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Abstract: Urban sustainable development strategies are of great importance to rapidly urbanized
countries such as China. One of the most challenging problems is how to coordinate urban spatial
development with social efficiency and environmental protection, e.g., highly efficient low-carbon
urban traffic. Despite broad research efforts with respect to the influence of urban form on travel
patterns, questions persist as to the impact of compact urban form on travel distance and modes.
In this study, we adopted urban form metrics to capture key dimensions of urban form with the aid
of image processing and spatial analysis based on satellite images and statistical data from the cases
of 35 cities. Combined with urban travel survey data, we empirically examined the relationships
between urban form and travel patterns of local urban residents. The results showed that urban
form and travel patterns have regionalized characteristics, e.g., the eastern cities are characterized
by disperse urban development patterns and longer commuting times on average compared with
western and central cities. We found that relatively smaller built-up areas, higher degrees of urban
spatial agglomeration and more paved road area per person would decrease the commuting time of
urban residents. We also found that the public transport choices of urban residents are positively
associated with built-up areas and commuting times, which suggests the need for provision and
promotion of facilities for a high-quality public transport system. The findings provide helpful
suggestions for the planning of sustainable urban form and development of transportation.
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1. Introduction

Research on sustainable urban form has been largely stimulated by the increasingly serious
worldwide environmental and social problems related with urban development [1–3]. The relationship
between transportation and urban land use is one of the crucial aspects in urban sustainability
research [4]. Some studies have shown that urban sprawl, referring to the rapid expansion of
metropolitan areas to rural areas, with low-density development strategy at the urban fringe usually
means more driving demand, longer commuting distance, increased vehicle emissions and related
social costs [5,6]. However, compact development, on the contrary, is not a panacea to the sprawling
urban areas when considering the existing urban inner structure and urban historical development
patterns [4,7,8]. Increasing the rate of public transport utilization, e.g., by controlling car traffic to save
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energy and reduce pollution emissions, has been a common consensus in low carbon city development
agendas [9]. Cycling and walking, regarded as “green travel” modes, are believed to be positive
in reducing carbon footprints in urban areas [10–12]. During the past decades, a series of urban
space development strategies have been proposed to curb disordered urban sprawl and reorient
towards low-carbon urban transport, through for example compact cities, smart growth and new
urbanism [13,14].

Urban form has diverse impacts on travel distance and mode. Compact development patterns,
featured by relatively high population density, mixed land use, and easily accessible facilities, are
beneficial for walking, cycling and public transportation. Their direct advantages are reduced travel
demand and shortened travel distance and time [15–17]. The widely cited ECOTEC report provided
several factors in the link between population density and travel patterns, e.g., increased accessibility of
contacts and activities for the local residents, reduced average spatial distances between destinations of
various services, and distance to public transport facilities [18]. Frank et al. [19] found that population
density and mix land use both relate with traffic mode choices, even excluding non-urban form factors
for both commuting and shopping trips. As Lee et al. [20] pointed out, destination, distance, density
and route are key factors in travel mode choice for urban residents. High quality public transport
systems linked to employment centers can greatly reduce the usage frequency of automobiles, while
highly mixed land uses were found to be positively correlated with transit, cycling and walking
commuting rates [21]. Higher destination accessibility, a larger number of exclusive bicycle lanes,
and greater connectivity between local streets might have significant correlations with the choice of
cycling [22].

Various empirical studies about the influences of urban form on travel patterns were presented
in different regions and at different spatial scales [23–27]. However, the relationship between urban
form and travel patterns remains far from entirely clear. The lack of comparability in different studies
causes the present understanding of the relationship between urban form and travel behavior to
be perplexing [28–31]. It is reasonable to believe that there is certain relationship between urban
form and travel patterns as described above. However, there are still several issues with respect to
compact urban form that need to be addressed. For example, could it reduce the travel time to improve
travel efficiency, and if possible, what characteristics play key roles? Is it effective in promoting
the transformation of the travel modes that residents usually prefer in order to achieve low-carbon
travel targets?

