–2775 <1048

Agricultural Irrigation Water
Consumption Per Acre (m3/mu) <140 140–292 292–594 594–819 >819

Water Quantity Per Acre (m3/mu) >1613 1315–1613 1197–1315 829–1197 <829

Rate of Irrigated Cultivated Land (%) >63 50–63 34–50 25–34 <25

Water-saving Irrigation Proportion (%) >46 36–46 27–36 12–27 <12

Security Area Ratio (%) >31 24–31 24–19 14–19 <14

Electromechanical Drainage and Irrigation
Area Ratio (%) >28 22–28 14–22 6–14 <6

Drought Relief Investment Level (%) >17 15–17 13–15 9–13 <9

Emergency Response Ability >90 70–90 40–70 20–40 <20

Agricultural Population Density <50 50–136 136–286 286–378 >378

Crop Planting Proportion (%) <6 6–18 18–25 25–40 >40

Grain Output Per Unit Area (kg/mu) >450 350–450 250–350 150–250 <150

Agricultural Output Value Density
(ten thousand/km2) >56 36–56 15–36 5–15 <5

Drought Rate (%) <7 7–12 12–24 24–31 >31

Hazard Rate (%) <5 5–11 11–20 20–25 >25
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4.2.4. Calculate Agricultural Drought Risk in Terms of Three Subsystems

According to Table 5, the interval matrix, bound matrix and point value matrix were established,
and then, based on Equations (10)–(16), the relative membership degree matrix and integrated
membership degree were obtained, and finally the drought risk was calculated in terms of
dangerousness, sensitivity, and vulnerability, respectively. The risk values of agricultural drought in
Shilin from 2000 to 2010 were shown in Table 6.

Table 6. Agricultural drought risk values of Shilin from 2000 to 2010.

Year Dangerousness Sensitivity Vulnerability

2000 1.35 2.87 2.98
2001 1.50 3.21 3.05
2002 1.28 3.98 3.09
2003 2.07 3.19 3.01
2004 1.65 3.89 2.93
2005 2.48 3.86 3.08
2006 2.35 3.71 3.06
2007 1.54 3.46 3.04
2008 1.72 3.35 3.08
2009 4.22 3.17 3.00
2010 3.88 2.96 3.10

Average 2.19 3.42 3.04

From Table 6, the dangerousness of 2009 is higher than other years. The vulnerability of 2010 is
more serious than other years. In 2009, the precipitation was less than the normal level, the temperature
was higher, and the water source in soil moisture was lower, resulting in the drought relief being
difficult. The average risk value of dangerousness is 2.19, the average risk value of sensitivity is 3.42,
and the average risk value of vulnerability is 3.04.

Adopting the same methods and procedures, we can obtain the average agricultural drought risk
values of the other 24 counties in terms of dangerousness, sensitivity, and vulnerability, respectively
(see Table 7).

Table 7. Agricultural drought dangerousness, sensitivity, and vulnerability, respectively.

County Dangerousness Sensitivity Vulnerability

YiLiang 2.02 2.59 2.13
ShiLin 2.19 3.42 3.04
QiLin 1.75 2.10 2.02

MaLong 1.69 2.98 2.97
LuLiang 1.73 2.72 2.46
ShiZong 2.79 2.60 3.10
LuoPing 1.90 3.32 2.67
FuYuan 1.99 3.69 2.95
ZhanYi 2.53 2.99 2.97
HongTa 1.75 2.45 1.44

JiangChuan 1.66 2.46 1.46
ChengJiang 1.79 2.84 1.54

TongHai 1.66 2.64 2.02
HuaNing 1.67 2.66 1.83
ErShan 2.13 2.80 2.75
GeJiu 1.68 3.38 2.16

KaiYuan 2.93 3.28 2.97
MengZi 1.57 3.80 2.33
JianShui 1.51 3.71 2.95
ShiPing 1.64 3.49 3.18

MiLe 1.88 3.91 3.23
LuXi 1.64 3.68 2.87

YanShan 1.72 3.62 2.70
QiuBei 2.76 3.72 2.82

GuangNan 1.86 4.12 3.12
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The dangerousness of droughts shows obvious regional characteristics in 25 counties in Nanpan
River Basin. The dangerousness of KaiYuan, ShiZong, QiuBei, and ZhanYi are higher, while JianShui,
LuXi, ShiPing, JiangChuan, TongHai are lower from 2000 to 2010. The major influence factors of
dangerousness are meteorological conditions and water resources. The Precipitation decreased from
east to west gradually, and the west regions are relatively short of water from 2000 to 2010.

