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Abstract: Land cover change (LCC) detection is a significant component of sustainability research
including ecological economics and climate change. Due to the rapid variability of natural environment,
effective LCC detection is required to capture sufficient change-related information. Although such
information has been available through remotely sensed images, the complicated image processing and
classification make it time consuming and labour intensive. In contrast, the freely available crowdsourced
geographic information (CGI) contains easily interpreted textual information, and thus has the potential
to be applied for capturing effective change-related information. Therefore, this paper presents and
evaluates a method using CGI for rapid LCC detection. As a case study, Beijing is chosen as the study
area, and CGI is applied to monitor LCC information. As one kind of CGI which is generated from
commercial Internet maps, points of interest (POIs) with detailed textual information are utilised to detect
land cover in 2016. Those POIs are first classified into land cover nomenclature based on their textual
information. Then, a kernel density approach is proposed to effectively generate land cover regions in
2016. Finally, with GlobeLand30 in 2010 as baseline map, LCC is detected using the post-classification
method in the period of 2010–2016 in Beijing. The result shows that an accuracy of 89.20% is achieved
with land cover regions generated by POIs, indicating that POIs are reliable for rapid LCC detection.
Additionally, an LCC detection comparison is proposed between remotely sensed images and CGI,
revealing the advantages of POIs in terms of LCC efficiency. However, due to the uneven distribution,
remotely sensed images are still required in areas with few POIs.

Keywords: land cover change (LCC); rapid detection; crowdsourced geographic information (CGI);
points of interest (POIs); kernel density

1. Introduction

Land cover change (LCC) refers to the dynamics of biophysical materials covering the earth
surface [1], and it has emerged as a fundamental component of sustainability research [2], including
ecological economics, climate change, etc. [3,4]. In the past few years, numerous LCC products
have been developed using remotely sensed images [5]. In general, these are often detected through
the classification of multi-temporal remote sensing images, using post-classification approaches or
direct radiometric comparison approaches [6]. However, the time and labour costs could be quite
expensive due to the complexities of LCC detection [7,8], and these are crucial factors to determine
the development of sustainability [9]. This has further simulated intensive research for rapid LCC
detection with lower time and labour costs.

The increasing availability of crowdsourced geographic information (CGI) has drawn the attention
of researchers as a source of up-to-date and freely available data for LCC detection. CGI, which is
crowdsourced data with coordinate information, is generated from users on the Internet, and usually
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contains textual information corresponding to land cover classes [10]. CGI is usually available through
geoweb-based tagging systems to facilitate LCC detection, where geo-tagged data are encouraged to
be uploaded by volunteers via mobile devices, such as OpenStreetMap (OSM) [11–14]. It has been
considered as training data of remotely sensed images [15], or provided socioeconomic features in
urban regions detection with the combination of satellite data in rural regions [16]. However, these
approaches rely on the acquisition and classification of remotely sensed images with considerable
labour and time cost. This inspired further investigation to employ CGI for changes detection to
complement the shortcoming of remote sensing. A recent research study proposed a method of
generating up-to-date maps using textual information from OSM [17,18]. Since these kinds of data were
provided by volunteers, textual information is often insufficient and incomplete for rapid LCC detection.

The shortcoming of volunteer-generated data necessitates the need of CGI with detailed textual
information. In general, this CGI often exists in commercial Internet maps, such as Google Maps,
Baidu Maps, and Gaode Maps. Such maps contain sufficient information about land cover classes,
which is aggregated as points of interest (POIs) [19]. These POIs are provided with up-to-date data,
and are usually updated on a timely basis to capture land cover changes. Furthermore, POIs are
usually freely available via Application Programming Interfaces (APIs). The API is usually offered by
commercial Internet mapping companies, which also ensure the quality of these POIs. Therefore, there
is strong potential to employ such high quality CGI for rapid LCC detection. In this study, we propose
an approach for rapid LCC detection by utilising POIs from commercial Internet maps. First, textual
information from POIs are converted into land cover nomenclature. Then, we apply kernel density to
generate land cover regions represented by POIs. Finally, a post-classification approach is proposed
for rapid LCC detection. A comparative experiment using remotely sensed images is also proposed to
compare both labour and time cost for LCC detection.

