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Abstract: In coastal cities, the effect of the sea breeze in mitigating the urban heat island (UHI)
phenomenon has attracted attention. This study targeted the Fukuoka–Kitakyushu metropolitan area,
the fourth largest metropolitan area in Japan which is also coastal. Doppler Light Detection And
Ranging (LiDAR) observations were conducted in the summer of 2015 to clarify the transition of the
wind field over the targeted area. To investigate the effects on the UHI of land-use change related to
urbanization, the National Land Numerical Information (NLNI) land-use datasets for Japan in 1976
(NLNI-76) and 2009 (NLNI-09) were used in the Weather Research and Forecasting (WRF) model.
The results of the simulation showed that most of the northern part of the Kyushu region became
warmer, with an average increase of +0.236 ◦C for the whole simulation period. Comparing the two
simulations and the Doppler LiDAR observations, the simulation results with the NLNI-09 dataset
(for the year closest to the study period in 2015) showed closer conformity with the observations.
The results of the simulation using NLNI-76 showed faster sea breeze penetration and higher wind
velocity than the observations. These results suggest that the land-use change related to urbanization
weakened the sea breeze penetration in this area.

Keywords: urban heat island; meso-scale meteorological model; Doppler LiDAR; sea breeze;
land-use change

1. Introduction

Japan is a mountainous island nation most of whose large cities are located in coastal areas and
many of which are facing problems caused by urbanization. The urban heat island (UHI) phenomenon
is a typical environmental problem encountered in dense urban areas in summer. The effect of the
sea breeze in mitigating the UHI phenomenon has attracted attention in coastal cities, making further
investigation of the environment of coastal urban areas important.

This study targeted the Fukuoka–Kitakyushu metropolitan area for investigation. This is the
fourth largest metropolitan area after Tokyo, Osaka, and Nagoya, all of which are also coastal cities.
Within these areas, sea breezes are important factors that mitigate the air-temperature rise during the
summer. However, ongoing urbanization could be changing not only the mechanism of the energy
balance on urban surfaces, but also the sea breeze system in large coastal cities.

The Fukuoka–Kitakyushu metropolitan area comprises the cities of Fukuoka and Kitakyushu in
the Fukuoka prefecture located in the Kyushu region. The heat island monitoring report [1] indicated
that the rise in annual average air temperature statistically derived with the linear least squares method
from 1931 to 2014 in Fukuoka, in the central part of the targeted area, at 3.1 ◦C per century, was the
second largest after that in Tokyo, at 3.2 ◦C per century. Moreover, the rise in minimum summer air
temperature statistically derived with the linear least squares method from 1931 to 2014 in Fukuoka
was the largest, at 3.9 ◦C per century.
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To clarify the effects of land-use change related to urbanization in the Fukuoka–Kitakyushu
metropolitan area, a meso-scale meteorological model was utilized. The term “meso” means
intermediate between “macro” and “micro”, and in the meteorological field, meso-scale means from a
few kilometers to several hundred kilometers. To analyze the UHI in terms of meso-scale phenomena,
e.g., motion of the atmosphere, heat transfer between land surface and atmosphere, solar radiation and
infrared radiation and so on, meso-scale meteorological models are utilized. The Weather Research
and Forecasting model (WRF) [2] developed by the National Center for Atmospheric Research (NCAR)
in Boulder, CO, USA, is a meso-scale meteorological model that is widely utilized to analyze UHI
phenomena. For example, Holt and Pullen analyzed the UHI in the New York City metropolitan area,
USA, using the WRF and the Coupled Ocean-Atmosphere Mesoscale Prediction System (COMPAS) [3].
Miao et al. analyzed the UHI and boundary layer structures in Beijing, China, with the WRF [4].
Giannaros et al. investigated the spatial and temporal structure of the UHI in Athens, Greece, with the
WRF [5]. In Japan, Kusaka et al. utilized the WRF to evaluate the effect of future global warming in the
Tokyo, Osaka, and Nagoya metropolitan areas [6]. Hisada et al. investigated the relationship between
the characteristics of sea breeze and land use in the Fukuoka metropolitan area using the WRF [7].
To evaluate the effect of land-use change, the WRF is also adopted in this study.

