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Abstract: There has been a significant increase in attention toward designing smart structures and
vibration control of structures in recent decades, and numerous methods and algorithms have been
developed and experimentally investigated. However, the majority of these studies used the shear
frame models to represent structures. Since the simplified models do not reflect the realistic behavior
of those structures with irregularity in plan and elevation, the traditional methods for designing
an optimal control that guarantees a desirable performance is impossible. In this study, the behavior
of a 10-story irregular steel frame building is investigated with and without controlling systems.
Two pairs of eccentrically placed MR dampers on each story are used in order to mitigate the coupled
translational–torsional vibration. The controlling forces are determined using active, passive-off,
passive-on, and clipped optimal controls based on the linear quadratic regulator (LQR) algorithm.
The results demonstrate that using pairs of magneto-rheological (MR) dampers with an appropriate
distance on lower story levels significantly reduces the inter-story drifts for the corner columns,
as well as the roof displacements and accelerations.

Keywords: semi-active control; LQR control; clipped-optimal control; MR damper; irregular building

1. Introduction

Numerous studies have been carried out in order to investigate the pre- and post-earthquake
performance of civil infrastructures under different ground motions including several historic
earthquakes such as 1940 El Centro, 1994 Northridge, 1995 Kobe, and 1999 Chi-Chi [1–4]. Recent
studies have shown that the traditional approaches to designing earthquake resistance buildings,
by using strong materials or by increasing the cross-sectional area of structural members, do not
guarantee the desired performance for future earthquakes. Ghodrati Amiri et al. [5] showed that
even with the advances in understanding the characteristics of the ground motions, as well as
the nonlinear behavior of structural materials, the minimum damage level under the future unknown
earthquake loads is not obtainable using conventional retrofitting techniques; thus, they proposed new
configurations for retrofitting the existing steel frames. In particular, for those buildings with irregular
designs in plan and elevation [6–9] advanced methods of vibration control are essential.

The majority of the research studies in the field of active and passive control of seismic vibrations
focused on structures with symmetric designs, and the developed methods do not always meet
the desired performance for irregular structures. Therefore, investigating the advanced methods
for increasing the safety and serviceability of such buildings have gained significant attention
in the last decade [10]. It is accepted that the nature of buildings is asymmetric due to structural
and nonstructural components that cause eccentricity, and consequently, translational–torsional
vibration under bidirectional earthquake loads. Although a significant number of studies have
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been carried out on seismic performance of structures under unidirectional excitations, and by using
the independent shear frame models in two directions [11–15], investigating the performance of
irregular buildings requires bidirectional seismic loading, and earthquakes have arbitrary directions
that can be represented by three components [15,16]. Using simplified shear models ignores the extreme
cases for the corner columns that can undergo larger displacements, and may fail before the other
internal columns. In addition, under larger inter-story drifts, the earthquake resistant elements of
the external frames may behave nonlinearly [17–19].

Several techniques have been developed in order to suppress the structural vibrations induced by
earthquakes, due to the advances in modern control engineering and by means of smart control devices
such as magneto-rheological (MR) dampers, shape memory alloys (SMAs) wires, tuned mass dampers
(TMDs), and base-isolators, which can be categorized into passive, active, semi-active, and hybrid
systems [20–27]. There have been an increases in the attention toward the application of MR dampers
in both research and practical application, because of their reliable and outstanding performance [28–36].
The performance of any control devices is directly related to the control algorithms that are designed for
each specific case. Among the most popular algorithms, such as linear quadratic regulator (LQR) [37–39],
linear quadratic Gaussian (LQG) [40], fuzzy logic control [41,42], proportional integral derivative (PID),
sliding mode control [43], and H∞ control [44], LQR has gained a significant importance and attention
for optimal design purposes [42]. Yoshida et al. [45] studied the translational and torsional motion of
a two-story building using MR dampers. Kim and Adeli [46] also used hybrid control for a 3D high-rise
building and suggested the application of LQR and LQG algorithms for feedback control.

