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Abstract: Sustainability consists of economic, environmental, and societal aspects. Concomitant with
China’s rapid growth, the evaluation of China’s ability for sustainable development (SD) has become
a topic of interest. Unlike previous studies that are based on provincial regions and focus on economic
and/or environmental evaluations, we have evaluated the comprehensive SD ability of 34 major
cities in China using the context-dependent data envelopment analysis (CD-DEA) and proposed
benchmark-learning pathways. The results indicate that the SD ability of China’s major cities may
be classified and ordered from low tiers to high tiers: high energy consumption and polluting
industries—intensive industries—fixed asset investments and service industries—innovation, quality
of life and societal services industries. As a whole, cities along the coast have a higher ability for SD
than inland cities, and southern cities also rate higher than northern cities. Cities that are prioritized by
government policies and funding also have higher SD abilities than other cities. We recommend that
cities with lower abilities (i.e., cities in the second, third, and fourth tiers) should adopt the following
points in their developmental pathways (in this order): the control of energy consumption and
environmental pollution, industry upgrading and redevelopment of the city, and the development
of an environment that encourages innovation and provides ample employment. This study finds
that GDP is no longer an issue that restricts the SD ability of China’s major cities, as compared to
other factors. As China progresses towards the sustainable cities, focus should be placed on the
development of a knowledge-intensive economy, balanced development, and pollution prevention.

Keywords: sustainable development; China’s cities; data envelopment analysis; efficiency evaluation;
benchmark-learning pathway

1. Introduction

The rapid development of the mainland China over the past 40 years has been a topic of keen
interest worldwide for some time. As China continues to develop, an unprecedented wave of urban
development has now swept over the country; the increase in China’s urban population far exceeds
the total population of any country other than India. Urban development is necessary for developing
the economy, increasing the income of a nation’s citizens, and motivating societal progress. However,
the negative effects that accompany urban development have affected the quality of life of the people,
and the sustainable development (SD) of the cities themselves. Over the course of China’s urban
development, it is the development of the central cities that attracts the most attention. The Thirteenth
Five-Year Plan of the Chinese government, which represents China’s overall economic program, has
placed significant focus on urban agglomeration and central cities; a list of these areas was also
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provided in the plan. Economic activities and urban functions are highly active in central cities, but
the undesirable effects of urban development are most concentrated in these cities. These are also the
first regions in China to encounter the “big city disease”. Over past decades, the SD has extremely
attracted many attentions of countries worldwide, including developing countries. With the rapid and
impressive level of urbanization, conducting sustainability in city plan has become the one of the most
important issues in China.

However, existing studies often treated provincial regions as decision-making units (DMUs), and
the SD ability of cities has not been reported in a precise manner. Furthermore, the basic characteristics
of each province (e.g., area, population, and natural environment) can differ dramatically, and even
the environment and level of development within a province can vary significantly; these differences
will have an effect on the conclusions of the aforementioned studies. In addition, Shen et al. [1]
noted that the SD ability of a region is a comprehensive and holistic result that must encompass
economic, environmental, and societal development. Most previous studies focus only on economic
and environmental factors, and have yet to fully reflect on the true meaning of SD. To address the
inadequacies of the aforementioned studies, we have evaluated the SD ability of China’s cities based
on a holistic view of SD. On this basis, we then developed schemes to improve SD ability, and also
generated benchmark-learning pathways, which represents the best mathematical approximation
optimization to catch up some (one or more) samples at a higher level. This study focused on
central cities with minimal inner heterogeneity and numerical variations that also have the highest
concentrations of population and economic value.

The remainder of this paper is organized as follows. Section 2 introduces the relevant research.
In Section 3, the research method used in this study is introduced in detail. Section 4 appears data and
analytical results relevant to sustainable efficiency and Section 5 provides the discussion on stepwise
SD ability and pathway for 34 major cities in China. Summaries and conclusions will be drawn in
Section 6.

2. Literature and Theoretical Background

Sustainable development (SD) means, “Development that meets the needs of current generations
without compromising the ability of future generations to meet their needs and aspirations”, and
can be implemented in many different ways [2]. Sustainability recognizes the interdependence of
ecological, social, and economic systems, which are the three pillars of sustainability [3]. Earlier SD
theories focused on ecology and economics [4], and SD practices in the management field originated
from the engineering realm; social behavior and development are treated as external boundary and
non-essential conditions in the paradigm [5]. However, researchers have attached importance to social
and cultural effects in recent years.

