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Abstract: This study investigates the relationship between the nuclear power proportion and CO2

emissions per capita using the panel dynamic ordinary least square method. The panel datasets
consist of 18 countries covering 95% of the global nuclear reactors. The results indicate that a long-term
1% increase in nuclear power led to a 0.26–0.32% decrease in CO2 emissions per capita. Additionally,
in France, Germany, and Switzerland they demonstrate the existence of the environmental Kuznets
curve—an inverted U-shaped relationship between environmental pollution and income per capita.

Keywords: CO2 emissions; nuclear power; environmental Kuznets curve; panel dynamic ordinary
least squares

1. Introduction

Nuclear power is an important means of reducing greenhouse gas emissions. The International
Energy Agency (IEA) [1] proposes reduction measures such as demand management, energy efficiency
improvement, carbon capture and storage, new and renewable energy, and nuclear power to hold
the increase in global temperature below 2 ◦C above the pre-industrial level. It predicts that
nuclear power use will increase to account for 15% of all annual greenhouse gas reductions by 2050.
The Intergovernmental Panel on Climate Change [2] also highlights the benefit of nuclear power over
other energy sources in terms of greenhouse gas emissions. It estimates the CO2 emissions coefficient
for nuclear power over its life cycle as 12 tCO2/GWh, which represents a 40-fold reduction from the
emissions coefficient of liquefied natural gas at 490 tCO2/GWh and a 68-fold reduction over that of
coal at 820 tCO2/GWh. The International Atomic Energy Agency (IAEA) [3] emphasizes the role of
nuclear power in achieving sustainable development and mitigating CO2 emissions in developing
countries. IAEA [4] further presents the contribution of nuclear power to CO2 mitigation by showing
that over the period 1970–2013, hydropower avoided 87 Gt CO2, nuclear power avoided 66 Gt CO2,
and other renewables avoided 10 Gt CO2, respectively.

Recently, several studies attempted to investigate the relationship between nuclear power and
CO2 emissions in the context of the environmental Kuznets curve (EKC) framework [5–7]. The original
EKC hypothesis presumes an inverse U-shaped relationship between environmental pollution and
income per capita (we refer readers to Kaika and Zervas [8] for an extensive overview of this topic).
According to this hypothesis, the deterioration of the environment increases with income per capita
during the initial stages of economic growth, but decreases with income per capita after arriving at a
certain turning point. Research shows that the EKC hypothesis is explained through three channels:
scale effect, composition effect, and technique effect [9]. Holding other effects constant, the scale
effect is that emissions tend to rise proportionally as the scale of economic activity increases; the
composition effect is that emissions can fall if an economy transits toward producing a set of goods
that are cleaner and less polluting; the technique effect is that emissions can fall as cleaner techniques

Sustainability 2017, 9, 1428; doi:10.3390/su9081428 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://dx.doi.org/10.3390/su9081428
http://www.mdpi.com/journal/sustainability


Sustainability 2017, 9, 1428 2 of 13

substitute for dirtier ones in the production of goods. Understandably, the EKC hypothesis can be
accounted for with some mixture of scale, composition, and technique effects. The empirical evidence
for this hypothesis is mixed at best, according to the estimation method, the data time periods and
types, and the characteristics of countries [10].

There are mainly three research groups to examine the relationship between economic growth
and environmental quality (we refer the reader to References [8,11–14] for a comprehensive survey).
The first group investigates the relationship between economic development and environmental
degradation in the framework of the EKC hypothesis. Recent studies include References [11,15–17].
The second group examines the relationship between economic development and energy consumption
and tests the causal relationship between these variables. Payne [18] delivers an extensive review on
this issue. The third group combines the two research groups by investigating the relationship among
environmental degradation, economic growth, and energy consumption. Many recent studies focus on
the impact of renewable energy on CO2 emissions in the EKC framework [12,13,19–23].