The spatially distributed urban form data could be conveniently extracted from geographic data
of urban areas, and the feature details are only limited by the map scale. However, if such kinds of
data are unavailable, remote sensing data could be used to extract construction land data, including
for buildings, in urban areas [32,33]. The various optical remote sensing sensors provide natural
generalizations of land surface features to fit different research purposes in urban areas, e.g., from
urban block to building levels, including 3D building information extraction [34–37]. In recent years,
remote sensing has been extensively applied in urban spatial growth monitoring (e.g., urban sprawl),
building reconstruction, urban land use classification, and socio-economic analysis [33,38,39].

For this purpose, we performed an empirical study by using 35 Chinese large cities and megacities
as case studies with the aid of remote sensing and spatial analysis. We interpreted the urban
construction land for all the case cities by using Landsat TM imageries, and then we calculated
urban form-related metrics. A questionnaire survey was carried out in all case cities to assist in the
analysis between urban form and travel patterns of local urban residents. We then investigated the
relationships between compact urban form and urban travel patterns. The purpose of this study is
to provide effective urban form metrics related to time-efficient and low-carbon travel patterns. The
findings in this study would provide helpful suggestions for sustainable urban form planning and
transportation development.
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2. Materials and Methods

2.1. Study Area

There are some discrepancies about the definitions of urban or urbanized areas. In Britain, for
example, the key principle underlying the urban and rural domains is its reliance on the identification
and characterization of physical settlements based on the dwelling density calculation [40]. In the
United States, the Census Bureau defines urban area as areas with population density of at least
1000 persons per square mile, which is based on the residential population density while omitting the
administrative boundaries [41]. In China, the term “urban area” refers to a specific administrative
unit. A municipal district (pronounced as “shixiaqu” in Chinese) or urban district (“shiqu” in Chinese)
consisting of several sub-districts is usually referred to as an urban area and is the basic spatial unit in
urban-related statistical reports [42,43]. We adopted the concept of urban district (shiqu) in this study.
The following data analysis, including urban construction land interpretation, statistical data analysis,
and questionnaire survey, are all carried out at the level of the urban district.

In this study, a total of 35 major cities in China, including 4 municipalities directly under the
Central Government of China, 5 cities with independent planning, and 26 provincial capitals (Taipei
and Lasa cities were excluded due to unavailability of data), were selected as the case cities (Figure 1).
As a general rule, the status of urban land development and infrastructure construction is closely
related to the level of economic development. For China, the level of economic development gradually
decreases from coastal areas (eastern) to western regions [44]. According to the traditional zoning
practice, we divided the case cities into east, central and west subsets, respectively (Figure 1).
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Figure 1. Location of the 35 case cities in China. Note: for Chongqing city, the urban area includes
the districts of Yuzhong, Dadukou, Jiangbei, Shapingba, Jiulongpo, Nan’an, Beibei, Yubei, and Banan.
For Wuhan city, Caidian district, Jiangxia district, Huangpi district and Xinzhou district are excluded
due to lack of statistical data. For Zhengzhou city, Shangjie district is excluded as an urban enclave.
For Shijiazhuang city, Jiangxingkuang district is excluded as an urban enclave.
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2.2. Remote Sensing Data Processing

The urban construction land of each city was interpreted from Landsat TM imagery collected
around 2010. The urban construction land or built-up land refers to human-constructed elements [45].
The selected scenes are of good image quality and are cloud-free. To enhance the accuracy of image
classification, the satellite transit time of each city was purposely selected to be overlapped with
vigorous vegetation growth stages locally.