Yoshida et al. [45] used MR dampers to control coupled translational–torsional vibration of
a two-story irregular building. In another study, Kim and Adeli [46] recommended LQR and LQG
control for high-rise irregular steel frames. Chandiramani and Motra [47] also used multiple MR
dampers to control torsional vibrations of a building with an asymmetric plan. Thus, the location of
dampers are critical for irregular buildings [48]. In this paper, the LQR algorithm is used in order to
determine the optimal control force for a purely active control, and the clipped-optimal method is used
for the semi-active control; in addition, passive-on with different constant voltages ranging from 0 to 9
volts are used to compare the performance of each method. A ten-story irregular building is selected
for numerical simulations, and the effectiveness of the number of story levels with controllable MR
dampers are also investigated.

2. Governing Equations of Motion for the Controllable Building Using MR Dampers

Figure 1 demonstrates the location of the MR dampers schematically. In this figure, C.M.
is the center of mass and C.R. is the center of rigidity, and each floor rotates about its center of
rigidity. ex and ey are the eccentricities in the x and y directions, respectively. Each MR damper is placed
with a distance of di from the center of mass to create a torsional resisting moment about the vertical
axis, which counteracts the torsional displacements imposed due to the eccentricity of the mass.

The governing equations of motion for a controlled n-degree-of-freedom (nDOF) system under
earthquake load,

..
xg, is expressed using (Equation (1)) [49]:

[M]
{ ..

x(t)
}
+ [C]

{ .
x
}
+ [K]{x} = [γ]{u(t)}+ {δ} ..

xg(t), (1)

which can be solved by rewriting (Equation (1)) in the state-space form as in (Equation (2)):

{
.
Z(t)} = [A]{Z(t)}+ [Bu]{u(t)}+ {Br}

..
xg(t), (2)

where Z is the state vector, u is the input control force vector. A is the system matrix, and Bu and Br

are the input matrices (Equation (3))

{Z(t)} =
{

x(t)
.
x(t)

}
; A =

[
[0] I

−M−1K −M−1C

]
; {Bu} =

[
[0]

M−1[γ]

]
; {Br} =

[
{0}

[M]−1{δ}

]
. (3)



Sustainability 2017, 9, 1255 3 of 20
Sustainability 2017, 9, 1255  3 of 19 

 

Figure 1. Schematic view of the magneto-rheological (MR) dampers placements and the 
corresponding controlling forces. 

Therefore, the first-order equation of motion in state–space form can be solved using the 
procedure that is explained in details by Azimi et al. [50] for a new semi-active control for braced 
frames. In (Equation (1)), {δ} is the coefficient vector for the earthquake ground acceleration, ݔሷ௚(ݐ), 
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Figure 1. Schematic view of the magneto-rheological (MR) dampers placements and the corresponding
controlling forces.

Therefore, the first-order equation of motion in state–space form can be solved using the procedure
that is explained in details by Azimi et al. [50] for a new semi-active control for braced frames.
In (Equation (1)), {δ} is the coefficient vector for the earthquake ground acceleration,

..
xg(t), and [γ]

represents the influence of the control devices on each degree of freedom, which can be defined as
in (Equation (4)):

[γ] =



D1 −D2

D2 −Di

Di
. . .
. . . −Dn

Dn


, (4)

where Di is a (3 × 4) matrix for the ith story, which is defined as in (Equation (5)):

Di =

 1 1 0 0
0 0 1 1

d1,i −d2,i −d3,i d4,i

, (5)

The mass matrix, M, can be assembles as in (Equation (6)) [51]:

M =

 [m∗1 ] [0] [0]

[0]
. . . [0]

[0] [0] [m∗n]

, (6)

where [0] is (3 × 3)-dimensional zero matrix that is defined as in (Equation (7)):

[m∗n] =

 mn 0 0
0 mn 0
0 0 Iz,n

, (7)
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where mn and Iz,n are the mass and mass moment of inertia about z-direction of nth story, respectively.
The mass moment of inertia about z-direction is defined as in (Equation (8)):

Iz =
jm

∑
j=1

[mj

12

(
a2 + b2

)
+ mj[

(
xm,j − Xm

)2
+
(
ym,j −Ym

)2
]

]
, (8)

where, mx,j, and my,j are the mass of jth slab in x and y directions, with coordinate of xm,j and ym,j,
respectively. a and b are the dimensions of each slab, and (Xm, Ym) is the coordinate of the center of
mass of each story diaphragm. Stiffness of each story, [kn], can be determined as in (Equation (9)):