SD does not merely involve global and national level policies, as it is equally important at
regional levels [6]. Many studies have already been performed on the SD ability of China’s provinces.
However, adapted to the engineering tradition mentioned above, most of them focused on energy
and economic benefits. Lu and Lo [7] used economic development and waste discharge as evaluative
indicators to horizontally compare the SD ability of 31 mainland provinces in China. Sueyoshi and
Yuan [8] evaluated the relationships between economic development, energy consumption, and air
pollution, and concluded that energy consumption needs to be reduced in four directly controlled
municipalities, and the economic growth of the northwest region needs to be accelerated. Zhou and
Ang [9] and Wang et al. [10] classified the sustainability of each province based on economic output,
energy consumption, and pollution, while Tao et al. [11] adjusted the conclusions of these studies after
accounting for the effects of power transmission modes. Chen et al. [12] introduced the Likert scale in
the processing of data to study the production and energy efficiency of each province. In addition,
based on energy efficiencies, Yang et al. [13] used the Super-efficiency DEA model to provide green
development pathway plans for 31 provinces in China.
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The variation of population density between provinces in China is so wide that pressures on
SD from contradictions between human and nature are very different. Chinese provinces have
wide-ranging geographical conditions, from continuous mountains to coastal plains. Furthermore,
their economic structures are also very different, with some based on agriculture and others being
highly industrialized. At the city level, functions and environments are more consistent, with similar
input and output variables, and cities play a huge role with small area in SD. At the same time,
sustainable city is a very important topic in regional SD research. Ideally, a sustainable city is designed
with the coverage of considerations of economic, environmental, and societal aspects. The data
envelopment analysis (DEA) is one of the mainstream methods for evaluating efficiency; during the
infancy of this method, the DEA method was considered suitable for studying economically complex
cities, and it was also used to evaluate 28 major cities in China by the pioneer of the method [14].
Zhu [15] built on this research and compared the results of the DEA method with those obtained using
other contemporary methods, and provided evidence for the effectiveness of this method. These studies
were focused on evaluating the economic output of cities, and it was only later when the DEA method
was used to evaluate the environment and sustainability of Chinese cities. Yuan et al. [16] used the
DEA method to study the ability of 65 cities to respond to natural disasters, while Yang et al. [17]
used this method to evaluate the sustainability of cities in Taiwan. However, no comprehensive
assessment of the SD ability of Chinese cities has been performed. The reason for the low frequency
of usage of the DEA method, as noted by Li et al. [18], is the limited availability of statistical data at
the city level in China. In reality, the DEA method is perfectly suitable for comprehensive evaluation
of a city’s efficiency, and several case studies that have already been performed abroad using this
method [19,20]. Studies that are related to the topic of this work are somewhat more common at
the provincial level, due to the availability of data, but they still favor the engineering discipline.
In addition to a comprehensive assessment, as noted by Mega [21], an increasing number of researchers
has regarded sustainable city as a process rather than as an endpoint. Therefore, it is worthwhile to
construct the benchmark-learning pathway as a stepwise progressive process towards sustainability.

3. Methodology

DEA, as developed by Charnes et al. [22], is a widely used non-parametric approach to measure
the relative efficiency of DMUs with multiple inputs and outputs. So far, there are two types
of measure in DEA, the radial measure introduced by Charnes et al. [22] and the slacks-based
measure (SBM) presented by Tone [23]. Differ from radial measure, SBM has the following salient
advantages: (1) it offers non-oriented evaluation that can simultaneously calculate slacks of inputs
and output, and no need to artificially chose either input-oriented or output-oriented evaluations;
(2) the efficient DMUs/benchmarks under SBM are guaranteed to be Pareto-efficient, and (3) it allows
inefficient DMUs to improve their efficiencies by reducing inputs and/or increasing outputs in various
proportions [24,25]. The context-dependent DEA (CD-DEA), originally introduced by Seiford and
Zhu [26], is a well-known extension on standard DEA. The CD-DEA, consisting of stratification
procedure, attractiveness measure, and progress measure, has proven a helpful method to construct the
benchmark-learning pathway for inefficient DMUs [27,28]. Through the benchmark-learning pathway,
inefficient DMUs can stepwise improve their efficiencies and reach the terminal frontier [29,30].
Generally, the CD-DEA is developed under radial measure, where the slack variables are not considered.
In order to obtain a more complete benchmark-learning pathway, the SBM can be integrated into
CD-DEA [31].

3.1. SBM with Undesirable Outputs

Suppose that there is a set of n DMUs under evaluation, and each of which consumes m
inputs to produce s outputs. The ith input and rth output of DMUj (j = 1, . . . , n) are denoted
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by xij (i = 1, . . . , m) and yrj (r = 1, . . . , s), respectively. The SBM evaluates efficiency of DMUo by
solving the following program.

Minimize θo =
1− 1

m ∑m
i=1 s−i /xio

1+ 1
s ∑s

r=1 s+r /yro

Subject to xio =
n
∑

j=1
λjxij + s−i i = 1, . . . , m

yro =
n
∑

j=1
λjyrj − s+r r = 1, . . . , s

n
∑

j=1
λj = 1 for VRS

λj ≥ 0, s−i ≥ 0, s+r ≥ 0 j = 1, . . . , n

(1)

where s−i and s+r are the non-radial slack variable in ith input and in the rth output, respectively. The λj
is an intensity vector, referred to as a reference set, whose optimal values expose the proportions
contributed by DMUj in constructing the frontier. If the constraint ∑n

j=1 λj = 1 is added, we can obtain
the efficiency of DMUo under variable returns to scale (VRS) assumption; otherwise, model (1) yields
the efficiency with constant returns to scale (CRS).