Consistent with the third research group focusing on nuclear power, Iwata et al. [5] estimated the
EKC with the additional variable of nuclear power, and provided statistical evidence of the important
role of nuclear power in reducing CO2 emissions. Similarly, Iwata et al. [6] investigated the EKC for
CO2 emissions in 11 OECD countries by considering the role of nuclear power. These studies employ
the autoregressive distributed lag (ARDL) model by Pesaran et al. [24] to consider the co-integration
relation among their set of variables and analyze the role of nuclear power in reducing CO2 emissions
on an individual country basis. The ARDL has econometric advantages, in that it can be used with a
mixture of I(0) and I(1) variables, and estimate the short-run and long-run parameters simultaneously
(a time-series is said to be I(d) variable if its d’th difference is stationary), as a single co-integration
approach. Iwata et al. [7] also analyzed the impacts of nuclear energy on CO2 emissions using
the pooled mean group (PMG) estimation method by Pesaran et al. [25]. Regarding nonstationary
heterogeneous panels, the PMG approach allows the short-run coefficients to be heterogeneous but
constrains the long-run coefficients to be identical across groups.

Although these studies convincingly argue the relationship between nuclear power and CO2

emissions, there are some limitations, in that the ARDL approach is based on individual countries
and the PMG approach imposes that the long-run coefficient be homogenous across groups with
nonstationary heterogeneous panels. To overcome such limitations, this study uses the panel dynamic
ordinary least squares (PDOLS) method by Pedroni [26], which has the advantage of combining
cross-sectional and time-series data to secure sufficient data points, and allows for the heterogeneity
of coefficients across groups with nonstationary heterogeneous panels. This study aims to examine
the relationship between the nuclear power proportion (the ratio of electricity produced from nuclear
power to total electricity) and CO2 emissions per capita using the PDOLS method with nonstationary
heterogeneous panels. The panel datasets in this study consist of 18 countries with more than four
nuclear power plants each as of 2016, which operate 420 reactors, or approximately 95% of the 444
reactors worldwide. The results indicate that a long-term 1% increase in the nuclear power proportion
leads to decreases of 0.26–0.32% in CO2 emissions per capita.

The main contribution of this study is, with the PDOLS approach, it provides statistical results as
to how much nuclear power reduces CO2 emissions per capita for both the group mean and individual
countries currently operating most of the nuclear reactors in the world. Additionally, this study
compares nuclear power with renewable energy in terms of mitigating CO2 emissions.

The remainder of this paper is structured as follows. Section 2 briefly reviews the econometric
methodology used to analyze the relationship between nuclear power and CO2 emissions. Section 3
features the data utilized. The results are presented in Section 4. Section 5 concludes the study.

2. Estimation Methodology

A three-stage procedure with nonstationary heterogeneous panels to analyze the relationship
between the nuclear power proportion and CO2 emissions per capita is employed in this study. First,
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a panel unit root test suggested by Im, Pesaran, and Shin (IPS) [27] is conducted to check whether
time-series variables in the datasets are stationary. Second, if the variables are not stationary, a panel
co-integration test suggested by Pedroni [28] is used to assess whether the variables are characterized
by a co-integration relation. Finally, if there is a co-integration relation among the variables, the
econometric model in this study is estimated by using the PDOLS method.

2.1. Panel Unit Root Test

Prior to the PDOLS analysis, as a first step, the IPS test as a panel unit root test is conducted
to check for the stationarity of time-series variables. Though the panel datasets in this study are
unbalanced, the IPS test is known to be applicable for unbalanced panels. The following augmented
Dickey–Fuller (ADF) regression model is estimated for the IPS test:

∆yi,t = αi + βiyi,t−1 + ∑p
j=1 ρi,j∆yi,t−1 + εi,t, (1)

where i (=1, 2, ..., N) is the number of cross-sectional data, t (=1, 2, ..., T) is the number of time-series
data, ∆ represents the first difference of each variable, yi, t is each variable under consideration in
the econometric model, αi is the individual fixed effect, p is the number of lags to remove serially
correlated errors, and εi,t is the error term. The null hypothesis of the IPS test is that all panels contain
a unit root (H0 : βi = 0 for all i). The alternative hypothesis is that the fraction of panels is stationary
(Ha : βi < 0 for at least one i). The IPS test relaxes the assumption that all panels have a common
autoregressive parameter β. Instead, it allows for the heterogeneity of β indexed by i. The IPS test
conducts individual panel unit root tests for N number of cross-section units, and then the IPS t-bar
statistic t is based on the average value of individual ADF statistics as follows:

t =
1
N ∑N

i=1 tiT, (2)

where tiT is the value of the individual ADF statistic. IPS [27] shows that if the t statistic is properly
standardized, it is asymptotically standard normally distributed as follows:

tIPS =

√
N
(

t− 1
N ∑N

i=1 E[tiT|βi = 0]
)