[kn] =

 kxx 0 kxθ

0 kyy kyθ

kθx kθy kθθ

, (9)

where:

kxx =
nk

∑
j=1

kx,j, kyy =
nk

∑
j=1

ky,j, (10)

kxθ = kθx =
nk

∑
j=1

kx,j

(
Yk − yk,j

)
, (11)

kyθ = kθy =
nk

∑
j=1

ky,j

(
Xk − xk,j

)
, (12)

kθθ =
jk

∑
j=1

(
kx,j

(
Y− yk,j

)2
+ ky,j

(
X− xk,j

)2
)

. (13)

In the above equations, kx,j, and ky,j denote the stiffness of the jth column with coordinates of
(xk,j, yk,j). The center of rigidity is located at (Xk, Yk). Thus, the three-dimensional stiffness matrix for
the building can be assembled as follows (Equation (14)):

Ks =


k1 + k2 −k2
−k2 k2 + k3

0 0
−k3 0

0 0
0 0

.. −kn

−kn kn

. (14)

Considering an inherent damping of 5% for the first and fourth modes of vibration, the damping
matrix of the system, Cs is determined using the Rayleigh method as follows (Equations (15)
and (16)) [52],

Cs = αM + βK (15)

α =
2ξω1ω4

ω1 + ω4
β =

2ξ

ω1 + ω4
(16)

where ω1 and ω4 are the first and forth natural frequencies of the building, and ξ is the damping ratio.

3. Magneto-Rheological (MR) Damper

The nonlinear behavior of a SDOF system was first described by Bouc [53] in 1967, and in 1997,
Dyke et al. [54] proposed a phenomenological model for MR damper using Bouc–Wen model.
The proposed model by Dyke et al. [54] showed that it can accurately estimate the force-displacement
relationship of a MR damper, however, with less accuracy for low velocities. Since the behavior of
a MR damper highly depends on the applied voltage, it is essential for a control strategy to accurately
estimate and adjust the command voltage based on the measured responses.
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The modified Bouc–Wen model of the MR damper is shown in Figure 2. The nonlinear force of
a MR damper can be calculated using the following governing equations (Equations (17)–(23)):

F = c1
.
y + k1(x− x0), (17)

.
y =

1
c0 + c1

+
(
αz + c0

.
x + k0(x− y)

)
, (18)

where F is the damper force, k1 represents the accumulator stiffness. z is the evolutionary variable to
describe the hysteretic deformation,

.
z = −γ

∣∣ .
x− .

y
∣∣z|z|n−1 − β

( .
x− .

y
)
|z|n + A

( .
x− .

y
)
, (19)

where γ and β are the shape parameters, and A describes the smoothness of linear to
nonlinear transition.Sustainability 2017, 9, 1255  5 of 19 
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Figure 2. Modified Bouc–Wen model of an MR damper [54].

The other voltage dependent parameters in (Equation (18)) are defined as a linear function of
the efficient voltage, u [55,56] as follows:

α(u) = αa + αbu, (20)

c0(u) = c0a + c0bu, (21)

c1(u) = c1a + c1bu. (22)

The efficient voltage, u, is calculated using a first order filter to consider the dynamics of
rheological equilibrium of the MR fluid.

.
u = −η(u− v) (23)

In this study, the total 14 model parameters of the MR damper are selected based on the models
developed by Spencer et al. [51], which are given in Table 1.

Table 1. Characterization parameters for the MR damper.

Parameter Value Parameter Value

c0a 50.30 (kN s/m) αa 8.70 (kN/m)
c0b 48.70 (kN s/m V) αb 6.40 (kN/m V)
c1a 8106.2 (kN s/m) γ 496 m−2

c1b 7807.9 (kN s/m V) β 496 m−2

k0 0.0054 (kN/m) A 810.50
k1 0.0087 (kN/m) n 2
x0 0.18 (m) η 190 s−1
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4. Active Control and Semi-Active Clipped Optimal Control Using LQR Algorithm

In this study, the control force of each MR damper is determined and applied to the structure by
a clipped-optimal algorithm based on the linear quadratic regulator (LQR) through adjusting the input
voltage. The LQR algorithm has been developed by Kurata et al. [57], and widely used in optimum
control problems [37–39]. The LQR algorithm finds the optimal control force that can be applied using
active actuators by minimizing the cost index, J, as follows (Equation (24)):