All images were processed using ENVI 5.1 and ArcGIS 10.1. The radiometric and atmospheric
corrections were adopted with the dark-object subtraction method. The error of geometric correction
was controlled to under 0.5 pixels. The urban construction land was extracted by using unsupervised
classification [46,47]. The pre-processed reflective image was classified into 15 classes using the
ISODATA classification method, and then each of the classes was assigned and recoded into one
of the two land-use classes, i.e., construction land or non-construction land. Afterwards, the urban
construction land and rural construction land were distinguished by using 1:100,000 land-use map in
2010 and visual interpretation under the aid of Google Earth images for reference [48,49]. Finally, the
accuracy of classification of each city was evaluated by a set of 200 samples using random sampling
with reference to the high-resolution aerial images and land-use data set. The assessment results
showed that the overall accuracy of urban construction land classification in the case cities is above
90% (Figure 2).
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Landsat TM imagery. (a) The Landsat TM image and interpreted urban built-up area of Beijing City in
2010; and (b) the technical flow chart of the interpretation.
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2.3. Urban Form Metrics

The following urban form metrics, including urban compactness, agglomeration degree, size,
density, and vehicle availability that represent the multi-faceted physical dimensions of compact urban
form, were introduced to quantify the influence of urban form on travel patterns.

2.3.1. Compactness

We proposed a modified version of urban compactness metric based on the law of gravitation.
The value of T, proposed by Thinh (2002), positively correlates with the compactness of construction
land of a specific city [50]. However, it is not reasonable when comparing the compactness of cities with
different spatial scales [17]. In this study, a modified urban compactness index, named the normalized
compactness index (NCI) is used to overcome the limitation of T. The formula of NCI is as follows [2]:

NCI =
T

Tmax
=

M(M− 1)
N(N − 1)

×

N
∑

i=1

N
∑

j=1

Pi Pj
d2(i,j)

M
∑

i′=1

M
∑

j′=1

Si′Sj′

d′2(i′ ,j′)

(1)

where T is the average gravity of a specific urban space, i.e., the urban construction land compactness;
Pi and Pj are the construction areas for grid i and j, respectively; d(i, j) is the Euclidean distance
between grid i and j; and N is the total number of grids in the study area. Tmax is the compactness
of the equivalent circular-shaped urban area; Si ′ and Sj′ are the construction areas in grid i′ and j′

in the equivalent circular-shaped urban area, respectively; and M is the total number of grids in the
equivalent circular-shaped urban area. NCI is dimensionless and within the range of 0 and 1.

2.3.2. Spatial Agglomeration

The global spatial autocorrelation methods use a single metric to detect spatial patterns and
reflect the average degree of agglomeration throughout the study area [51]. In this study, we used the
global Moran’s I (GMI) index to represent the spatial agglomeration degree of urban construction land.
The calculation of GMI follows the same meshing scheme as NCI and its formula is as follows [52]:

GMI =
n
S0

n
∑

i=1

n
∑

j=1
wi,jzizj

n
∑

i=1
z2

i

(2)

where zi is the deviation of construction land percentage for grid i from its mean (xi − x), xi is the
proportion of urban construction in grid i, x is the average construction land percentage for all grids,
wi,j is the spatial weight between feature i and j, n is the total number of grids, and S0 is the aggregate
of all the spatial weights:

S0 =
n

∑
i=1

n

∑
j=1

wi,j (3)

The value of GMI ranges from−1 to 1. The significance of GMI can be tested by Z statistics. Given
a certain significance level, the value of a GMI closer to 1 suggests a more clustered global spatial
pattern, while a value closer to −1 suggests a more dispersed pattern. We specified the neighborhood
relationship using the “inverse distance” weight function to obtain Moran’s I statistics. All analyses
were computed using the ArcGIS spatial statistics tools package.

2.3.3. Urban Scale and Density

1. Built-up area (BuA)
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BuA (“jianchengqu” in Chinese) is not a recognized administrative unit, but is actually
construction land with mature infrastructure, which is used to represent the urban expansion scale.

2. Population Density (PD)

PD is defined as:
PD =

RP
BuA

(4)

where RP is the urban resident population. In this study, we selected the urban resident population
as the urban population, but not the registered non-agricultural population in order to guarantee the
validity of the urban population density calculation [53].