√
1
N ∑N

i=1 Var[tiT|βi = 0]
⇒ N(0, 1) as T → ∞ and N → ∞, (3)

2.2. Panel Co-Integration Test

Once each of the variables contains a panel unit root and is thus integrated of order one, I(1),
as a second step, there needs to be a check for the relationship of co-integration among variables.
Pedroni [28] proposes a method to check for a co-integration relationship among variables when
multiple independent variables exist. The following regression model is estimated for Pedroni’s [28]
panel co-integration test:

yi,t = αi + β1ix1i,t + β2ix2i,t + · · ·+ βmixmi,t + ei,t, (4)

where i (=1, 2, ..., N) is the number of cross-sectional data, t (=1, 2, ..., T) is the number of time-series
data, m (=1, 2, ..., M) is the number of independent variables, yi,t is the dependent variable, xmi,t is the
independent variable, and ei,t is the error term. The individual fixed effect αi and the slope coefficient
βmi are permitted to vary across cross-sections. The estimated residuals from the above equation are
structured as follows:

êi,t = γ̂iêi,t−1 + µ̂i,t, (5)

Regarding the estimated residuals as above, Pedroni [28] proposes seven test statistics to check
for co-integration relationships in nonstationary panels. These seven statistics can be divided into two
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types. The first type is the “panel” statistics, including Panel v statistic, Panel rho statistic, Panel t
statistic, Panel ADF statistic, based on pooling along the within-dimension. The second type is the
“group-mean” statistics, including Group rho statistic, Group t statistic, Group ADF statistic, based
on pooling the between-dimension. The seven test statistics are described in detail in Appendix A.
The null hypothesis of no co-integration for both types is H0 : γi = 1 for all i; however, their alternative
hypotheses are different. The alternative hypothesis for the “panel” statistics is Ha : γi = γ < 1
for all i, whereas the alternative hypothesis for the “group-mean” statistics is Ha : γi < 1 for all i.
Pedroni [28] derives asymptotic distribution and critical values for the seven test statistics via Monte
Carlo simulation. The asymptotic distributions for each of the seven test statistics can be expressed
as follows:

χN,T − µ
√

N√
υ

⇒ N(0, 1) as T → ∞ and N → ∞ , (6)

where χN,T is the properly standardized form for each of the seven test statistics, and µ and υ are the
mean and variance adjustment terms, respectively. While Panel v statistic for a one-sided test diverges
to positive infinity as the other test statistics diverge to negative infinity, the null hypothesis of no
co-integration is rejected. Baltagi [29] states the intuition of rejection of the null hypothesis as follows:
“Rejection of the null hypothesis means that enough of individual cross-sections have statistics ‘far
away’ from the means predicted by theory were they to be generated under the null”.

2.3. Panel Dynamic Ordinary Least Squares

After determining the relationship of co-integration among variables, the econometric model can
be estimated by using the PDOLS method developed by Pedroni [26]. The PDOLS estimator accounts
for endogeneity in the regressors and serial correlation in the errors by including leads and lags of
differenced endogenous variables as instruments. The PDOLS model in this study is as follows:

lnCO2i,t = β0,i + β1,ilnGDPi,t + β2,i(lnGDP)2
i,t + β3,ilnNuci,t + ∑ki

k=−ki
αi,k∆lnGDPi,t−k+

∑ki
k=−ki

λi,k∆(lnGDP)2
i,t−k + ∑ki

k=−ki
θi,k∆lnNuci,t−k + εi,t,

(7)

where CO2 is the CO2 emissions per capita, GDP is the gross domestic product per capita, Nuc is
the electricity production from nuclear power (the ratio of electricity produced from nuclear power
to total electricity), −Ki and Ki refer to leads and lags of differenced endogenous variables, and
εi,t is the error term. Pedroni’s [26] PDOLS model allows for the heterogeneity of the β coefficient
between dimensions. This flexibility is an important advantage in the presence of heterogeneity of the
co-integrating vectors. The group-mean PDOLS value indicates the average value of the individual β
coefficient between dimensions, and can be described as follows:

β̂GD =
1
N

N

∑
i=1

β̂D,i, (8)

where β̂D,i indicates the DOLS of the individual i.