J =
1
2

∫ ∞

0
({z(t)}T [Q]{z(t)}+ {u(t)}T [R]{u(t)}) dt, (24)

where z and u are the state response and input force vectors, respectively. In this study, the weighting
matrices, Q and R, are selected as (Equation (25)):

Q =

[
In×n [0]
[0] In×n

]
× 106, R = [In×n]× 10−5 (25)

where, n are the total number of DOFs; for those story levels without MR dampers, the corresponding
elements of Q matrix are set to be zero. Therefore, the optimal control force vector, uopt, for an active
control is calculated as (Equation (26)):{

uopt(t)
}
= −[G]× {z(t)} (26)

where [G] is the gain matrix that is defined as (Equation (27)):

[G] = [R]−1[B]T [P], (27)

in which P is the Riccati matrix. Using the clipped-optimal algorithm, the input voltage of the MR
damper, vi, can be obtained as (Equation (28)):

vi = VmaxH({ fci − fi} fi), (28)

where Vmax is the saturation level of the input voltage, and H(.) is the Heaviside step function. Figure 3
illustrates the clipped-optimal control for selecting the command input voltage, the shaded region, of
each MR damper.
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5. Passive Control Using MR Dampers

In addition to the active and semi-active control strategies using LQR algorithm, the passive-on
and passive-off control methods are also used in order to compare the performance of each controller
effectively. Thus, the input voltage for each MR damper is set to be constant for three cases with 0 volt
for the passive-off, and 5 and 9 volts for the passive-on methods.

6. Numerical Studies

6.1. 10-Story Irregular Steel Moment Framed Building

Kaveh et al. [58,59] showed that irregular tall buildings need to be designed with careful
considerations, and eccentricities are the main factor for estimating the stress level in external frames
for optimal design purposes. In this study, in order to establish the numerical time–history analyses,
a ten-story irregular building is modeled based on the studies carried out by the authors of [58,60].
The plan view and the 3D view of the 10-story building model, as well as the loadings, are shown
in Figure 4. In order to idealize the model, it is assumed that all the columns have the same stiffness
in both directions, and the floors are considered as rigid diagrams. Each story has 3.2 m height and
33,397 kg mass, and the stiffness of each column is 605,391 N/m. The position of each damper does
not change in plane, but four cases of MR damper arrangements are considered in this study:

- Case I with dampers installed on the 1st floor;
- Case II with dampers installed in 1st–2nd floors;
- Case III with dampers installed in 1st–5th floors;
- Case IV with dampers installed in all stories.
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6.2. Earthquake Loads

Three of the most commonly used earthquake records in vibration control are selected in this
study to evaluate the performance of each control techniques using MR dampers (Table 2). The elastic
acceleration response spectra of the selected earthquakes are plotted in Figure 5. In this figure, X, and Y
indicate the directions of the applied earthquake loads. In addition, the time–history of the earthquakes
are given in Figure 5.

Table 2. Characteristics of the earthquake records.

Earthquake * Station & Direction Magnitude (Mw) PGA (g) PGV (cm/s)

1940 El Centro
El Centro Array # 9 270◦ 7.2 0.21 30.2
El Centro Array # 9 180◦ 7.2 0.28 31.0

1994 Northridge Sylmar–Olive View Med FF 360◦ 6.7 0.84 129.6
Sylmar–Olive View Med FF 090◦ 6.7 0.61 77.53

1995 Kobe
H1170546.KOB 090◦ 7.2 0.63 76.6
H1170546.KOB 000◦ 7.2 0.83 91.13

Note: * Source: http://ngawest2.berkeley.edu/.Sustainability 2017, 9, 1255  8 of 19 
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Figure 5. The earthquake records of the El Centro (a,b), Northridge (b,c), and Kobe (e,f) earthquakes
in two perpendicular directions (x, and y).

6.3. Calibration of the Numerical Simulation

To guarantee the accuracy of the results, and to validate the numerical simulation method,
the same example from the study conducted by Nazarimofrad and Zahrai [61] was selected and the
responses of the building at the first level for the uncontrolled system are compared with the current
study in Figure 6. From the figure, the results are identical, and therefore, the current simulation
method is valid and reliable.

http://ngawest2.berkeley.edu/
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Figure 6. Verification of the simulation results for the uncontrolled system in study [61].