3. Transportation Infrastructure Availability

The transportation infrastructure availability metrics consist of three quantities, i.e., road area per
capita (RAC), availability of public transportation (APT), and availability of taxi (AT); the three metrics
represent road density, number of public transportation vehicles per ten thousand people, and number
of taxis per ten thousand people, respectively [54]. The definitions are as follows:

RAC =
RA
RP

(5)

APT =
PT
RP
× 104 (6)

AT =
T

RP
× 104 (7)

where RA is paved road area (m2), PT is the number of public transportation vehicles in operation,
and T is the number of taxis in operation.

2.4. Questionnaire Survey

The typical daily travel data of local residents in the case cities were collected by a questionnaire
campaign conducted from January to March 2011, and in total, 2535 valid questionnaires were collected.
The theme of the questionnaire focused on the travel patterns of the urban residents in major cities in
China [55].

We designed the questionnaire based on the review of related literature (e.g., Stead et al. [29]
and Kenworthy et al. [43]). As a general practice, travel time and travel mode are the most common
contents in urban form and travel characteristic-related studies. The questionnaire survey was carried
out at the level of the urban district, geographically the same as the corresponding urban statistical
sources. We travelled to the 35 case cities in 2011 and conducted the questionnaire surveys [17].
During the questionnaire survey in a specific city, the respondents were randomly selected from each
sub-district of that city. We excluded the respondents whose accommodation was close to their places
of work.

The questions in this questionnaire related with this study are as follows: age (≤20, 20–39,
30–39, 40–49, 50–59, ≥60); place of residence (specific to sub-district); occupation (office worker,
service staff, merchant, freelancer and others); daily commuting time in minutes between home
and working place; and the most common kind of commuting mode (i.e., the most frequently used
transportation mode, including walking, cycling, automobile, bus, bus rapid transit, electromobile,
subway, light rail, and others). The questionnaire also collected information on the major leisure
activities (e.g., recreation, shopping, outside eating, visiting friends and others) of the respondent
during the weekend. Specifically, we asked the respondent to estimate the travel times for all the
activities he/she preferred as listed above. We assumed that the main travel cost on workdays is
commuting time, while the main travel cost in weekend is leisure time. The average daily one-way
travel time per week is calculated as (workday × 5 + weekend × 2)/7.
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3. Results

3.1. Urban Form Characteristics

The maximum, minimum, mean and standard deviation of the urban form metrics for each case
city were calculated (Table 1).

Table 1. Values of the metrics of urban form for the case cities.

Indicator 1 Maximum Minimum Mean (std.)

East Central West East Central West East Central West

NCI (-) 0.165 0.265 0.259 0.043 0.055 0.067 0.096 (0.034) 0.123 (0.073) 0.147 (0.060)
GMI 2 (-) 0.642 0.678 0.655 0.360 0.496 0.522 0.513 (0.069) 0.579 (0.059) 0.572 (0.047)

BuA (km2) 1223 500 870 98 208 67 510 (336) 331 (92) 292 (222)
PD (person/ha) 202 137 172 94 87 83 128 (27) 112 (17) 125 (29)

RAC (m2/person) 16.745 16.047 14.248 4.809 6.681 5.349 10.678 (3.670) 11.127 (3.052) 9.253 (2.761)
APT (vehicles/104 person) 26 13 17 7 7 7 12 (4) 11 (2) 12 (3)
AT (vehicles/104 person) 41 50 48 14 18 13 23 (8) 28 (10) 27 (12)

1 Data sources: Landsat TM, China City Statistical Yearbook (2011), and the Sixth National Population Census of the
People’s Republic of China (2010 Chinese Census). 2 z-score > 2.58, p-value < 0.01. NCI: normalized compactness
index; GMI: global Moran’s I; BuA: built-up area; PD: population density; APT: availability of public transportation;
AT: availability of taxi.