The National Land Numerical Information (hereafter referred to as NLNI) land-use datasets
provided by the National Land Information Division, National Spatial Planning and Regional Policy
Bureau, Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan [8] were used to
represent the land-use change in the Fukuoka–Kitakyushu metropolitan area, using a Land Surface
Model (LSM) with the mosaic option in the WRF. The NLNI land-use datasets were published for
several years, with the earliest dataset published in 1976 and the latest published in 2009. These were
adopted to represent the land-use change over about three decades. The investigation period was set
in the summer of 2015. To clarify the effect of land-use change, the same meteorological and simulation
conditions were applied to the two simulation cases, except for the land-use fraction dataset.

Additionally, upper air observations using Doppler Light Detection And Ranging (LiDAR) were
conducted to clarify the transition of the wind field over the Fukuoka–Kitakyushu metropolitan
area. The Doppler LiDAR system emits laser pulses to the atmosphere and detects the reflected light
back-scattered from aerosols. Wind velocity along the line of sight is then obtained using the Doppler
frequency shifts from the back-scattered light. In the field of urban climate, Doppler LiDAR systems
are utilized to observe wind profiles over urban areas. For example, Lane et al. [9] and Drew et al. [10]
observed wind profiles over central London, UK. In the Tokyo metropolitan area, some research on sea
breezes flowing over the urban area has been conducted using upper air observations. For example,
Yoshikado and Kondo carried out large-scale upper air observations using radiosondes and pilot
balloons, to clarify the transportation of atmospheric pollutants affected by the sea breeze from Tokyo
Bay in the 1980s [11]. Following that study, the present author conducted upper air observations
using two sets of Doppler LiDAR in 2011 [12]. One instrument was set at approximately 12 km
from the coastline of Tokyo Bay, and the other was set at approximately 34 km from the coastline.
These sets of Doppler LiDAR observations captured the sea breeze penetration from Tokyo Bay.
In 2012, Yoshikado et al. [13] carried out upper air observations using Global Positioning System
(GPS) sondes and clarified the thermal structure over the Tokyo metropolitan area in summer. In the
Fukuoka–Kitakyushu metropolitan area, this kind of upper air observation that focuses on the urban
climate has been limited. For example, Hisada et al. [14] observed wind fields over Fukuoka city using
Doppler SODAR (SOnic Detection And Ranging); however, compared with the Tokyo metropolitan
area, the accumulation of observation data is not sufficient. Therefore, to clarify the transition of
the wind field over the Fukuoka–Kitakyushu metropolitan area, Doppler LiDAR observations were
conducted simultaneously with the numerical simulations.
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2. Materials and Methods

2.1. Outline of the Meso-Scale Meteorological Model

The WRF ver. 3.7.1 was used to analyze the atmospheric conditions of the targeted area, and a
mosaic land-use categories option for the Noah LSM was incorporated from the WRF ver. 3.6 [15].
In the previous LSM, the land surface property of each analysis cell was defined by the dominant
land-use category. If one analysis cell consisted of 60% “urban” land-use and 40% “forest” land-use,
that cell was defined as “urban”, and the characteristics of a forest were neglected. However, the
mosaic LSM enables the representation of different land-use fractions in each analysis cell. In an already
urbanized area, the amount of further conversion from other land uses to “urban” within a short
time period may be small. Therefore, the mosaic LSM is useful in analyzing urban climate transitions
caused by land-use change over several decades, which is not represented by the dominant land-use.

2.2. Outline of the National Land Numerical Information Land-Use Datasets

In this study, the NLNI land-use datasets were used to represent the progress of land-use change.
To make the NLNI land-use datasets suitable for the WRF LSM, the WRF Preprocessing System (WPS)
was modified [16]. The NLNI land-use datasets were published in 1976, 1987, 1991, 1997, 2006 and
2009. From these, the datasets that were published in 1976 (earliest) and 2009 (latest) were used in
this study. The NLNI land-use datasets are stored on the basis of the Basic Grid Square (Third Area
Partition) with a resolution of approximately 1 km2 and a grid spacing with latitude and longitude of
30” and 45”, respectively. The Basic Grid Square is widely used for statistics regarding population,
land-use, and urban planning, among others, by national and local governments in Japan. A resolution
of approximately 1 km2 is suitable as input data for the meso-scale model. Each Basic Grid Square
has fractional land-use data with different categories by year. Since each dataset comprised different
land-use categories, the original ones were re-grouped into six categories of land-use to adapt to the
WRF, as shown in Table 1. In the WRF model, the land-use dataset provided by the U.S. Geological
Survey (USGS) (Reston, VA, USA) is used as the default.