The sensitivity of QiLin and HongTa are lower, while GuangNan, MiLe, QiuBei, LuXi, and ShiPing
are higher. The drought sensitivity mainly depends on natural resources and drought resistance
level. Water resource distribution in the Nanpan River Basin is uneven. In recent years, the local
government has increased investment in drought resistant. However, the drought resistant investments
in GuangNan, and QiuBei are lower, resulting in higher sensitivity.

HongTa and JiangChuan are located in the lowest drought vulnerability area, while MaLong and
GuangNan are in the highest. The vulnerability of drought is the reflection of industrial structure and
crop planting conditions. HongTa, JiangChuang, and TongHai are lower crop planting proportion and
agricultural population density so they belong to the lower drought vulnerability counties. The crop
planting proportion in MaLong and GuangNan is more than 15% and the agricultural population
density is higher, leading to the highest drought vulnerability.

The comparisons in terms of drought dangerousness, sensitivity, and vulnerability, respectively
in Nanpan River Basin was shown in Figure 5.
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4.2.5. Calculate the Comprehensive Risk Assessment of Agricultural Droughts

The comprehensive agricultural drought risk grades in Nanpan River Basin were shown in
Table 8.

Based on the assessment results, the comprehensive risk zoning map in Nanpan River Basin
was drawn.

From Figure 6, it can be see that the comprehensive risk drought in Nanpan River Basin has
regional characteristics. The comprehensive drought risk in Mengzi, Mile, Yanshan, Qiubei, Guangnan
is higer, while that in Yiliang, Qilin, Luliang, Luoping, Hongta, Jiangchuang, Chengjiang, Tonghaiis
lower. The risk level in the central, western and northwestern areas lower than the eastern area in the
Nanpan River Basin. Moreover, most areas of Nanpan River Basin experience moderate drought.
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Table 8. Comprehensive agricultural drought risk in Nanpan river basin.

Country Risk Level Country Risk Level

YiLiang 2 HuaNing 3
ShiLin 3 ErShan 3
QiLin 2 GeJiu 3

MaLong 3 KaiYuan 3
LuLiang 2 MengZi 4
ShiZong 3 JianShui 3
LuoPing 2 ShiPing 3
FuYuan 3 MiLe 4
ZhanYi 3 LuXi 3
HongTa 2 YanShan 4

JiangChuan 2 QiuBei 4
ChengJiang 2 GuangNan 4

TongHai 2
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5. Discussion and Conclusions

With global climate change, droughts are occurring more frequently in China, and drought risk
assessment is important for drought management. However, drought is a fuzzy phenomenon and there
is a lack of sufficient data. It is difficult to depict it accurately through traditional statistics, especially
in small sample problems. Therefore, some fuzzy and uncertainty theories have been developed to
assess the risk of drought. The variable fuzzy sets (VFS) can make full use of various index data to
obtain comprehensive risk evaluation results. The information diffusion method (IDM) can transform
a sample observed value into a fuzzy set and is capable of dealing with small sample problems.
Meanwhile, IDM can extract useful information and establish the level classification standards of
agricultural drought risk assessment indices, which is helpful to determine the relative membership
function of VFS. Therefore, in this research, a new model for agricultural drought risk assessment
based on information diffusion and variable fuzzy sets was proposed. In the IDM-VFS model, VFS
was adopted to assess the dangerousness, sensitivity, and vulnerability of agricultural drought and the
comprehensive agricultural drought risk of the Nanpan River Basin.
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According to the natural disaster system theory and actual situation of Nanpan River Basin,
an integrated agricultural drought risk index system with drought dangerousness indices, drought
sensitivity indices, and drought vulnerability indices was established. In the support of integrated
index system and IDM-VFS model, the Nanpan River Basin in Yunnan province was taken as a
case study area. There are many studies of drought around the world, but very few in the Nanpan
River Basin. Previous studies in the Nanpan River Basin have focused on the spatial and temporal
distribution of drought events and the links with some climate indices. Considering the integrated
impact of dangerousness of hazard-formative factors, sensitivity of hazard-inducing environment,
and vulnerability of hazard-affected bodies, to establish an integrated index system of agricultural
drought risk in Nanpan River Basinet is helpful to support drought risk management and develop
effective mitigation strategies in this region. The results showed that KaiYuan, ShiZong, QiuBei, and
ZhanYi have higher dangerousness, due to water shortage. Moreover, the sensitivity and vulnerability
in GuangNan are higher than other regions because of lower drought resistance level and higher crop
planting proportion. The comprehensive drought risk shows apparent regional characteristics, the
central, western and northwestern counties have lower risk than the eastern counties. In addition,
most areas of the Nanpan River Basin are located in a moderate drought risk region. The results
are consistent with the actual situation of the Nanpan River Basin and can provide reference and
decision-making for the emergency management department. However, due to the complexity of risk
assessment of droughts, the formation mechanism, and risk management of regional drought need to
be studied further.
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