The comparison of urban form metrics among different regions (see Figure 1 in this study for
the classification) enables a more detailed view of how urban form varies in China. The cities in East
China have the largest BuA, with an average area of 510 km2, followed by the Central and West China,
at 331 km2 and 292 km2, respectively. Meanwhile, cities in East China have lower compactness and
agglomeration degree as measured by NCI of 0.096 and GMI of 0.513 on average, compared with 0.123
and 0.579 in Central China, and 0.147 and 0.572 in West China. The western cities have the smallest
BuA, the highest NCI, and medium GMI accordingly, indicating lower levels of urban expansion,
greater urban compactness, and moderate spatial agglomeration degrees.

The central cities have a relatively higher road area per capita and number of taxis per ten thousand
people, as well as a slightly lower population density and number of public transportation vehicles
per ten thousand people on average than the other regions, indicating better taxi availability and road
construction, but relatively sparse urban density and a weak urban public transport system. Note that
the road area per capita in western cities is the lowest, an obvious indication of inadequate investment
in road construction.

The sizes of the eastern cities vary greatly. The BuA of Haikou city is only 98 km2, just above that
of the city of Xining, which has the smallest BuA among the case cities, in West China. Meanwhile, the
cities of Beijing (1223 km2), Shanghai (999 km2), and Guangzhou (952 km2) in East China are almost
three or four times larger than the average urban BuAs of central and western regions. Similarly, the
PD and AT in western cities also show large variations. For example, the densest city is Xi’an, and the
sparsest is Urumchi city, with 172 and 82 person/ha, respectively.

3.2. Urban Travel Patterns

The comparative analysis of the questionnaire reflects the general travel patterns of the case cities,
including both work and life aspects (Figure 3). The difference between average daily commuting time
(one-way, hereinafter) and average travel time over the whole week (one-way, hereinafter) of urban
residents is about 2 min, and the latter is slightly higher. In East China, the average daily commuting
time of urban residents is about 30 min, longer than the 27 and 26 min found in West and Central
China, respectively. In terms of the average travel time over the whole week, for the eastern cities this
time is 33 min, and for the other regions this value is 1 minute more than the corresponding average
daily commuting times.

In all case cities, the three most time-consuming cities for commuting are located in East China.
The daily commuting time in Shenzhen city is the longest—up to 45 min, followed by 43 min in
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Shanghai and 38 min in Hangzhou, respectively. Meanwhile, the three cities with the shortest
commuting times at less than 18 min are also located in East China: Haikou, Qingdao, and Nanjing.
For the average travel time during the whole week, in Shenzhen it is 55 min, which is the longest time
among all case cities, followed by Shanghai, Hangzhou and Chengdu, with times of more than 40 min.
It is noted that in Urumchi, the average travel time per week is 5 min less than on workdays, while it
is over 18 min less than in Beijing, which partially signifies the different intensities of leisure activities
between the two cities.
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The most common commuting mode choice for urban residents is shown in Figure 4. The public
transport modes, including bus, subway and light rail have the highest frequency of usage, and the
average utilization rate is 43.69%. In Shenzhen this rate is 79.69%, which is the highest amongst all
cities. Even in Shijiazhuang, the city with the lowest utilization rate, use is above 20%.

The second most common commuting mode choice following public transport is the private car,
and its average usage ratio is 22.58%. The highest usage ratio is 36.11% in Hangzhou, a core city
located at southern Yangtze River Delta in China. The lowest usage ratio is in the mountainous city
Chongqing, where only 10.00% urban residents prefer motoring as a common commuting mode.

The average ratios of walking and cycling are 15.37% and 8.39%, respectively. In Guiyang,
46.88% residents prefer walking as a common commuting mode; while in Shijiazhuang, 23.44%
residents use cycling as a common commuting mode, which is the highest figure in all the case cities.
Additionally, the average usage ratios of the autocycle and the other means of transportation are 7.91%
and 2.43%, respectively.
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The correlation analysis results between the commuting time and mode is shown in Table 2.
The average daily commuting time negatively correlates with walking, cycling, and autocycle use, but
positively correlates with the usage of private car and public transportation means; the most significant
correlations are with walking and public transportation.