2.4. The EKC Hypothesis for the Model

One representative variable that influences CO2 emissions is the GDP variable. The EKC
hypothesis assumes increasing CO2 emissions during the early period of economic growth, followed
by decreasing CO2 emissions when the economy is at a certain level of development. In other words,
the EKC hypothesis assumes an inverted U-shaped relationship between the CO2 emissions and GDP.
Validating the EKC hypothesis is a widely-studied topic, and represents a leading research area for the
relationship between CO2 emissions and GDP. This study avoids the construction of an ad-hoc model
in analyzing changes in CO2 emissions regarding changes in nuclear power proportion in this respect,
but adds nuclear power proportion as an additional variable to the well-known EKC model. A similar
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attempt is utilized by Iwata et al. [5–7]. It is expected that β1 has a positive value while β2 has a
negative one if the EKC hypothesis is valid for (7). Moreover, if there is an inverse relationship between
nuclear power proportion and CO2 emissions per capita, it is expected that β3 has a negative value.

3. Data

Countries with more than four operating nuclear reactors as of October 2016 were selected as the
targets of this study. The total number of operable nuclear reactors worldwide is 444, with 100 reactors
operated by the United States—the country most active in nuclear energy at the time of writing. The
U.S. is followed by France, with 58 reactors, Japan, with 43 reactors, China, with 36 reactors, Russia,
with 36 reactors, and Korea, with 25 reactors. Including these countries, the countries with more than
four nuclear reactors in operation total 19. Slovakia currently operates four nuclear reactors, but is
excluded from the analysis due to difficulties in accessing data. Table 1 provides an overview.

Table 1. Nuclear power by country.

Country Number of Reactors Total Net Electrical Capacity (MW)

1 United States of America 100 100,350
2 France 58 63,130
3 Japan 43 40,290
4 China 36 31,402
5 Russia 36 26,557
6 Korea, Republic of 25 23,133
7 India 22 6225
8 Canada 19 13,524
9 Ukraine 15 13,107
10 United Kingdom 15 8918
11 Sweden 10 9651
12 Germany 8 10,799
13 Belgium 7 5913
14 Spain 7 7121
15 Czech Republic 6 3930
16 Switzerland 5 3333
17 Finland 4 2752
18 Hungary 4 1889
19 Slovakia 4 1814
20 Argentina 3 1632
21 Pakistan 3 690
22 Brazil 2 1884
23 Bulgaria 2 1926
24 Mexico 2 1440
25 Romania 2 1300
26 South Africa 2 1860
27 Armenia 1 375
28 Iran, Islamic Republic of 1 915
29 The Netherlands 1 482
30 Slovenia 1 688

Total 444 387,030

Source: IAEA PRIS database [30].

CO2 emissions per capita, GDP per capita, nuclear power proportion, and renewable energy
proportion during 1970–2015 were collected from Enerdata [31] for each country. CO2 emissions are
measured as metric ton per capita, GDP is measured in current U.S. dollars, nuclear power proportion
is the ratio of electricity produced from nuclear power to total electricity, and renewable energy
proportion is the ratio of electricity produced from renewable energy to total electricity. Renewable
energies include hydro, wind, and solar energy.