Table 1. Land-use categories in the Weather Research and Forecasting model (WRF) and National Land
Numerical Information (NLNI) land-use datasets.

Land-Use Categories in WRF
(Provided by the U.S. Geological Survey)

Land-Use Categories in
NLNI in 1976 Land-Use Categories in NLNI in 2009

Irrigated Cropland and Pasture Paddy field Paddy field

Mixed Dryland/Irrigated Cropland and
Pasture

Field
Other agricultural landOrchard

Other tree plantation

Mixed Forest Forest Forest

Barren or Sparsely Vegetated
Wasteland Wasteland

Other land
Other land

Golf course
Land for building Land for building

Trunk transportation land (Road)Urban and Built-Up Land Trunk transportation land
Trunk transportation land (Rail)

Water Bodies

Lake
River basin, lake, and marsh

River

Beach Beach

Seawater body Seawater body

Figure 1a shows the geography of the Kyushu region, the main target of this study. Figure 1b
shows the fraction of land in the “urban” category (shaded in Table 1) in the Fukuoka prefecture in
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1976. The resolution of the figure is 1 km, and the degree of shading indicates the fraction of “urban”
land-use within each 1 km2 cell. Figure 1c shows the increment in the “urban” land-use fraction over
time. “Urban” land-use fractions in 1976 were subtracted from those in 2009; so that a positive value
(red in Figure 1c) indicates an increase in “urban” land-use in that cell. Overall, the results obtained
over the three decades did not show extremely rapid land-use change in the Fukuoka–Kitakyushu
metropolitan area. In particular, the increments in “urban” land-use in the central part of Fukuoka city
were very small, because this area had already been extensively urbanized by the 1970s. However, the
“urban” land-use area had increased in the surrounding areas due to urban expansion.
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the “urban” land-use fraction. The red indicates the degree of increase in the “urban” land-use 
fraction from 1976 to 2009, and the blue indicates the decrease. Numbers from 1 to 14 enclosed within 
circles indicate the observation sites of the Japan Meteorological Agency (Tokyo, Japan). Number 15 
indicates the Doppler LiDAR observation site. 
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of the hourly output data for 54 days, from 8 August to 30 September 2015, were used in this study. 
This evaluation period covered the upper air observation period. The initial conditions were obtained 
from the National Centers for Environmental Prediction Final operational global analysis data (NCEP 
FNL), with a resolution of 0.25°. Relaxation lateral boundary conditions were applied to domain 1, 
and nest lateral boundary conditions were applied to domains 2 and 3. The surface temperature and 
the sea surface temperature, for setting the lower boundary conditions, were obtained from the NCEP 
FNL data. In this study, the following schemes were applied for all domains and all cases: 
microphysics: Thompson scheme [17]; long-wave radiation: Rapid Radiative Transfer Model (RRTM) 
scheme [18]; short-wave radiation: Goddard scheme [19]; surface layer: Eta similarity scheme based 
on Monin–Obukhov similarity [20]; land surface: Noah LSM model [21] with mosaic option [16]; and 
planetary boundary layer: Mellor–Yamada–Janjic scheme [20]. Grell 3D ensemble cumulus 
parameterization [22] was applied only for domain 1. Urban canopy models were not applied for all 

Figure 1. Geography of targeted area and “urban” land-use fraction in Fukuoka prefecture: (a) The
geography of the Kyushu region. The locations of the Fukuoka district meteorological observatory,
the Kumamoto local meteorological observatory, the Oita local meteorological observatory and the
Nagasaki local meteorological observatory are also shown. (b) The “urban” land-use fraction in 1976.
The degree of shading indicates the fraction of “urban” land-use within each grid cell. (c) Increase in
the “urban” land-use fraction. The red indicates the degree of increase in the “urban” land-use fraction
from 1976 to 2009, and the blue indicates the decrease. Numbers from 1 to 14 enclosed within circles
indicate the observation sites of the Japan Meteorological Agency (Tokyo, Japan). Number 15 indicates
the Doppler LiDAR observation site.