Note that above model (1) neglects the effect arises from the undesirable outputs. It is clear
that desirable outputs may come along with undesirable outputs as inputs consumes. Such concerns
were commonly emphasized in SD literature. Thus, it is necessary to extend SBM by incorporating
undesirable outputs into account [32]. The SBM with both desirable and undesirable outputs can be
formulated as follows [33]:

Minimize ρo =
1− 1

m ∑m
i=1 s−i /xio

1+ 1
g+b

(
∑

g
r=1 s+g

rg /yg
rgo+∑b

r=1 s−b
rb /yb

rbo

)
Subject to xio =

n
∑

j=1
λjxij + s−i i = 1, . . . , m

yb
rbo =

n
∑

j=1
λjyb

rbj + s−b
rb rb = 1, . . . , b

yg
rgo =

n
∑

j=1
λjy

g
rgj − s+g

rg rg = 1, . . . , g

n
∑

j=1
λj = 1 for VRS

λj ≥ 0, s−i ≥ 0, s−b
rb ≥ 0, s+g

rg ≥ 0 j = 1, . . . , n

(2)

where s+g
rg and s−b

rb are the slack variables denoting shortages in desirable outputs and excesses in
undesirable outputs, respectively. Through model (2), the DMUo’s efficiency is ranged between zero
and one, i.e., 0 ≤ ρ∗o ≤ 1, where “*” denotes the optimality. A DMUo is said to be efficient if and only if
ρ∗o = 1, or equivalently (s−∗i , s+g∗

rg , s−b∗
rb ) = 0; otherwise, DMUo is inefficient.

For an inefficient DMUo, it can improve the efficiency by retrenching the inputs s−∗i , undesirable
outputs s−b∗

rb , and/or expanding the desirable outputs s+g∗
rg , i.e., its improved target (x̂io, ŷb

rbo, ŷg
rgo)

is defined by either (x̂io = xio − s−∗i , ŷb
rbo = yb

ro − s−b∗
rb , ŷg

rgo = yg
ro + s+g∗

rg ) or (x̂io =
n
∑

j=1
λ∗j xij,

ŷb
rbo =

n
∑

j=1
λ∗j yb

rbj, ŷg
rgo = ∑n

j=1 λ∗j yg
rgj). Note that the benchmarks for DMUo are obtained by

Lo =
{

DMUj
∣∣λ∗j > 0, j = 1, . . . , n

}
, indicating which DMUj can be chosen as the learning entities

for DMUo.

3.2. Stratification Procedure in CD-DEA: Determining Performance Levels

The idea behind stratification procedure is to sequentially partition n DMUs into p performance
levels (l = 1, . . . , p) by removing the upper frontier (lth-level) and then forming new
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frontier ((l + 1)th-level) consists of remaining DMUs over and over again until no DMU is left.
Let J1 =

{
DMUj, j = 1, .., n

}
be the set of all DMUs, and El =

{
DMUo ∈ Jl

∣∣∣ρl∗
o = 1

}
denotes

the set of efficient DMUs/benchmarks at lth performance level, where ρl∗
o is the optimal value of the

following program. The sequences of Jl and El are interactively defined as Jl+1 = Jl − El .

Minimize ρl
o =

1− 1
m ∑m

i=1 s−i /xio

1+ 1
g+b

(
∑

g
r=1 s+g

rg /yg
rgj+∑b

r=1 s−b
rg /yb

rbj

)
Subject to xio = ∑

j∈Jl
λjxij + s−i i = 1, . . . , m

yb
ro = ∑

j∈Jl
λjyb

rbj + s−b
r r = 1, . . . , b

yg
ro = ∑

j∈Jl
λjy

g
rgj − s+g

r r = 1, . . . , g ∑
j∈Jl

λj = 1 for VRS

λj ≥ 0, s−i ≥ 0, s−b
rb ≥ 0, s+g

rg ≥ 0, j ∈ Jl

(3)

When l = 1, model (3) is equivalent to model (2) and offers E1 that represents benchmarks at
1st performance level (i.e., the DMUs on the 1st frontier). Subsequently, when l = 2, model (3) offers
benchmarks at 2nd performance level E2 after the exclusion of E1, and so on. Base on this manner,
p performance levels can be defined. The following algorithm accomplishes the process in identifying
the set of DMUs of each performance level.

Step1: Set l = 1 to evaluate all DMUs J1 by model (3) to obtain the best-practice frontier that formed by
E1 (benchmarks at 1st performance level).

Step2: Use Jl+1 = Jl − El to remove the DMUs on the upper frontier, if Jl+1 = ∅, then algorithm stop.
Step3: Evaluate new subset Jl+1 by model (3) to obtain the sub-frontier that formed by El+1

(benchmarks at lower (l + 1th) performance level).
Step4: Let l = l + 1. Go to step2.

3.3. Progress Measure in CD-DEA: Constructing the Benchmark-Learning Pathway

As p performance levels have been confirmed in above stratification procedure, El−1 should
then be determined to complete the benchmark-learning pathway for El(l = 2, . . . , p). Such a
process, deemed as the progress measure, contributes DMUs at lth performance level to find out
the possible benchmarks at upper ((l − 1)th) performance level stepwise guide them improve
their efficiencies. The relative progress efficiency, improved target and possible benchmarks for
a DMUo ∈ Elo (lo = 2, . . . , p) with respect to upper level Elo−1 can be obtained by following program.