Table 2. Correlation analysis between urban resident daily commuting time and the proportions for
the most common commuting modes.

Public Transit Car Walking Cycling Autocycle

Average daily
commuting

time
0.461 * 0.325 −0.433 * −0.356 −0.168

N 35 35 35 35 35

* Correlation is significant at the 0.05 level (two-tailed).

3.3. Effects of Urban form on Urban Commuting

The linear regressions between average commuting time in workdays (CTW) with NCI, GMI,
BuA, PD, and RAC shown in Figure 5. Except for BuA, the CTW decreases linearly with the metrics.
The linear regressions are significant between CTW and GMI (R = −0.48, p < 0.01), RAC (R = −0.41,
p < 0.01), and BuA (R = 0.54, p < 0.01). In other words, the CTWs of urban residents are shorter, with a
higher spatial agglomeration degree of urban construction land and road construction area per capita,
but longer with a larger BuA. The most typical example is Shenzhen. This city has the lowest GMI
(0.36), a lower RAC (8.63 m2/person), a relatively higher BuA (830 km2), and the longest CTW (45 min).
It is worth noting that although the BuA of Nanjing is more than 600 km2, the CTW is only 18 min; this
could be attributed to its high RAC and GMI, with values of 16.43 m2/person and 0.64, respectively,
the second and third highest in all the case cities.
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Figure 5. The relationship between the average commuting time in workdays (CTW) and (a) normalized
compactness index (NCI), (b) global Moran’s I (GMI), (c) built-up area (BuA), (d) population density
(PD), and (e) road area per capita (RAC). (BJ: Beijing; CC: Changchun; CS: Changsha; CD-Chengdu;
DL: Dalian; FZ: Fuzhou; GZ: Guangzhou; GY: Guiyang; HA: Harbin; HK: Haikou; HZ: Hangzhou;
HF: Hefei; HO: Hohhote; JN: Jinan; KM: Kunming; LZ: Lanzhou; NC: Nanchang; NJ: Nanjing; NN:
Nanning; NB: Ningbo; QD: Qingdao; SH: Shanghai; SZ: Shenzhen; SY: Shenyang; SJZ: Shijiazhuang;
TY: Taiyuan; TJ: Tianjin; UR: Urumchi; WH: Wuhan; XA: Xi’an; XN: Xining; XM: Xiamen; YC: Yinchuan;
ZZ: Zhengzhou; CQ: Chongqing, the same hereinafter. Note: the city of Shanghai represented by empty
dot is excluded due to its extremely high population density).

Figure 6 shows the linear regressions between the proportion of motoring (M) and public
transportation (PT) with BuA in case cities. Both of the regressions are significant; for M, R = −0.23
and p < 0.05, while for PT, R = 0.54 and p < 0.01.

There is large difference in the private car usage ratio for cities with BuA distributed in the range of
200 to 400 km2. For example, Hangzhou has the highest usage of private cars at 36.11%, and the lowest
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is only 11.00% for the city of Xi’an. The public transport usage ratio exhibits the same features in those
cities. For example, Dalian has the highest usage of public transport at 63.51%, while Shijiazhuang is
the city with the lowest usage at only 20.31%.
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There are no significant correlations between APT and AT with urban commuting time, and
urban form metrics excluding BuA do not show significant correlations with urban commuting mode.
In addition, the relationship between the average daily travel time of whole week and urban form
metrics is similar as that of the weekday.