2.3. Analysis Conditions

Figure 2 illustrates the analysis domains, which covered an area of 3000 km (east–west) × 2500 km
(south–north) with a horizontal resolution of 25 km. The entire analysis domain was two-way
nested into two-fold sub-domains: domain 2 (750 × 750 km with a resolution of 5 km) and domain 3
(200 × 180 km with a resolution of 1 km). The vertical domain was divided into 48 unequally spaced
grids. The top was set by pressure at 5000 Pa (approximately 20 km in height), and the lowest grid
height was approximately 25 m.

The summer of 2015 was selected as the study period. The simulations were started on 24 July,
and the time integration was performed for 69 days. The first 15 days were for spin-up, and the
results of the hourly output data for 54 days, from 8 August to 30 September 2015, were used in this
study. This evaluation period covered the upper air observation period. The initial conditions were
obtained from the National Centers for Environmental Prediction Final operational global analysis
data (NCEP FNL), with a resolution of 0.25◦. Relaxation lateral boundary conditions were applied
to domain 1, and nest lateral boundary conditions were applied to domains 2 and 3. The surface
temperature and the sea surface temperature, for setting the lower boundary conditions, were obtained
from the NCEP FNL data. In this study, the following schemes were applied for all domains and all
cases: microphysics: Thompson scheme [17]; long-wave radiation: Rapid Radiative Transfer Model
(RRTM) scheme [18]; short-wave radiation: Goddard scheme [19]; surface layer: Eta similarity scheme
based on Monin–Obukhov similarity [20]; land surface: Noah LSM model [21] with mosaic option [16];
and planetary boundary layer: Mellor–Yamada–Janjic scheme [20]. Grell 3D ensemble cumulus
parameterization [22] was applied only for domain 1. Urban canopy models were not applied for all
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domains because of the lack of detailed building parameters. Therefore, the effect of urbanization was
represented by urban land-use, and the transition of urban morphology could not be considered.
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Figure 2. Analysis domains for the Weather Research and Forecasting model (WRF) simulation.
Domain 1 covers all of Japan, domain 2 covers the entire Kyushu region, and domain 3 covers the
northern part of the Kyushu region, which was the main target area in this study.

To evaluate the climatological effect of land-use changes over the three decades, numerical
simulations were performed using two different land-use datasets. For simplicity, these two datasets
are abbreviated as NLNI-76 for the National Land Numerical Information land-use dataset for 1976, and
NLNI-09 for 2009. In order to evaluate the influence of the land-use datasets, the same meteorological
data were adopted as the initial conditions for both cases. Furthermore, to evaluate the effects of
the mosaic LSM and NLNI land-use dataset, a USGS land-use dataset, used in the WRF by default,
was also adopted. For the USGS dataset only, the Noah LSM model without the mosaic option was
adopted, with the other settings remaining the same as for NLNI-76 and NLNI-09.

2.4. Outline of the Doppler LiDAR System

For the observations, the Leosphere WINDCUBE V2 Doppler LiDAR system was set up at the
Ohashi campus of Kyushu University (33.5597◦ N 130.4308◦ E), approximately 6 km from the coastline,
with a height of 8 m above ground level (AGL). The location of the Doppler LiDAR observation site is
shown as no. 15 in Figure 1b,c.

The Leosphere WINDCUBE V2 Doppler LiDAR system emits eye-safe pulsed laser beams at fixed
angles; four beams with zenith angles of 28◦ facing to the north, east, south and west respectively, and
one vertical beam. The wind speed range is from 0 to 60 m/s and the resolution is 0.1 m/s. The wind
direction resolution is 2◦. The vertical resolution of the Doppler LiDAR is 20 m, and the range is from
40 m to 260 m. The data sampling rate is 1 Hz. In this study, measurements were averaged over
10-min intervals.
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3. Results and Discussion

3.1. Comparing Observation and Simulation Results of the Surface Air Temperature

The NLNI-09 utilized the latest land-use dataset, from the year (2009) closest to the simulation
period in 2015. Therefore, to validate the simulation performance, the results of the NLNI-09 simulation
were compared first with the observation data provided by the Japan Meteorological Agency (JMA).
To evaluate the effects of the mosaic LSM and the different land-use datasets, the results of the USGS
case were also compared. In Fukuoka prefecture, the surface air temperatures at 14 sites were observed.
The locations of the observation sites are shown in Figure 1b,c. Table 2 shows the mean error (ME)
and root mean square error (RMSE) for the observed surface air temperatures and simulated air
temperatures at 2 m AGL. The data for evaluation were hourly data for 54 days from 8 August to
30 September 2015. The domain used for this evaluation was domain 3, with a resolution of 1 km.