Minimize ρlo
o =

1− 1
m ∑m

i=1 s−i /xio

1+ 1
g+b

(
∑

g
r=1 s+g

rg /yg
rgj+∑b

r=1 s−b
rg /yb

rbj

)
Subject to xio = ∑

j∈Elo−1
λjxij + s−i i = 1, . . . , m

yb
rbo = ∑

j∈Elo−1
λjyb

rbj + s−b
r rb = 1, . . . , b

yg
rgo = ∑

j∈Elo−1
λjy

g
rgj − s+g

r rg = 1, . . . , g

∑
j∈Elo−1

λj = 1 for VRS

λj ≥ 0, s−i ≥ 0, s−b
rb ≥ 0, s+g

rg ≥ 0, j ∈ Elo−1

(4)

where j ∈ Elo−1 indicates that progress for DMUo ∈ Elo is a level-by-level improvement; s−i , s+g
rg and

s−b
rb are the slack variables, denoting excesses in inputs, shortages in desirable outputs and excesses

in undesirable outputs, respectively. Theses slacks represent the performance gap between DMUs
at upper ((l – 1)th) performance level and those at the lower (lth) performance level. The progress
efficiency ρlo∗

o between zero and one is monotonic decreasing in s−∗i , s+g∗
rg and s−b∗

rb . The improved



Sustainability 2017, 9, 1483 6 of 15

target (x̂io, ŷb
rbo, ŷg

rgo) ∈ Elo−1 for DMUo ∈ Elo can be defined by (x̂io = xio − s−∗i , ŷb
rbo = yb

ro − s−b∗
rb ,

ŷg
rgo = yg

ro + s+g∗
rg ). In addition, based on the intensity vector λ∗j , the possible benchmarks for a

DMUo ∈ Elo (lo = 2, . . . , p) is given by Blo
o =

{
DMUj ∈ Elo−1

∣∣∣λ∗j > 0
}

.

4. Empirical Application on Constructing SD Pathway for Major Cities

4.1. Sample

All of the cities included within the urban agglomeration plan in the 2015 “Outline of the 13th
Five-Year Plan for the National Economic and Social Development of the People's Republic of China”
were included in the sample library of this study, for a total of 34 samples. The inputs include electricity
consumption, fixed investments, and labors [34,35]. The outputs include the three components of
SD—economic, environmental, and societal development, with each component having its own
set of indicators. The gross domestic product (GDP) is the economic indicator [36,37], while the
environmental indicators include PM2.5 and the air pollution index [38,39]. In view of the completeness
of the available data, the government social security and employment expenditure (SEEE) and the
town’s unemployment rate were used as societal indicators [40,41]. The data was obtained from the
official annual statistics of each city in 2015. Table 1 presents the descriptive statistics of all inputs
and outputs.

Table 1. Descriptive statistics for the 34 major cities.

Maximum Minimum Mean Std. Dev. N

Inputs
Electricity consumption (billion kwh) 1369.02 60.32 404.55 280.36 34

Labors (10 thousand) 1696.94 103.87 527.15 350.25 34
Fixed investments (RMB$100 million) 13,223.75 824.57 4589.67 2750.10 34

Outputs
GDP (RMB$100 million) 23,567.70 1065.78 7379.71 5649.60 34

SEEE (10 thousand) 5,090,079.00 208,848.00 1,162,733.71 1,332,142.40 34
Unemployment rate 4.20 1.31 2.86 0.74 34
Air Pollution Index 8.80 2.49 5.83 1.55 34

PM2.5 (ug/m3) 96.00 22.00 55.94 18.01 34

4.2. Results

The relative efficiencies of 34 major cities obtained by model (2) are listed in Table 2, eight cities
(Beijing, Changsha, Dalian, Guangzhou, Guiyang, Shanghai, Shenzhen, Chongqing) are deemed as
efficient and place on frontier (ρ∗o = 1), while the remaining 26 cities are determined to be inefficient
(ρ∗o < 1). By using model (2), the benchmark set Lo for 26 inefficient cities are shown in last column,
which indicate the learning entities of inefficient cities. Take Changchun city ranked second (ρ∗o = 0.640)
as an example, for reaching the frontier or becoming an efficient one, it has to refer to Beijing and
Changsha cities. Note that model (2) can only provide the benchmarks as terminal goal of sustainability
to inefficient cities. Such benchmarking information perhaps is impractical since not all inefficient
cities can outright improve their efficiencies in a single step. Moreover, it is not reasonable that
most of inefficient cities should select Beijing as the benchmark because there may exist a huge gap
between them.
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Table 2. Efficiency results of 34 major cities via model (2).