Figure 1 shows the trends of CO2 emissions per capita for the 18 analyzed countries during the
years from 1970 to 2015. The U.S. has the highest CO2 emissions per capita, followed by Canada,
Korea, China, the Czech Republic, and Germany, in 2015. The trends in CO2 emissions per capita can
be divided by countries experiencing an increase or decrease. The U.S. shows a decreasing trend, while
Korea exhibits an increasing trend, for example.
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4. Results

4.1. Estimation Results

Table 2 indicates the results of the IPS test, which is divided into two cases, where the time-series
variable is level or the first difference. When the time-series variable is level, all variables were
non-stationary, except for the nuclear power proportion variable in the case of the first difference;
however, all variables were found to be stationary. Therefore, the panel unit root test indicates that
each variable is integrated of order one, I(1), except for the nuclear power proportion variable.

Table 2. Im, Pesaran, and Shin (IPS) panel unit root test.

Variables CO2 GDP GDP2 Nuclear Renewable

Level −0.54 1.26 −0.92 −8.58 *** −0.83
First difference −22.02 *** −10.65 *** −10.71 *** - −24.46 ***

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.

Table 3 shows the results of the panel co-integration test proposed by Pedroni [28]. While the
panel statistic ν nears positive infinity, or as the other statistics approach negative infinity, the null
hypothesis of no co-integration relationship is rejected [29]. Table 3 shows there is a statistically
significant co-integration relationship among CO2 emissions, GDP, and renewable energy proportion.

Table 3. Pedroni panel co-integration test.

Within-Dimension Statistic Value Between-Dimension Statistic Value

Panel v 5.202 *** Group rho –1.824 **
Panel rho –2.862 *** Group t –1.432 *

Panel t –2.338 *** Group ADF –1.047
Panel ADF –1.443 *

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. ADF: augmented Dickey–Fuller statistic.

Given the presence of a co-integration relationship among the variables, the PDOLS model
for nonstationary heterogeneous panels was estimated to analyze changes in CO2 emissions
regarding changes in nuclear power proportions. Table 4 shows the results of the PDOLS estimates.
The group-mean PDOLS estimates indicate that all coefficients are statistically significant. The results
for the validation of the EKC hypothesis indicate that the hypothesis is valid within the analysis
period, with values of β1 = 0.3133, and β2 = −0.02769. Considering that most countries operating
nuclear reactors are advanced countries, these results are to be expected. β3 was found to be −0.3233,
indicating an inverse relationship between the nuclear power proportion and CO2 emissions per
capita. This indicates that a long-term increase of 1% in the nuclear power proportion leads to a 0.32%
decrease in CO2 emissions per capita during the analysis period.

PDOLS analysis also shows the DOLS values for individual countries. First, the countries with
conditions that validated the EKC hypothesis were France, Russia, India, Sweden, Germany, and
Switzerland. Second, countries with inverse relationships between nuclear power proportion and CO2

emissions per capita were the U.S., France, Japan, China, Korea, Canada, Ukraine, the United Kingdom,
Germany, and Switzerland. Finally, the only three countries of the 18 analyzed meeting both conditions
of valid EKC hypothesis and inverse relationships between nuclear power proportion and CO2

emissions per capita were France, Germany, and Switzerland.
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Table 4. Panel dynamic ordinary least square results (case 1).

Country GDP GDP2 Nuclear

1 United States
0.0074 −0.0384 –0.7021 ***

(0.0379) (−0.8028) (–3.4290)

2 France
0.3320 *** −0.2786 *** –0.2297 ***
(5.5760) (−7.8350) (–6.4320)

3 Japan 0.0668 −0.0090 –0.1601 ***
(0.6562) (−0.4563) (–3.8270)

4 China
0.4017 * 0.1438 –1.249 ***
(1.8630) (1.3400) (–8.4430)

5 Russia
0.8055 *** −0.0865 *** 0.0972 ***
(10.7500) (−7.5530) (3.9850)

6 South Korea
0.8770 *** 0.3509 *** –0.2305 **
(2.8760) (3.7230) (–1.9780)

7 India
0.3943 ** −0.0910 *** 0.4977 ***
(2.2160) (−8.4410) (4.2170)

8 Canada
0.0277 0.0311 –0.8216 ***

(0.1598) (0.9807) (–4.8630)

9 Ukraine
0.4940 −0.0371 –1.6580 ***

(1.2040) (−0.5274) (–2.8900)