Table 2. Mean error (ME) and root mean square error (RMSE) for the surface air temperature when
comparing the JMA observations and the simulation results for NLNI-09 and USGS.

Site
NLNI-09 USGS

ME (◦C) RMSE (◦C) ME (◦C) RMSE (◦C)

1. Munakata −0.741 2.553 −1.722 3.170
2. Yahata 0.633 3.150 −1.038 3.324

3. Kuko-kitamachi 0.093 3.036 −0.044 2.979
4. Yukuhashi −0.492 3.160 −1.608 3.590

5. Iizuka −0.172 3.164 −1.628 3.748
6. Maebaru 0.052 3.191 −0.998 3.296
7. Fukuoka 1.430 3.397 0.674 3.081
8. Hakata 1.032 3.317 −1.066 3.652
9. Dazaifu 0.290 3.184 −0.996 3.377
10. Soeda −1.238 3.435 −0.153 3.006

11. Asakura −0.208 3.473 −1.193 3.708
12. Kurume 0.845 3.427 −0.626 3.548
13. Kurogi −0.665 3.435 −0.904 3.466
14. Omuta 0.924 3.407 1.060 3.408

Total 0.128 3.247 −0.731 3.391

The ME of the NLNI-09 simulation for the 14 sites was slightly positive (+0.128), while the ME
of the USGS simulation for the 14 sites was negative (−0.731). These differences suggest that the
USGS land-use dataset was unable to represent the urban area in the targeted area correctly. Table 3
shows the land-use fractions in the NLNI-09 dataset, and the dominant land-use categories in the
USGS dataset, for the 14 grid cells with a resolution of 1 km that include the JMA observation sites.
Comparing the NLNI-09 and USGS simulations, the dominant land-use categories in the NLNI-09
and the USGS datasets showed non-conformity. The USGS simulation underestimated the area of
urban land-use.

The RMSE of the NLNI-09 simulation ranged from 2.553 to 3.473, and the average of the 14 sites
was 3.247. The RMSE of the USGS simulation ranged from 2.979 to 3.748, and the average of the
14 sites was 3.391. The NLNI-09 simulation showed better results; however, the difference was small.
These results suggest that significant errors occurred in the numerical simulation. Further investigation
of these simulation errors is needed.

Hereafter, the results of the NLNI-76 and NLNI-09 simulations are discussed, to consider the
effect of land-use change on the urban climate of the Fukuoka–Kitakyushu metropolitan area.
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Table 3. Land-use fractions in the NLNI-09 case, and the dominant land-use category in the USGS case,
for the 14 grid cells with a resolution of 1 km that include the JMA observation sites. For the NLNI-09
case, the dominant land-use category is shaded.