2. Experimental Data and Study Area

In this paper, Beijing, which is located in the north of China, is used as the study area. Containing
a total area of 16,410.54 km2 (the area lies between 39◦26′–41◦03′N and 115◦25′–117◦30′E), Beijing
includes artificial surfaces, forest, grassland, and cultivated land as dominant land cover classes in this
area, accompanied with other various classes such as water bodies, wetland, and shrubland. The land
cover in Beijing experienced significant changes due to rapid urbanization. The above consequences
led to great complexity of land cover changes in a short period of time and are great barriers to LCC
production. While detecting land cover changes with remotely sensed images is time consuming,
CGI can be interpreted effectively to necessitate the need of land cover detection.

We chose GlobeLand30 with 30 m × 30 m resolution in 2010 as the baseline map for change
detection. GlobeLand30, which is produced by the National Geomatic Center of China (NGCC), is one
of the first global 30 m land cover products [20]. Land cover products for the year of 2000 and 2010 were
created with 10 land cover classes including cultivated land, forest, grassland, shrubland, wetland,
water bodies, tundra, artificial surfaces, bare land, and permanent snow/ice. The distribution of land
cover classes of GlobeLand30 in 2010 in Beijing is shown Figure 1. Furthermore, an overall classification
accuracy of over 80% has been achieved via land cover validation [21]. Thus, GlobeLand30 in 2010
was chosen in our study as reference data of 2010.

In terms of POIs, a total number of 1,528,104 POIs in 2016 were obtained from Gaode map,
a commercial Internet map in China (Figure 2). These data were collected through API offered by
AutoNavi in “http://lbs.amap.com/getting-started/search”. The POIs include information such as
coordinate positions, the names of locations, the POI types, and other detailed information. For the
purpose of detecting land cover classes of POIs, we collected the land cover related information
including POI coordinate positions and POI types. Although the names of POIs offer a lot of detailed
evidence about the located places, such as “Walmart” as POI name and “supermarket” as POI type, the
latter is sufficient enough to represent land cover classes, as we can conduce easily that “supermarket”
belongs to artificial surfaces. Furthermore, as the names of POIs are usually different from one another,
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classifying a huge amount of POIs is relatively labour intensive. Therefore, we consider the types
of POIs to indicate land cover classes and for further land cover classification. The veracity of this
textual information in POIs is evaluated by selecting randomly and interpreting 200 sites where POIs
are located. The result shows that most sites are labelled with the correct POIs, except three sites
corresponding to the wrong POI types. Despite the existence of a few mislabelled POIs, a large quantity
of POIs is still valuable to represent correct places.

Sustainability 2017, 9, 1547  3 of 16 

consider the types of POIs to indicate land cover classes and for further land cover classification. The 
veracity of this textual information in POIs is evaluated by selecting randomly and interpreting 200 
sites where POIs are located. The result shows that most sites are labelled with the correct POIs, 
except three sites corresponding to the wrong POI types. Despite the existence of a few mislabelled 
POIs, a large quantity of POIs is still valuable to represent correct places. 

 
Figure 1. GlobeLand30 in 2010 in Beijing with eight land cover classes. 

 
Figure 2. Point of interest (POI) distributions in Beijing. 

Figure 1. GlobeLand30 in 2010 in Beijing with eight land cover classes.

Sustainability 2017, 9, 1547  3 of 16 

consider the types of POIs to indicate land cover classes and for further land cover classification. The 
veracity of this textual information in POIs is evaluated by selecting randomly and interpreting 200 
sites where POIs are located. The result shows that most sites are labelled with the correct POIs, 
except three sites corresponding to the wrong POI types. Despite the existence of a few mislabelled 
POIs, a large quantity of POIs is still valuable to represent correct places. 

 
Figure 1. GlobeLand30 in 2010 in Beijing with eight land cover classes. 

 
Figure 2. Point of interest (POI) distributions in Beijing. Figure 2. Point of interest (POI) distributions in Beijing.