10
United

Kingdom
2.6510 *** 0.2664 *** –1.1380 **
(2.9400) (2.9160) (–2.1810)

11 Sweden
0.7005 *** −0.3292 *** –0.2848
(4.9790) (−6.3760) (–1.6020)

12 Germany 0.8374 *** −0.2647 *** –0.1167 ***
(10.8800) (−13.0500) (–2.5930)

13 Belgium 0.0913 −0.4068 *** 0.4972 ***
(0.6179) (−13.4800) (7.1700)

14 Spain −0.6068 ** 0.0227 –0.0792
(−2.2920) (0.7229) (–1.6170)

15 Czech Rep. −0.9325 *** 0.1904 *** 0.0842 *
(−6.3890) (2.7760) (1.8070)

16 Switzerland
0.1916 *** −0.0876 *** –0.5492 ***
(2.7430) (−3.0610) (–2.6440)

17 Finland
0.1498 −0.0945 *** 0.0985 *

(1.4820) (−6.1760) (1.8680)

18 Hungary −0.849 *** 0.2195 *** 0.1261 **
(−9.6590) (5.2350) (2.0610)

Panel group
Number of observations: 738

0.3133 *** −0.0277 *** −0.3233 ***
(7.220) (−11.8000) (−5.0420)

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. The numbers in parentheses are t-statistics for the corresponding coefficient.

Besides the nuclear power proportion variable, the PDOLS analysis was carried out, including
a renewable energy proportion variable. Table 5 summarizes the analysis results. There were no
meaningful differences between the analysis results shown in Table 4 in terms of the group-mean
PDOLS estimates. All coefficients were found to be statistically significant, with β1 = 0.3289 and
β2 = −0.05561, thus satisfying the EKC hypothesis. The nuclear power proportion, β3, is −0.2754,
which is slightly lower than the previous results. The renewable energy proportion, β4, is −0.1092,
which is lower than the coefficient for nuclear power proportion; however, as expected, an inverse
relationship was found between the renewable energy proportion and CO2 emissions per capita.
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Table 5. Panel dynamic ordinary least square results (case 2).

Country GDP GDP2 Nuclear Renewable

1 United States
0.1374 −0.0439 −0.5633 ** –0.2159

(0.7001) (−1.2800) (−2.4970) (–0.7575)

2 France
0.1344 −0.2961 *** −0.1552 *** 0.2985 **

(1.3010) (−8.2850) (−3.2080) (2.4720)

3 Japan −0.1695 −0.0355 ** −0.0164 1.232 ***
(−1.3640) (1.9730) (−0.3140) (4.5000)

4 China
0.2935 0.1016 −1.0350 *** –0.4016

(1.1630) (1.4460) (−3.5640) (–1.1420)

5 Russia
0.9246 *** −0.0881 *** 0.1964 *** 1.095 ***
(12.5300) (−11.5700) (8.4440) (3.8720)

6 South Korea
0.3833 *** 0.1336 *** 0.0325 –0.3395 ***
(3.7700) (2.7170) (0.6884) (–5.4760)

7 India
0.2612 * −0.03074 0.2106 –0.8379 *
(1.7600) (−0.9795) (1.4520) (–1.8750)

8 Canada
−0.1077 −0.0143 −0.8615 *** –0.2166

(−0.7220) (−0.5613) (−7.1650) (–1.0660)

9 Ukraine
0.3214 *** 0.1346 *** −0.7200 *** –0.7918 ***
(7.3180) (15.9200) (−9.3120) (–41.6900)

10
United

Kingdom
3.6000 *** −0.0663 −1.6570 *** 1.2550 **
(2.6380) (−0.2826) (−3.6330) (2.0920)