Major Cities Score Rank Benchmarks Lo Major Cities Score Rank Benchmarks Lo

Beijing 1.000 1 Beijing Wuhan 0.593 11 Beijing
Changsha 1.000 1 Changsha Xiamen 0.416 12 Changsha

Dalian 1.000 1 Dalian Chengdu 0.416 13 Dalian
Guangzhou 1.000 1 Guangzhou Fuzhou 0.333 14 Guangzhou

Guiyang 1.000 1 Guiyang Haikou 0.345 15 Guiyang
Shanghai 1.000 1 Shanghai Hefei 0.374 16 Shanghai
Shenzhen 1.000 1 Shenzhen Hohhot 0.417 17 Shenzhen

Chongqing 1.000 1 Chongqing Kunming 0.331 18 Chongqing
Changchun 0.640 2 Beijing, Changsha Nanchang 0.428 19 Beijing, Changsha

Harbin 0.633 3 Beijing, Changsha, Dalian Taiyuan 0.324 20 Beijing, Changsha, Dalian
Hangzhou 0.474 4 Beijing Xian 0.379 21 Beijing

Jinan 0.340 5 Beijing Xining 0.195 22 Beijing
Nanjing 0.500 6 Beijing Yinchuan 0.322 23 Beijing
Qingdao 0.619 7 Beijing, Changsha Zhengzhou 0.328 24 Beijing, Changsha
Shenyang 0.571 8 Beijing, Changsha, Dalian Lanzhou 0.238 25 Beijing, Changsha, Dalian

Tianjin 0.590 9 Beijing Nanning 0.328 26 Beijing
Urumqi 0.478 10 Beijing Shijiazhuang 0.260 27 Beijing

By using the stratification procedure in CD-DEA, model (3), 34 major cities can be partitioned into
4 levels (El , l = 1, . . . , 4) reported in Table 3. The first level El=1 involves {Shanghai, Dalian, Guangzhou,
Beijing, Changsha, Chongqing, Shenzhen, Guiyang}; the second level El=2 covers {Tianjin, Changchun,
Shenyang, Hangzhou, Wuhan, Qingdao, Nanjing, Harbin, Jinan, Xiamen, Urumqi}; the third level El=3

includes {Taiyuan, Hefei, Chengdu, Xining, Xian, Hohhot, Kunming, Nanchang, Haikou, Yinchuan,
Fuzhou, Zhengzhou}; finally, the fourth level El=4 comprises {Shijiazhuang, Nanning, Lanzhou}.
Technically, the cities in first level El=1 obtained from model (3) are the most efficient among sampling
cities, which are equivalent to those obtained from model (2) while the cities in second level El=2 is
calculated via the exclusion of El=1, and so on. The stratification procedure stop at l = 4 since no cities
left after removing El=4, i.e., Jl=5 = ∅.

Table 3. Stratified efficiencies and performance levels for 34 major cities.

Major Cities E1 E2 E3 E4 Level

Shanghai 1.000 - - - Level 1
Dalian 1.000 - - - Level 1

Guangzhou 1.000 - - - Level 1
Beijing 1.000 - - - Level 1

Changsha 1.000 - - - Level 1
Chongqing 1.000 - - - Level 1
Shenzhen 1.000 - - - Level 1
Guiyang 1.000 - - - Level 1
Tianjin 0.590 1.000 - - Level 2

Changchun 0.640 1.000 - - Level 2
Shenyang 0.571 1.000 - - Level 2
Hangzhou 0.474 1.000 - - Level 2

Wuhan 0.593 1.000 - - Level 2
Qingdao 0.619 1.000 - - Level 2
Nanjing 0.500 1.000 - - Level 2
Harbin 0.633 1.000 - - Level 2
Jinan 0.340 1.000 - - Level 2

Xiamen 0.416 1.000 - - Level 2
Urumqi 0.478 1.000 - - Level 2
Taiyuan 0.324 0.474 1.000 - Level 3

Hefei 0.374 0.547 1.000 - Level 3
Chengdu 0.416 0.792 1.000 - Level 3

Xining 0.195 0.373 1.000 - Level 3
Xian 0.379 0.545 1.000 - Level 3

Hohhot 0.417 0.666 1.000 - Level 3
Kunming 0.331 0.517 1.000 - Level 3
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Table 3. Cont.

Major Cities E1 E2 E3 E4 Level

Nanchang 0.428 0.598 1.000 - Level 3
Haikou 0.345 0.547 1.000 - Level 3

Yinchuan 0.322 0.424 1.000 - Level 3
Fuzhou 0.333 0.540 1.000 - Level 3

Zhengzhou 0.328 0.618 1.000 - Level 3
Shijiazhuang 0.260 0.386 0.527 1.000 Level 4

Nanning 0.328 0.478 0.778 1.000 Level 4
Lanzhou 0.238 0.359 0.565 1.000 Level 4

To find out the possible benchmarks and make level-by-level improvement for inefficient cities in
El=2, El=3 and El=4, the progress measure, model (4), is then applied. The results of optimal solution to
model (4) are shown in Table 4, where column 4 reports the benchmarks Blo

o =
{

DMUj ∈ Elo−1
∣∣∣λ∗j > 0

}
for inefficient cities in Elo on the SD pathway from Llo to Llo-1 and column 5 to 12 show the potential
improvement of energy consumption, labors, fixed investments, GDP, SEEE, unemployment rate, air
pollution index and PM2.5 in percentage terms (%), calculated by optimal slack variable divided by the
raw data for each input, desirable output and undesirable output, i.e., s−∗i /xio, s+g

rg /yg
rgo and s−b

rb /yb
rbo.