7. Results and Discussion

For an irregular building, the higher modes have a significant contribution to the response of
the structure under earthquake excitations. The modal analysis of the building is carried out to
investigate the primary shape modes. The results of the modal analysis for the bidirectional lateral
loads are shown in Figure 7. The initial shape of the building is also shown in gray color. The first
six modes of vibration support the idea that the performance of the designed controllers needs to
be evaluated under bidirectional earthquake loads. In this study, the number of controllers and the
effectiveness of each story on the overall performance of the system is investigated. Since, most of
the vibration modes include the couple translational–torsional motion, placing the control devices
with the maximum eccentricity can be an advantage for such systems.
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7.1. Maximum Responses

The maximum responses of the uncontrolled building under the three historic earthquakes as well
as the controlled ones using the active (using actuators and based on LQR), passive-off (input voltage
is zero), passive-on (input voltage of dampers are constant and maximum), and the clipped-optimal
controls are discussed in this section. For both active and clipped-optimal controls, the LQR algorithm
is used and the saturation limit for the clipped-optimal control is 5 volts. Two passive-on controls
are defined using two different input voltages of 5 and 9 volts.

From Tables 3–6, using an active control strategy, the displacement responses are reduced
significantly. For example, for the El Centro earthquake, the reductions are approximately 53%,
60%, 75%, and 85% for each case, respectively. These results indicate that using the case I or
case II may satisfy the control requirements; however, for the Northridge and Kobe earthquakes,
the maximum displacement ranges from 18% (case I) to 77% (case IV). Although using the passive-on
control strategy with constant voltages of 5 and 9 volts results in very close responses for the El
Centro earthquake, for the same buildings under Kobe and Northridge earthquakes, the differences
are noticeable. For example, under the Northridge earthquake, passive-on control with 9 volts results
in 20% more reduction compared to the same system with 5 volts of input voltage for each controller.
Since the clipped-optimal controller switches the input voltage between the minimum and maximum
saturation limits, it saves more energy compared to the passive-on cases, particularly, for weak ground
motions or those with long duration but fewer peak accelerations, such as the Northridge earthquake.
This statement about the energy of control can be proved using the method that has been introduced
by Azimi et al. [50]. For all the cases, using the active control increases the maximum acceleration at
roof level, while the other methods, particularly the clipped-optimal control, decrease the acceleration
responses along with the displacements and rotations. In the case of power loss, the passive-off control
with MR dampers still offers a considerable reduction in the responses from 7% to 32% depending on
the configurations and the number of dampers.
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Table 3. Maximum responses using different control techniques (Case I).

Earthquake Response Uncontrolled Active Passive-off Passive-on
(5 volt)

Passive-on
(9 volt) Clipped-Optimal

El Centro

Ux,max (m) 0.28 0.13 0.26 0.22 0.22 0.21
Uy,max (m) 0.31 0.15 0.30 0.26 0.24 0.26
θmax (rad) 0.008 0.004 0.008 0.008 0.009 0.008

..
Ux,max (m/s2) 5.34 4.46 5.18 4.58 4.26 4.43
..
Uy,max (m/s2) 5.11 5.14 5.06 4.73 4.54 4.69

Northridge

Ux,max (m) 0.75 0.47 0.74 0.72 0.70 0.72
Uy,max (m) 0.66 0.30 0.64 0.57 0.53 0.57
θmax (rad) 0.043 0.023 0.042 0.038 0.036 0.040

..
Ux,max (m/s2) 13.40 13.38 13.15 12.31 11.86 12.19
..
Uy,max (m/s2) 8.52 9.94 8.18 7.84 8.13 7.95

Kobe

Ux,max (m) 0.33 0.27 0.32 0.29 0.27 0.29
Uy,max (m) 0.46 0.28 0.46 0.45 0.46 0.44
θmax (rad) 0.008 0.010 0.008 0.008 0.008 0.008

..
Ux,max (m/s2) 11.24 12.70 10.96 11.10 11.45 11.13
..
Uy,max (m/s2) 13.63 13.68 13.54 13.96 14.54 13.62

Table 4. Maximum responses using different control techniques (Case II).