11 Sweden
0.8628 *** −0.2550 *** −0.4103 ** –0.0457
(4.9340) (−5.8330) (−2.5380) (–0.2195)

12 Germany 0.4603 ** −0.1633 *** −0.1239 *** –0.1716 **
(2.2050) (−4.1320) (−2.8390) (–2.0880)

13 Belgium −0.6908 *** −0.3821 *** 0.8756 *** –0.4876 ***
(−3.2320) (−14.0700) (12.8400) (–4.7660)

14 Spain −0.7699 *** −0.0065 −0.0929 ** –0.1371
(−3.1680) (−0.2353) (−2.4180) (–0.5018)

15 Czech Rep. 0.0857 0.0163 0.0606 *** –1.393 ***
(0.9190) (0.6271) (4.0640) (–12.5400)

16 Switzerland
0.1523 *** −0.0537 *** −0.9340 *** –0.1201
(4.6470) (−2.8960) (−4.3080) (–1.5850)

17 Finland
0.442 *** −0.1076 *** 0.195 *** –0.4011 ***
(3.6720) (−8.0210) (3.4850) (–2.7870)

18 Hungary −0.4002 *** 0.1563 *** 0.0414 –0.2862 ***
(−4.5150) (7.1780) (1.1580) (–8.0880)

Panel group
Number of observations: 738

0.3289 *** −0.0556 *** −0.2754 ** −0.1092 ***
(8.1440) (−7.5970) (−2.2770) (−16.8900)

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. The numbers in parentheses are t-statistics for the corresponding coefficient.

When the analysis included the renewable energy proportion variable, there were no meaningful
differences in the DOLS values for each country. Compared with the results in Table 4, countries with
inverse relationships between nuclear power proportion and CO2 emissions per capita were the U.S.,
France, China, Canada, Ukraine, the United Kingdom, Germany, and Switzerland. These countries
demonstrated robust results, but Japan and Korea are excluded from the results. When the analysis
included the renewable energy proportion variable, the countries with both valid EKC hypothesis and
inverse relationships between nuclear power proportion and CO2 emissions per capita were still the
three previous countries of France, Germany, and Switzerland.
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4.2. One Possible Implication

James Hansen is one of the first scientists to raise concerns about global climate change, and argues
that 115 new reactors per year should be built by 2050 to avoid the worst effects of climate change [32].
His argument—which sounds rather extreme—is based on the claim that the 100% renewable scenarios
are not realistic at all, and large amounts of nuclear power should close the energy gap. Here, we
attempt to evaluate his argument based on the main findings of this study.

As of 2015, the average CO2 emissions per capita and nuclear power proportion for the
18 countries in this study are 5.93 metric tons and 14%, respectively [31]. Suppose that the reduction
target for those countries is set to be a 20% cut in CO2 emissions per capita from 1990 levels and the
target could be reached only by nuclear power. Then, the nuclear power proportion would need
to extend from 14% to roughly 48–64% to achieve the target, based on the result that the estimated
long-run elasticity of CO2 emissions per capita on nuclear power proportion is about 0.26–0.32%.
Although the proportion to be raised is not an exact figure and cannot be directly comparable to
Hansen’s suggestion, the main message is the same: nuclear power is the most urgent component of
decarbonization—at least, in the near future.

5. Conclusions

This article investigates the impact of nuclear power generation on CO2 emissions by estimating
the EKC with nuclear energy as an additional variable. The datasets encompass 18 countries with
more than four nuclear reactors in operation during 1970–2015, thus covering approximately 95% of
the number of nuclear reactors worldwide. PDOLS was employed as an estimation methodology to
fully capture information from panel datasets.

The estimation results indicated that a long-term increase of 1% in the nuclear power proportion
led to a 0.26–0.32% decrease in CO2 emissions per capita. Regarding individual countries, countries
with robust inverse relationships between nuclear power proportion and CO2 emissions per capita
were the U.S., France, China, Canada, Ukraine, the United Kingdom, Germany, and Switzerland.
Additionally, countries with both valid EKC hypothesis and inverse relationships between nuclear
power proportion and CO2 emissions per capita were France, Germany, and Switzerland. One possible
implication of the estimation results is that the average nuclear power proportion for the 18 countries
would need to extend from the 2015 level of 14% to approximately 48–64% to reduce CO2 emissions
per capita by 20% below 1990 levels.