For example, in terms of SD pathway L3 to L2, Chengdu in El=3 can choose {Tianjin, Hangzhou,
Wuhan, Qingdao}as the benchmarks and make potential improvement on retracting labors (26.66%),
unemployment rate (0.5%) and air pollution index (4.03%), and expanding SEEE (70.95%). The outcomes
of these analyses can be visualized in a geographical view, the following Figures 1–3 respectively
demonstrate the SD pathways of L2 to L1, L3 to L2 and L4 to L3.

Figure 1. Benchmark-learning pathway from L2 to L1.
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Table 4. Benchmark-learning pathway and improvement on variable for 34 major cities.

Major
Cities No. SD

Pathway Blo
o

Electricity
Consumption Labors Fixed

Investments GDP SEEE Unemployment
Rate

Air Pollution
Index PM2.5

Shanghai (11) L1 - 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Dalian (12) L1 - 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Guangzhou (13) L1 - 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Beijing (14) L1 - 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Changsha (15) L1 - 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Chongqing (16) L1 - 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Shenzhen (17) L1 - 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Guiyang (18) L1 - 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Tianjin (21) L2→ L1 {(14)} −14.04% −2.78% −52.16% 0.00% 44.59% −73.17% −20.37% −14.69%

Changchun (22) L2→ L1 {(14),(15)} 0.00% −10.15% −27.57% 0.00% 5.28% −68.73% −57.03% −52.37%
Shenyang (23) L2→ L1 {(12),(14),(15)} 0.00% −9.04% −54.25% 0.00% 0.00% −73.43% −61.59% −56.40%
Hangzhou (24) L2→ L1 {(14)} −27.11% −23.77% −34.10% 0.00% 102.93% −69.27% −44.50% −38.67%

Wuhan (25) L2→ L1 {(13),(14)} −0.03% 0.00% −50.92% 0.00% 25.07% −75.32% −49.27% −49.87%
Qingdao (26) L2→ L1 {(14),(15)} 0.00% −17.69% −29.49% 0.00% 84.88% −52.52% −28.71% −14.27%
Nanjing (27) L2→ L1 {(14)} −17.96% −2.16% −42.73% 0.00% 122.08% −78.33% −49.53% −41.24%
Harbin (28) L2→ L1 {(12),(14),(15)} 0.00% −38.82% −9.94% 0.00% 0.00% −58.38% −50.24% −52.59%
Jinan (29) L2→ L1 {(14)} −36.02% −18.87% −33.22% 0.00% 391.58% −84.18% −77.14% −75.65%

Xiamen (20) L2→ L1 {(14)} −31.57% −37.85% −26.22% 0.00% 103.73% −93.36% −65.28% −57.14%
Urumqi (2a) L2→ L1 {(14)} −28.13% −19.23% −14.05% 0.00% 62.28% −95.82% −87.77% −85.84%
Taiyuan (31) L3→ L2 {(24),(25)} −55.25% −37.93% 0.00% 0.00% 0.97% −77.01% −76.77% −71.73%

Hefei (32) L3→ L2 {(25),(26)} 0.00% −45.30% −33.42% 0.00% 45.36% −44.72% −37.44% −46.23%
Chengdu (33) L3→ L2 {(21),(24),(25),(26)} 0.00% −26.66% 0.00% 0.00% 70.95% −0.50% −4.03% 0.00%

Xining (34) L3→ L2 {(23)} −89.31% −43.20% −0.26% 19.08% 0.00% −78.24% −77.10% −73.73%
Xian (35) L3→ L2 {(25)} −11.79% −45.71% −35.30% 0.00% 3.20% −49.46% −46.43% −34.17%

Hohhot (36) L3→ L2 {(24),(25),(27),(2a)} −20.71% 0.00% 0.00% 0.00% 0.00% −77.73% −66.66% −54.72%
Kunming (37) L3→ L2 {(21)} −31.89% −48.90% −12.32% 0.00% 2.07% −63.68% −56.52% −44.91%
Nanchang (38) L3→ L2 {(25),(26)} 0.00% −34.07% −27.09% 0.00% 7.68% −65.88% −47.71% −44.35%

Haikou (39) L3→ L2 {(23),(25),(28)} −24.66% −52.92% 0.00% 0.00% 0.00% −63.64% −60.51% −53.08%
Yinchuan (30) L3→ L2 {(23),(25)} −36.87% −40.54% −30.55% 0.00% 0.00% −87.81% −85.98% −81.03%
Fuzhou (3a) L3→ L2 {(21)} −27.17% −40.37% −13.49% 0.00% 67.42% −51.11% −36.21% −20.66%

Zhengzhou (3b) L3→ L2 {(21),(24) −19.10% −13.12% −29.90% 0.00% 31.35% 0.00% −52.89% −57.26%
Shijiazhuang (41) L4→ L3 {(33),(35)} −44.95% −15.79% −27.79% 0.00% 0.00% −52.78% −56.73% −59.79%

Nanning (42) L4→ L3 {(33),(35),(37),(39)} 0.00% −38.33% 0.00% 0.00% 0.00% −33.34% −10.07% −17.05%
Lanzhou (43) L4→ L3 {(33),(37)} −58.53% −4.20% −4.83% 0.00% 0.00% −40.66% −72.87% −71.76%
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Figure 2. Benchmark-learning pathway from L3 to L2.