4. Discussion

4.1. Regional Differences in Urban Form

Urban form is the combined result of natural, social, and economic factors. In turn, the spatial form
of a specific city will exert feedback on its sustainability in economy, society and environment. Our
results confirmed that there exist certain differences in urban form characteristics in East, Central and
West China (Table 1). The spatial forms of the cities in East China, one of the most developed regions
in China, are featured by the dispersed, scattered or leap-frogging kind of development patterns,
according to the quantity of NCI, GMI, BuA and remote sensing data. Since the late 1970s, rapid
urbanization (from 17.92% in 1978 to 54.77% in 2014) has been witnessed in China [56]. The expansion of
urban space in China followed a large-scale, low-density, fragmented and discontinued spatial sprawl
pattern with significantly different mechanisms compared with the western developed countries [57].
During this round of rapid industrialization and urbanization, the urban land in eastern cities expanded
much faster than the cities in Central and West China [58]. Much of the fragmentation at the urban
fringes, especially for the eastern cities, could be attributed to the newly established satellite cities
around the central city and a series of urban expansion programs, e.g., high-tech development zone,
high-tech park and large shopping plaza, which had emerged on a large scale in many cities in
China. This kind of disordered urban spatial expansion has caused dispersed urban form and
negative consequences, such as inefficient use of land, traffic jams, and an encroached suburban green
belt [59,60].

Although the spatial extents expanded greatly, the urban populations in eastern cities still maintain
a relatively high density (Table 1). Due to a great number of migrants from Central and West China
and the rural areas around the cities in the past decades, the urban population in eastern cities has
experienced a dramatic increase [61,62]. The surging population has put a lot of pressure on urban
infrastructure and public service facilities, especially traffic. Despite this, the availability of public
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transport vehicles and the levels of paved-road construction in eastern cities are still at high levels
(the proportion of public transport vehicles is the highest and the level of paved-road construction is
the second-highest of the studied cities). This is obviously correlated with local economic development.

4.2. High-Efficient and Low-Carbon Travel Pattern

The significant urban sprawl state of the eastern cities is verified by the highest mean BuA, and
lowest NCI and GMI. Considering CTW of urban residents, this is 3–4 min longer in the eastern cities
than in the western and central cities (Figure 3). This suggests that the dispersed (scattered) pattern of
construction land development pattern at urban scale is associated with low efficiency of commuting.
The results of regression analysis further showed that the relatively smaller built-up area and higher
urban spatial agglomeration degree would decrease the commuting time of urban residents in case
cities (Figure 5). In other words, compact urban form could improve urban commuting efficiency.

However, NCI does not show significant relationship with urban commuting time. It is noted
that the cities located at the lower left corner in Figure 5a, e.g., Nanjing, Haikou, Guiyang and
Qingdao, with relative lower NCI and CTW values, are featured by either a relatively higher spatial
agglomeration degree (e.g., Nanjing and Guiyang), smaller urban BuA (e.g., Haikou and Qingdao),
or more paved road area per person (e.g., Nanjing and Qingdao). Actually, limited by the nature of
metrics of compactness we adopted, NCI utilizes the spatial distances between each grid (individual
settlement areas) to assess the dispersion degree of the whole city but not the specific home–work
distance, which might be more important, as some researchers argue [63,64]. We argued that urban
spatial form metrics, e.g., NCI, could not well explain the causes of urban commuting time solely, and
it is necessary to combine it with other urban metrics for understanding the complicated contributors
to urban commuting time.

Meanwhile, we found that PD at urban scale does not have significant effect on commuting time
in case cities, which is inconsistent with the general point of view that urban population density is
negatively correlated with the CWT [18,19]. As we mentioned above, high urban density and dispersed
urban development are concurrent in eastern cities, which inevitably increases the complexity in
this problem.

The choice of any specific kind of commuting mode is the outcome of balance between efficiency
and convenience. The travel time by means of the private car seems more likely to be impacted by
the traffic conditions. China’s urban population and construction areas expanded quickly in recent
years, which have caused an explosive demand for car ownership and consequently, traffic jams [65].
Interestingly, our results showed that the car usage rate is negatively correlated with urban BuA. In
contrast, urban construction land expansion-induced longer travel distances will usually result more
private car usage, especially in North America [66]. Additionally, there is large difference in private
car usage ratio in the case cities, with BuAs ranging from 200 to 400 km2. It would be beneficial to
understand this phenomenon in traffic mode preferences by jointly considering traffic conditions and
socioeconomic factors [67,68].