To conclude, the findings in this paper provide empirical evidence for the claim that nuclear power
can contribute to reducing greenhouse gas emissions, while meeting the ever-increasing demand for
energy. It is true that several OECD countries (e.g., France, Germany, recently South Korea, and Taiwan)
have decided to lower the weight of nuclear power generation in their energy mix due to its potential
catastrophic risks. However, nuclear power is still of importance to other countries—particularly
developing ones—because it has a large, well-developed, and plentiful resource base as well as
potentially favorable economics over other energy sources. The situation in each country is different;
hence, the nuclear power option should be kept open under the Paris Agreement for parties that wish
to include it and thereby enhance the cost effectiveness of their climate change mitigation actions.
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Appendix A

The seven test statistics for a panel co-integration test are based on residual-based tests. Residuals
µ̂i,t, µ̂∗i,t, and η̂i,t are collected from (4), (5), and the following regressions:

∆yi,t = ∆β1ix1i,t + ∆β2ix2i,t + · · ·+ ∆βmixmi,t + ηi,t, (A1)

êi,t = γ̂iêi, t−1 + ∑Ki
k=1 γ̂i,k∆êi, t−1 + µ̂∗i,t, (A2)

where i (= 1, 2, ..., N) is the number of cross-sectional data, t (= 1, 2, ..., T) is the number of time-series
data, m (= 1, 2, ..., M) is the number of independent variables, k (= 1, 2, . . . , K) is the number of lags.
Next, with residuals µ̂i,t, µ̂∗i,t, and η̂i,t, the following terms are calculated:

ŝ∗2i =
1
T ∑T

t=1 µ̂
∗2
i,t , (A3)

s̃∗2N,T =
1
N ∑N

n=1 ŝ∗2i , (A4)

L̂−2
11i =

1
T ∑T

t=1 η̂
2
i,t +

2
T ∑ki

s=1

(
1− s

ki + 1

)
∑T

t=s+1 η̂i,tη̂i,t−s, (A5)

λ̂i =
1
T ∑ki

s=1

(
1− s

ki + 1

)
∑T

t=s+1 µ̂i,tµ̂i,t−s, (A6)

ŝ2
i =

1
T ∑T

t=1 µ̂
2
i,t, (A7)

σ̂2
i =ŝ2

i + 2λ̂i, (A8)

σ̃2
N,T =

1
N ∑N

n=1 L̂−2
11iσ̂

2
i , (A9)

Then, the seven test statistics are constructed with the appropriate terms described above. Details
on how these statistics are constructed are discussed in Pedroni [28].

Panel v statistic : T2N
3
2

(
∑N

i=1 ∑T
t=1 L̂−2

11i ê
2
i,t−1

)−1
, (A10)

Panel rho statistic : T
√

N
(
∑N

i=1 ∑T
t=1 L̂−2

11i ê
2
i,t−1

)−1
∑N

i=1 ∑T
t=1 L̂−2

11i
(
êi,t−1∆êi,t − λ̂i

)
, (A11)

Panel t statistic :
(
σ̃2

N,T ∑N
i=1 ∑T

t=1 L̂−2
11i ê

2
i,t−1

)− 1
2 ∑N

i=1 ∑T
t=1 L̂−2

11i
(
êi,t−1∆êi,t − λ̂i

)
, (A12)

Panel ADF statistic :
(

s̃∗2N,T ∑N
i=1 ∑T

t=1 L̂−2
11i ê
∗2
i,t−1

)− 1
2 ∑N

i=1 ∑T
t=1 L̂−2

11i ê
∗
i,t−1∆ê∗i,t, (A13)

Group rho statistic : T
1√
N

∑N
i=1

(
∑T

t=1 L̂−2
11i ê

2
i,t−1

)−1
∑T

t=1

(
êi,t−1∆êi,t − λ̂i

)
, (A14)

Group t statistic :
1√
N

∑N
i=1

(
σ̂2

i ∑T
t=1 ê2

i,t−1

)− 1
2 ∑T

t=1

(
êi,t−1∆êi,t − λ̂i

)
, (A15)

Group ADF statistic :
1√
N

∑N
i=1

(
∑T

t=1 ŝ∗2i ê∗2i,t−1

)− 1
2

T

∑
t=1

êi,t−1∆êi,t. (A16)
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