Earthquake Response Uncontrolled Active Passive-off Passive-on
(5 volt)

Passive-on
(9 volt) Clipped-Optimal

El Centro

Ux,max (m) 0.28 0.11 0.24 0.17 0.16 0.17
Uy,max (m) 0.31 0.12 0.29 0.23 0.19 0.23
θmax (rad) 0.008 0.004 0.008 0.008 0.008 0.006

..
Ux,max (m/s2) 5.34 4.06 5.03 3.84 3.34 3.83
..
Uy,max (m/s2) 5.11 5.46 5.03 4.33 4.60 4.37

Northridge

Ux,max (m) 0.75 0.41 0.74 0.69 0.66 0.68
Uy,max (m) 0.66 0.25 0.62 0.50 0.44 0.51
θmax (rad) 0.043 0.022 0.041 0.034 0.030 0.036

..
Ux,max (m/s2) 13.40 12.19 12.93 11.33 11.02 11.18
..
Uy,max (m/s2) 8.52 7.55 8.08 7.34 7.65 7.42

Kobe

Ux,max (m) 0.33 0.25 0.31 0.25 0.22 0.25
Uy,max (m) 0.46 0.27 0.46 0.44 0.43 0.42
θmax (rad) 0.008 0.009 0.008 0.007 0.008 0.007

..
Ux,max (m/s2) 11.24 12.33 10.91 10.95 11.33 11.00
..
Uy,max (m/s2) 13.63 14.58 13.56 13.37 13.53 13.37

Table 5. Maximum responses using different control techniques (Case III).

Earthquake Response Uncontrolled Active Passive-off Passive-on
(5 volt)

Passive-on
(9 volt) Clipped-Optimal

El Centro

Ux,max (m) 0.28 0.07 0.20 0.13 0.11 0.13
Uy,max (m) 0.31 0.08 0.27 0.15 0.13 0.16
θmax (rad) 0.008 0.002 0.007 0.003 0.003 0.003

..
Ux,max (m/s2) 5.34 3.91 4.57 3.41 3.44 3.41
..
Uy,max (m/s2) 5.11 4.18 4.91 4.83 5.11 4.48

Northridge

Ux,max (m) 0.75 0.28 0.72 0.61 0.55 0.60
Uy,max (m) 0.66 0.16 0.58 0.37 0.27 0.39
θmax (rad) 0.043 0.011 0.039 0.027 0.023 0.027

..
Ux,max (m/s2) 13.40 12.33 12.46 9.90 10.33 9.94
..
Uy,max (m/s2) 8.52 8.78 7.40 7.38 8.23 7.23

Kobe

Ux,max (m) 0.33 0.19 0.30 0.22 0.21 0.22
Uy,max (m) 0.46 0.21 0.45 0.39 0.36 0.38
θmax (rad) 0.008 0.004 0.008 0.006 0.004 0.006

..
Ux,max (m/s2) 11.24 10.66 10.95 11.01 11.32 10.72
..
Uy,max (m/s2) 13.63 12.84 13.14 12.21 13.08 12.08
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Table 6. Maximum responses using different control techniques (Case IV).

Earthquake Response Uncontrolled Active Passive-off Passive-on
(5 volt)

Passive-on
(9 volt) Clipped-Optimal

El Centro

Ux,max (m) 0.28 0.04 0.19 0.09 0.07 0.09
Uy,max (m) 0.31 0.04 0.25 0.10 0.07 0.11
θmax (rad) 0.008 0.001 0.007 0.002 0.001 0.002

..
Ux,max (m/s2) 5.34 2.11 3.66 2.87 2.75 3.45
..
Uy,max (m/s2) 5.11 3.30 4.62 3.44 3.89 3.39

Northridge

Ux,max (m) 0.75 0.17 0.71 0.55 0.44 0.54
Uy,max (m) 0.66 0.10 0.56 0.29 0.19 0.31
θmax (rad) 0.043 0.007 0.038 0.025 0.019 0.024

..
Ux,max (m/s2) 13.40 7.85 11.12 9.71 10.21 9.72
..
Uy,max (m/s2) 8.52 5.21 6.79 7.44 6.58 6.94

Kobe

Ux,max (m) 0.33 0.09 0.27 0.16 0.14 0.16
Uy,max (m) 0.46 0.11 0.44 0.33 0.25 0.32
θmax (rad) 0.008 0.002 0.008 0.005 0.005 0.005