Figure 3. Benchmark-learning pathway from L4 to L3.

The intrinsic meaning of the benchmark-learning pathway is that the distance in the
multi-dimensional mapping is the shortest and significant; therefore, there may be more than one
learning path. This means that developing along learning pathways is easier and more efficient than
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learning other cities, and it provides resource optimization, reduction of redundant construction, and
more reliability. The improvement on variable means the amount of improvement needed to achieve
the overall level of a higher tier. To most variables, negative values mean improvement but positive
to SEEE.

5. Discussion

The cities that occupy the frontrunner positions in terms of efficiency include: Beijing, Shanghai,
Guangzhou, Shenzhen, Chongqing, Dalian and Guiyang. The SD abilities of the first four cities
are especially outstanding. The reasons for this observation are as follows: firstly, these cities have
outgrown their reliance on conventional industries and fixed investments, and consequently have very
high levels of economic efficiency. Secondly, these cities have immense financial and political power,
and are able to invest more heavily in sustainable environmental and societal development. A more
subtle cause is that these cities have a special role and status in China, and are widely regarded as
first-rate cities; therefore, these cities will also receive larger quantities of “soft” resources. Chongqing,
which is a directly-controlled municipality, also enjoys a similar advantage and has experienced
tremendous growth in recent years. The population of Chongqing changed from a net outflow into
a net inflow, and its potential for further development has received widespread interest. Guiyang
is China’s first “National Forest City”, and its SD ability is largely supported by its environmental
advantages. In addition, Guiyang is now benefitting from substantial fixed asset investments that
were made over the last few years and is developing rapidly despite its weak economic fundamentals;
this is largely consistent with the estimates made in this study. Cities within the first tier have the
highest efficiencies, and have the strongest combined “economic-societal-environmental” sustainability.
These cities generally have very high production efficiency due to the development of technological
industries and innovation-driven enterprises.

Cities within the second tier include Tianjin, Wuhan, Nanjing, Hangzhou, Xiamen, Shenyang,
Changchun, Harbin, Jinan, Qingdao, and Urumqi. The differences between these cities and the
frontrunners in terms of efficiency are mainly due to three aspects: reliance on fixed asset investments
(+45.4% on average), lower public service investments (−46.1% on average), and inadequate
employment opportunities (all samples need further improvement); some of these cities also have
environmental pollution issues that need to be addressed. As a whole, these cities are undergoing
major changes that are driven by large-scale investments, and have yet to put any special focus on
SD. In terms of learning roadmaps, Beijing is the benchmark-learning pathway for a number of cities;
in other words, if these cities are to improve their ability for SD, they need to reduce their reliance
on fixed asset investments, increase employment opportunities, and provide more public services.
The benchmark-learning pathway of cities such as Shenyang point towards Guangzhou, Changsha,
and Dalian instead, which reflects on the need of these cities to reduce pollution.

Cities in the third tier include Fuzhou, Hefei, Zhengzhou, Nanchang, Haikou, Hohhot, Taiyuan,
Chengdu, Xi’an, Kunming, Xining, and Yinchuan. As compared to cities in the previous tier, some the
inadequacies of these cities include: higher energy consumption and manual labor investments,
and lower employment levels; some of these cities also have significant environmental risks.
Emerging industries and service industries have yet to be adequately developed in these cities, and
conventional industries remain dominant in these locations. The SD ability of these cities is therefore,
relatively weak. In some of these cities, large-scale conventional production industries are still being
developed in the near-term; this is incompatible with SD. Hangzhou (which is a second-tier city)
is an example for the transformation of conventional industries towards a center for technological
development and entrepreneurship, and thus receives the largest number of recommendations in
terms of benchmark-learning roadmaps from third-tier cities. This indicates that the development of
information, cultural, and modern service industries will enhance the SD ability of third-tier cities.
Tianjin, Wuhan, and Qingdao also received numerous recommendations. This is because these cities
provide ample opportunities for employment, invest strongly in societal services, and are fertile
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grounds for the development of emerging industries. These are also aspects that need to be improved
upon in third-tier cities. In reality, if Suzhou was also included in this evaluation, it would become the
focal point for learning pathways from cities in this tier, as it also has ample employment opportunities
and substantial public investment. Each city has its own unique circumstances; Xining for example, is
a center for high energy consumption industries, and the main purpose of its learning pathways is to
increase its energy consumption efficiency.

Cities within the fourth tier include: Shijiazhuang, Lanzhou and Nanning. As compared to cities
in the previous tiers, the fourth-tier cities do not lag behind in terms of GDP and public investment.
The main weaknesses of Shijiazhuang and Lanzhou are that they have excessively high energy
consumption and suffer from severe environmental pollution, whereas Nanning is incapable of
providing sufficient opportunities for employment. These cities are still in the industrialization stage,
and therefore have lower levels of SD ability.