In our study, the most common commuting mode is public transportation, due to its stable
commuting time (Figure 4). We also found that the most part of the public transport choices of urban
residents are significantly associated with larger built-up areas (Figure 6), and are positively correlated
with longer commuting times (Table 2), which might suggest the need for provision and promotion of
facilities for a high-quality public transport system. However, we checked the subway mileages for
the cities involved in this study up to the middle of 2016 (the mileage of light rail system is included),
and found that only 6 cities’ subway mileages were above 200 km (Table 3). Considering the huge
populations and large urban areas for most of the case cities, the subway (light rail) systems to date are
still far from sufficient, although the developing speed is quite quick. Therefore, it is important for this
development to reach wider Chinese cities and regions to maintain equal economic distribution across
the nation.
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Table 3. Subway mileage of part of the case cities in this study up to the middle of 2016.

City Subway Mileage (km) City Subway Mileage (km)

Shanghai 650 Changsha 69
Beijing 554 Kunming 60

Guangzhou 266 Changchun 60
Shenzhen 230 Shenyang 55
Nanjing 225 Xi’an 52

Chongqing 202 Nanchang 29
Dalian 144 Zhengzhou 25
Tianjin 140 Fuzhou 25
Wuhan 125 Harbin 18

Chengdu 88 Qingdao 12
Hangzhou 82 Nanning 10

Ningbo 75

Although per capita car ownership and average energy consumption in China are still lower than
in Europe and North America, it has brought enormous pressure and challenges to the sustainable
development for Chinese large cities and megacities. The provision and promotion of facilities for
low-carbon travel modes, such as high-quality public transport systems, should be regarded as key
influential factors in the urban resident’s travel mode choice in low carbon city construction practices
in China.

4.3. Limitations and Future Work

In this study, we applied remote sensing data to extract the urban construction land for all
the case cities. However, it is noteworthy that cross sectional remote sensing data cannot well
inform the properties of land use in urban areas, e.g., the population density and 3D volumes of
the buildings. For densely populated cities, the population density (building volumes) might differ
greatly from the center to the suburbs, so it might be more reasonable to combine the population
density (building volumes) at each parcel as a weight factor when calculating the urban form metrics,
e.g., the urban compactness index.

The commuting pattern of local urban residents in the case cites was collected by questionnaire
survey. Due to the limited registered questionnaire in each case city, there might exist relative large
variations in commuting pattern data. For the case cities in each region, i.e., Eastern, Central
and Western China, the commuting patterns may also have large differences due to the varied
socio-economic status and supply of urban infrastructure. Therefore, the commuting pattern showed
in this study is not suitable for a horizontal comparison, and it can only be used as a general reference
to illustrate the coupling relationship between urban form and urban commuting in the case cities
in China.

Our results showed some empirical correlationships between urban form and urban commuting
pattern in the case cities. Further, it would be a beneficial attempt to correlate the specific commuting
pattern with a carbon dioxide emission index in the study of urban form and sustainable transportation,
and then to correlate this index with the proposed urban form metrics.

5. Conclusions

Due to the increasingly problematic environmental and social problems in large cities in China,
sustainable urban development strategies have received a great deal of attention. This study aimed to
explore the relationship between urban form and urban travel patterns, which remains far from clear,
despite broad research efforts in this area.

In this study, we used satellite images and statistical data to calculate representative urban form
metrics of 35 Chinese large cities and megacities; we also carried out a questionnaire campaign in
case cities focused on travel time and mode of local urban residents. We analyzed the urban form
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metrics and travel patterns for all the case cities, and empirically examined whether compact urban
form is associated with high-efficient and low-carbon travel pattern. We found that dispersed urban
development pattern plays a significant role in increasing travel time, while cities with larger built-up
areas usually have more public transport but a lower ratio of motoring. The results also show that
there is no statistically significant relationship between population density and travel patterns at an
urban scale.

This study could provide some empirical insights into sustainable urban form planning and
transportation development. Further studies should take more causal socioeconomic factors into
analysis, and might also benefit from a more refined classification of urban land use.
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