Land-Use Fraction in NLNI-09
Dominant Land-Use
Category in USGS

Urban and
Built-Up

Land

Irrigated
Cropland and

Pasture

Mixed
Dryland/Irrigated

Cropland and Pasture

Mixed
Forest

Barren or
Sparsely

Vegetated

Water
Bodies

1. Munakata 26.7% 41.9% 4.2% 18.8% 1.7% 6.7% Shrubland

2. Yahata 67.2% 0.0% 0.0% 12.4% 20.4% 0.0% Cropland/Grassland
Mosaic

3. Kuko-kitamachi 0.1% 0.0% 0.0% 0.0% 21.3% 78.5% Water Bodies

4. Yukuhashi 50.7% 39.8% 1.0% 0.3% 3.3% 4.9% Cropland/Grassland
Mosaic

5. Iizuka 53.7% 7.0% 0.0% 17.1% 8.8% 13.5% Shrubland

6. Maebaru 45.0% 44.5% 2.0% 0.0% 2.5% 6.0% Dryland Cropland
and Pasture

7. Fukuoka 74.6% 0.0% 0.0% 8.7% 8.3% 8.4% Urban and Built-up
Land

8. Hakata 46.2% 0.0% 0.0% 6.8% 45.9% 1.1% Shrubland
9. Dazaifu 57.1% 5.4% 9.4% 18.7% 8.1% 1.3% Shrubland

10. Soeda 10.4% 13.8% 5.2% 62.3% 4.8% 3.5% Urban and Built-up
Land

11. Asakura 28.6% 62.1% 7.2% 1.7% 0.4% 0.0% Irrigated Cropland
and Pasture

12. Kurume 44.5% 44.0% 0.9% 0.0% 7.4% 3.2% Irrigated Cropland
and Pasture

13. Kurogi 3.3% 34.2% 48.0% 13.0% 0.0% 1.5% Cropland/Woodland
Mosaic

14. Omuta 60.3% 11.2% 8.2% 16.3% 3.5% 0.5% Urban and Built-up
Land

3.2. Surface Air Temperature Change Caused by Land-Use Change

Figure 3 shows the difference in air temperature at 2 m AGL between the NLNI-76 and NLNI-09
simulations. The hourly air temperature data for the 54 days from 8 August to 30 September 2015 were
averaged for the land surface only. The average air temperatures for the NLNI-76 simulation were
subtracted from those of the NLNI-09 simulation. Negative values (blue tones in Figure 3) indicated
that the air temperature in NLNI-76 was higher than that in NLNI-09, and positive values (red tones in
Figure 3) indicated that the air temperature in NLNI-76 was lower than that in NLNI-09.
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Figure 3. Differences in averaged air temperature between NLNI-76 and NLNI-09 over 54 days from
8 August to 30 September 2015. The blue tones show a temperature drop, and the red tones show a
temperature rise from NLNI-76 to NLNI-09: (a) Difference in averaged air temperature for the whole
period. The spatial average for this domain is +0.236 ◦C, with a minimum value of −0.171 ◦C and a
maximum value of +2.049 ◦C. (b) Difference in averaged air temperature for the daytime period, from
09:00 to 18:00. The spatial average for this domain is +0.225 ◦C, with a minimum value of −0.144 ◦C
and a maximum value of +1.317 ◦C. (c) Difference in averaged air temperature for the nighttime period,
from 19:00 to 08:00 the next day. The spatial average for this domain is +0.245 ◦C, with a minimum
value of −0.324 ◦C and a maximum value of +2.656 ◦C.

As mentioned above, the central parts of Fukuoka and Kitakyushu (the darker colors in Figure 1b)
were already urbanized in the 1970s, so the air temperature increases caused by land-use change in
these areas have been small. However, because of urban expansion, the urban heat island phenomenon
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has expanded. Although some areas in Figure 3a show decreases in the air temperature, the air
temperature difference averaged over the land surface of domain 3 for the whole period was an
increase of +0.236 ◦C. Figure 3b,c shows the temperature rise in daytime and nighttime periods,
in the same manner as Figure 3a. The temperature rise averaged over the land surface of domain 3
in the nighttime was +0.245 ◦C, which is larger than the daytime average of +0.225 ◦C. Moreover,
the nighttime range, with a minimum value of −0.324 and a maximum value of +2.656 ◦C, is wide
compared to the daytime range, which has a minimum value of −0.144 and a maximum value of
+1.317 ◦C.

3.3. Transition of the Sea Breeze over the Urban Area

Sea breeze circulation is driven by the air pressure difference between the land and the sea
surfaces, caused by the temperature difference between these surfaces. The temperature difference is
caused by solar radiation. Therefore, the sea breeze circulation is clearly observed on clear days with a
small synoptic scale pressure gradient. During the observation period, 11 September 2015 gave the
best conditions to observe the sea breeze blowing across the urban area. On that day, the cloud cover
was less than 1 okta for a whole day, and the pressure gradients were small. The gradient of mean
sea level pressure between the Fukuoka district meteorological observatory and the Kumamoto local
meteorological observatory was 0.7 hPa, with a distance of approximately 90 km in the north–south
direction; and the gradient of mean sea level pressure between the Oita local meteorological observatory
and the Nagasaki local meteorological observatory was 0.2 hPa, with a distance of approximately
170 km in the east–west direction. The locations of observatories are shown in Figure 1a.

The Doppler LiDAR observation site was located approximately 6 km from the coastline of Hakata
Bay in a south-southeast direction. Therefore, in this study, the sea breeze was defined as a northerly
wind ranging from the west-northwest to the north-northeast, with an average velocity of 2 m/s or
greater based on the Doppler LiDAR observations at 12 heights from 40 m to 260 m with a vertical
resolution of 20 m.