..
Ux,max (m/s2) 11.24 5.51 9.97 8.38 8.18 7.74
..
Uy,max (m/s2) 13.63 6.14 12.70 11.08 11.30 10.95

7.2. Time–History Responses

Using the active control for case I and II, the rotation in the beginning of vibration is increased,
but later the reduction is significant. In addition, there are fewer limitations for generating the optimal
control forces using active control; on the other hand, the generated forces for MR dampers dependent
on the velocity and displacements of each damper shaft. As it is clear from Figures 8–11, using the
active control system under the El Centro earthquake, and with respect to the case I, the case II results
in 15% more reduction, while the case IV reduces the responses by 70%. For the passive-on control
system using the MR dampers, the reduction in the responses is not comparable with the active control
when more stories are equipped with MR dampers. For example, under the Northridge earthquake,
the active case II, III, and IV reduce the displacement responses by 12%, 40%, and 63% compared to
the case I. However, the passive-on case II, III, and IV reduces the displacement responses by 4%, 15%,
and 23% as compared to the case I.Sustainability 2017, 9, 1255  12 of 19 
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Figure 10. Time–history responses of the building using different control techniques (Case III).
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Figure 11. Time–history responses of the building using different control techniques (Case IV).

In addition, for the Kobe earthquake the response history and the maximum responses confirm
that most of the response reduction using MR dampers is achieved using the case I and II, while case
III and IV are more effective if an active controller is employed. It is also noticeable that for the case
I and II, the active control increases the rotational response in the beginning of the vibration while
the rotation is not increased for the case III and IV with more actuators in the top story levels. Further,
from the responses plots for the case III and IV, it can be said that active control is more successful as
compared to the other controllers.

7.3. Maximum Inter-Story Drifts

The inter-story drift is an important measure of the shear force of a story level. Reduction
in the inter-story displacements, particularly for the lower stories, can decrease the P-∆ effects and
nonlinear behavior of the corner columns, which may not be possible to be considered in a simple
control algorithm. Figures 12 and 13 show the maximum inter-story drift profiles for the corner columns
of the building in two directions. The inter-story drifts are larger in the lower stories, and the upper
story columns may remain elastic during an earthquake. Thus, it is critical to control the inter-story
drifts for the first stories. As it is obvious from the figures, the most reduction occurs by using the active
control and the passive-on method with 9 volts of the input voltage. By comparing the two passive-on
controls, it can be said that the inter-story drift for both are very close to each other with respect to
the uncontrolled building, and therefore, using a clipped-optimal control may require less energy of
control, which is highlighted in the study by Azimi et al. [50]. Furthermore, the passive-off control
reduces the inter-story drifts considerably, particularly for the El Centro and Kobe earthquakes, which
increases the reliability of the clipped-optimal control in the case of power loss.
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7.4. Maximum Lateral Displacements

For a better understanding and deep investigation of the performance of each control strategy for
reducing the lateral displacements, the lateral displacements and rotation profiles in the x, y, and θ

directions for the case IV are shown in Figures 14–16. As it is evident from the figures, active control
significantly reduces the maximum displacements, however, passive and clipped-optimal techniques
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are also effective in suppressing the translational-torsional motions of the building. The passive-off
control method clearly shows the safety margin compared with the uncontrolled system, and therefore,
using MR dampers are always reliable considering the unknown characteristics of the structure and
ground motions.
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Figure 14. Maximum lateral displacements in the x-direction (Case IV).
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8. Summary and Conclusions

In this paper, the popular control strategies are investigated for an irregular high-rise building.
A purely active controller based on the linear quadratic regulator (LQR) is designed, and it
is compared with the semi-active clipped-optimal control (with the same LQR algorithm) using
MR dampers. In addition, two cases of passive-on and passive-off control methods are used in order
to study the performance of each control techniques under different bidirectional earthquake loads.
Furthermore, the influence of the number of controller devices are also studied. The results show
that adding additional MR dampers on the upper levels does not reduce the responses effectively,
as compared with the active control. Therefore, by considering the energy of control, as well as
the performance in the case of power loss, time delay, or miscalculations, the clipped-optimal control
is proved to be the suitable controller for irregular buildings. As part of the study, the future
publications will address the experimental tests and practical implementations.
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