As a whole, at present, the coastal cities of China have a higher level of SD ability than inland
cities, cities in the south are more highly rated than those in the north, and cities that are prioritized
in national policy and funding (i.e., directly-controlled municipalities, “cities under separate state
planning”, and Urumqi, which receives support at the policy level) also rate better than other cities
that are spatially similar. A city’s ability for SD will improve with further industry upgrades and
enhancements in efficiency. This strengthening is indirectly related to GDP (as it increases the financial
capabilities and overall development of a city), and there are also common causal factors between these
two aspects (high efficiency industries will lead to high GDP and strong sustainability). Nonetheless,
the correlation between GDP and SD ability is tenuous at best; in these calculations, GDP is only
a weakness (in terms of SD ability) for one of the sampled cities. For most of China’s major cities,
developmental modes that are centered on GDP growth are already obsolete. As compared to GDP, the
availability of high quality employment opportunities and improvements in the provision of public
services are of greater significance for the SD of a city.

The dominance of heavy industries will restrict the continued growth of certain major cities.
Major cities where heavy industries are aggregated must take effective measures to control industrial
pollution, or move these polluting industries out of the city. However, this does not mean that
environmental pollution only has a small impact on the remaining cities, as environmental pollution is
a key factor in determining differences in efficiency between the four tiers of classification. As a whole,
environmental pollution is one of the most important factors that restrict the SD ability of China’s
cities. Therefore, the control of pollution will significantly improve the SD ability of a city. Even the
first-tier cities that have the highest efficiencies still have significant room for improvement in this
aspect, since the SD ability of a city simply represents an assessment of its dynamic state [42], and does
not represent a terminal point.

6. Summaries and Conclusions

In this study, 34 major cities in China were classified into four tiers according to their SD
ability. Unlike expectations, the performance of cities in the comprehensive assessment was almost
unconstrained by the total economic output. Cities with the lowest sustainable ability were strongly
recommended reduction in energy consumption and pollution. In reality, both Lanzhou and
Shijiazhuang are important cities with highly polluting industries, and even Shijiazhuang has three
times the steel capacity of entire US. Compared with their output, most cities in the third tier use
excessive labor to maintain economic activities, thus reducing their efficiencies. This implies that
their industries are labor-intensive. Cities in the second tier consume excessive investments in fixed
assets, showing that they are undertaking large-scale expansion and urban renewal, in response to
capital appropriation; their public service investments are significantly lower than cities in the first
tier. In summary, the dominant industries in each of these tiers (from low to high) are: high energy
consumption and polluting industries—labor-intensive industries—fixed asset investment and service
industries—innovation-related activities, quality of life, and societal services. This work has provided
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recommendations for the developmental pathways of each city (in each of the tiers). For cities in the
fourth, third and second tiers that have lower levels of SD ability, the focal points for improvement
are: the control of energy consumption and environmental pollution, the upgrading of industries
and urban redevelopment, and the development of an environment that encourages innovation and
provides ample employment. This work also provides unique developmental pathways for each city
in each of the tiers, and also includes optimal learning benchmarks. In this study, it was also found that
GDP is not generally a restricting factor for SD ability, since the majority of China’s cities already have
a high level of GDP. With the background of China’s large population, in future developments towards
sustainable cities, more focus should be placed on knowledge-intensive economies and balanced
development, in order to prevent resource concentration from backward cities to leading cities by the
polarizing effect, which causes overinflated expansion of central cities. Environmental pollution is a
universal restricting factor for the SD of China’s cities. Hence, pollution prevention is one of the focal
points for future urban developments.

The DEA method and improved versions of this method have been used by a number of studies
to evaluate SD in several regions of China. These studies have generally focused on provincial
regions (autonomous regions and directly-controlled municipalities), whereas this study treats cities
as DMUs and appropriately restricts the spatial range of the study. This has resulted in precise and
targeted results, and circumvents issues related to excessive sample differences and internal sample
heterogeneity. As compared to previous related studies, DMUs that significantly contradict common
understandings were not produced in this study. It is thus shown that the appropriate restriction
of sample space and range is important for the rationality of the results that are obtained from the
DEA model during efficiency evaluations. Furthermore, the component factors for SD have been
treated in a comprehensive manner, on the basis of previous studies on economic, energy resource
and environmental factors. Evaluative indicators for societal development were introduced so that
all three aspects of SD could be simultaneously evaluated within this study, thus producing a more
holistic evaluation of SD ability. Due to restrictions imposed by the availability of data, this study only
includes the assessment of static states. Subsequent studies may also include a time perspective, so that
dynamic evaluations can be performed to analyze the evolution and fluctuation of a city’s SD ability.

According to China’s governmental website (www.gov.cn), SD has been an important part of
China’s national strategy since 2012. The SD of cities is an important component of the nation’s
SD since a majority of China’s population now live in urban environments. Urban sustainability is
therefore a highly significant issue. Like other economic phenomena, the development of cities must
adhere to certain intrinsic patterns, and a stage of development cannot be “skipped” in an arbitrary
manner. In this work, China’s major cities were classified according to their SD abilities, and pathways
for improvement were proposed for each city and each tier of classification. This work is of significant
value for guiding the planning of cities, and policy makers may also benefit strongly from our findings.
Therefore, we expect that the SD of China’s cities will continue to improve over time.
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