Figure 4 shows the time-height cross sections of the horizontal wind vectors of the Doppler LiDAR
observations, and the numerical simulations with the NLNI-76 and the NLNI-09 land-use datasets, on
11 September 2015. The observation results were averaged over 10-minute intervals. Figure 5 shows
vertical wind and potential temperature profiles at selected times. Here, the potential temperature
is the temperature of an air parcel which changed adiabatically from its initial state to the standard
pressure, 1000 hPa. Because the air temperature is affected by the air pressure, to investigate the
thermal structures in the vertical direction, the potential temperature is an important parameter.
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Figure 5. Vertical wind profiles from Doppler LiDAR observations and from simulations with NLNI-
76 and NLNI-09, and potential temperature profiles from simulations with NLNI-76 and NLNI-09, 
on 11 September 2015: (a) At 08:00, before the sea breeze blows into the Ohashi Doppler LiDAR 

Figure 5. Vertical wind profiles from Doppler LiDAR observations and from simulations with NLNI-76
and NLNI-09, and potential temperature profiles from simulations with NLNI-76 and NLNI-09, on 11
September 2015: (a) At 08:00, before the sea breeze blows into the Ohashi Doppler LiDAR observation
site; (b) At 09:00, the simulation with NLNI-76 captured the sea breeze, while the Doppler LiDAR
did not; (c) At 10:00, the Doppler LiDAR captured the sea breeze; (d) At 14:00, the simulation with
NLNI-76 showed a potential temperature drop below 50 m above ground level (AGL); (e) At 15:00,
the observed sea breeze became the strongest on that day; and (f) At 18:00, the potential temperature
profile difference showed a large difference between NLNI-76 and NLNI-09 below 100 m AGL.
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Figure 4a,c shows that the Doppler LiDAR captured sea breeze penetration at 10:00 and the
simulation results for the NLNI-09 dataset showed the same tendency, although the wind directions
were not accurate. The results of the NLNI-76 predicted sea breeze penetration at 09:00 are given
in Figure 4b. Figure 5a shows vertical profiles at 08:00, before the sea breeze blows into the Ohashi
Doppler LiDAR observation site. Vertical wind profiles at 09:00 in Figure 5b clearly show the difference
between the Doppler LiDAR, the NLNI-76 simulation, and the NLNI-09 simulation. At 10:00, in
Figure 5c, the Doppler LiDAR captured the sea breeze penetration. At the same time, the vertical wind
profile of the NLNI-09 simulation showed higher velocity. At 14:00, in Figure 5d, the simulation with
NLNI-76 showed a potential temperature drop below 50 m AGL, and the simulation with NLNI-09
showed a higher wind velocity than NLNI-76. At 15:00, in Figure 5e, the sea breeze with the highest
velocity was observed, and the NLNI-09 simulation showed good agreement with the observations.
On the other hand, the NLNI-76 simulation showed a higher velocity than the Doppler LiDAR and
NLNI-09 results. Moreover, the potential temperature profile of NLNI-76 showed an inversion below
150 m AGL. At 18:00, in Figure 5f, the potential temperature profiles showed a large difference between
NLNI-76 and NLNI-09 below 100 m AGL.

Although the NLNI-09 simulation showed good agreement with the Doppler LiDAR observations
at 15:00 (Figure 5e), generally, the numerical simulations overestimated the wind velocities near the
land surface. Moreover, the wind directions of simulations were not accurate compared with the
Doppler LiDAR observations. One possible reason is that an urban canopy model was not utilized in
this study; therefore, the simulation results underestimated the friction caused by urban morphology.

Comparing the two simulation results, the NLNI-09 simulation, which is the more urbanized
case, showed lower wind velocity and later sea breeze penetration than the NLNI-76 simulation.
The results of this study suggest that the land-use change related to urbanization has delayed sea
breeze penetration and weakened its wind velocity. However, this result partially contradicts previous
researches. Yoshikado [23,24] investigated the relationship between UHI and sea breeze using a
two-dimensional hydrostatic boundary-layer model, and summarized that the UHI delays the inland
penetration of the sea breeze, and that in coastal regions the UHI intensifies the sea breeze velocity
during its growing stage. Kusaka et al. [25] utilized a hydrostatic three-dimensional model to analyze
land-use change in the Tokyo metropolitan area, and summarized that the progress of urbanization
delays the sea breeze penetration from Tokyo Bay and makes the wind velocity of the sea breeze
stronger in the inland area. Our previous study [26] in the Tokyo metropolitan area, using the
meso-scale meteorological model MM5 [27], showed the delay of sea breeze penetration from Tokyo
Bay to the inland area; however, the difference of wind velocity in the inland area was not significant.
In this study, comparing NLNI-76 with NLNI-09, the increase in the UHI is shown to delay sea breeze
penetration. This result is consistent with previous studies [23–26]. Meanwhile, the increase in the
UHI has weakened the velocity of the sea breeze.

In this study, the simulation results of the WRF overestimated the wind velocities near the land
surface. The possible reasons of these errors are uncertainties about the analysis model and the initial
conditions. In terms of the model uncertainty, as mentioned above, the urban canopy model was
not utilized in this study, and it was possible for the analysis model to underestimate the friction
caused by urban morphology. On the other hand, it was also possible for the uncertainty of the
initial conditions to cause these errors. To utilize the meso-scale meteorological models such as the
WRF, the initial conditions are obtained from global analysis data such as the NCEP FNL data; and
these regular, gridded global analysis data are produced from discretely distributed observations on
Earth. In this process, uncertainty in the initial conditions of the meso-scale meteorological models
cannot be avoided. Lorenz showed that very small differences in the initial conditions will cause
errors in weather prediction over time [28,29]. One way of reducing the uncertainties in the initial
conditions is an ensemble simulation; however, the ensemble simulation needs a number of simulations
with perturbations of initial conditions. As with the initial conditions, a multi-model ensemble
simulation is one way to reduce the uncertainties of the model. In this study, evaluating the effect of
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urbanization on sea breeze penetration quantitatively is difficult because of the uncertainties of the
model and initial conditions; therefore, what are shown here are the results of qualitative comparison.
Further investigations are needed, with the ensemble simulations using various conditions and various
models for various urban areas, in order to clarify the effect of land-use change on sea breeze circulation.

4. Conclusions

This study investigated the Fukuoka–Kitakyushu metropolitan area, which is the fourth largest
metropolitan area in Japan. Compared with the Tokyo metropolitan area, the capital of Japan and
the largest metropolitan area in the world, the number of urban climate studies in the targeted
area is limited. Therefore, to accumulate data on the urban climate in the Fukuoka–Kitakyushu
metropolitan area, numerical simulations with a meso-scale meteorological model (the WRF) and
upper air observations using Doppler LiDAR were carried out simultaneously in the summer of 2015.
For the numerical simulation, the NLNI land-use fraction datasets for Japan were used to represent
the progress of land-use changes, in place of the default USGS land-use dataset in the WRF.

For simulation results of the surface air temperature, the results using the NLNI land-use dataset
for 2009 showed fewer errors, when compared to the observations by JMA, than those using the USGS
land-use dataset. This comparison suggested that the USGS land-use dataset was unable to represent
the urban area precisely.

To consider the effect of land-use changes over three decades on the urban climate of the targeted
area, the NLNI land-use datasets for 1976 and 2009 were utilized in the WRF simulations with the
mosaic LSM. Based on the surface air temperature, most of the northern part of the Kyushu region
became warmer because of land-use change related to urbanization, with an average increase over
the land surface of +0.236 ◦C for the whole simulation period. The temperature increases in the areas
surrounding Fukuoka city and Kitakyushu city were significant because of the urban expansion. It is
possible that the land-use changes in the Fukuoka–Kitakyushu metropolitan area also had an effect on
the sea breeze penetration from Hakata Bay to Fukuoka city. Comparing the two simulation results
and the Doppler LiDAR observations, the simulation results using the NLNI-09 dataset (for the year
closest to the study period in 2015) showed greater agreement with the observations. The results of the
NLNI-76 simulation showed faster sea breeze penetration and higher wind velocity compared with the
observations. These results suggest that the land-use changes have weakened sea breeze penetration.
However, this tendency partially contradicts other research. To expand the knowledge base for the
mitigation of urban heat island phenomena by sea breezes in coastal cities in the summer, additional
investigations are needed and it will be necessary to reduce the uncertainties of the simulations used.
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