Sustainability 2017, 9, 1547 4 of 16

3. Methodology

The methodology of rapid LCC detection using POIs is shown in Figure 3. First, POIs in 2016
are utilised to identify current land cover classes. Since POIs contain detailed textual information,
we extract the information as a clue to correspond to land cover classes. Thus, POIs are classified into
different nomenclature of GlobeLand30. Details are explained in Section 3.1. Then, we use classified
POIs to generate land cover regions in 2016 using kernel density, followed by combining Globeland30
in 2010 to detect LCC in the 2010–2016 period. This step is explained in detail in Section 3.2. Third,
to evaluate the accuracy of land cover regions in 2016 generated by POIs, we apply a confusion matrix
to assess the result of each land cover class. This step is discussed in Section 3.3.
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3.1. POIs Classification

Detecting land cover changes requires up-to-date land cover classes generated by POIs. To apply
POIs for classifying land cover, textual information in POI types is extracted to be classified in different
land cover classes based on the nomenclature in GlobeLand30. Part of the classified POIs is shown in
Table 1. Most of the POIs are classified as cultivated land, forest/grassland, water bodies, and artificial
surfaces. It should be noted that grassland and forest are mixed into one land cover class because
of the relatively small numbers of POIs in both land cover classes. The remaining POIs cannot be
classified into certain land cover classes, such as “Agriculture, forestry, animal husbandry, and fishery
base”, which indicates a wide range of land cover including cultivated land, forest, grassland, and
water bodies. Thus, these POI types are excluded from our study.

Table 1. Land cover nomenclature corresponding to POI types.

Land Cover Nomenclature POI Types

Cultivated land Vegetable base, Fruit base, Farmland, Nursery garden, etc.
Forest/Grassland Golf course, Golf practice field, Mountain, Botanical garden, Pasture, etc.

Water bodies Fishing park, Port, Pier, Beach, River, Lake, Bridge, Ferry, etc.
Artificial surfaces Restaurant, Supermarket, Residential area, School, Library, etc.
Unclassified class Agriculture, Forestry, Animal husbandry, and Fishery base, Leisure place, etc.

To ensure POI classification accuracy, a random sampling is proposed to validate the land cover
class that each POI is classified into. We select a total number of 200 POIs randomly, in which 50 POIs
are chosen in cultivated land, forest/grassland, water bodies, and artificial surfaces, respectively. After
interpreting each site manually, the classification accuracy of the POIs is shown in Table 2. The overall
accuracy of POI classification is around 81% among these land cover classes. The accuracy of POIs that
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are classified as water bodies is relatively low, because many POIs related to water bodies are actually
located beside them. To eliminate the above classification error, this paper reconsiders the land cover
changes that are from other classes to water bodies. The details are shown in Section 4.3.

Table 2. POI classification accuracy.

Land Cover Class CL FG WB AS Total

Cultivated land (CL) 43 6 0 1 50
Forest/Grassland (FG) 3 41 0 6 50

Water bodies (WB) 6 9 30 5 50
Artificial surfaces (AS) 1 1 0 48 50

Total 53 57 30 60 200
Accuracy 81%

3.2. Land Cover Region Generation and Change Detection

Rapid LCC detection requires land cover comparison between the baseline map (GlobeLand30 in
2010) and land cover regions in 2016. As the classified POIs in Section 3.1 are simply points that are
located in the 30 m × 30 m grid (the same resolution as GlobeLand30) when comparing the differences
with GlobeLand30, generating land cover regions from POIs remains a problem that needs to be
solved first. Figure 4 displays the probable POI locations when overlaying on the 30 m × 30 m grid.
In Figure 4a, POI is located around the centre of the grid, and the areas that this POI represents can
be within the regions of this grid. However, the POI in Figure 4b,c distributes near the edge and the
corner of the located grid (see the grids in solid line), separately, which leads to great potential that
the neighbouring grids (see the grids in dotted line) may also contain land cover classes shared by
the located POI. Therefore, the areas represented by each POI can be included within approximately
a radius of 30 m.
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Taking the above consequences into consideration, an area estimation method is required to
generate land cover regions that are generated from POIs. As an effective way to estimate the density
of a random variable, kernel density [22] is able to converse independent points into continuous areas
with a proper radius of influence. Previous studies have applied kernel density in identifying facility
hotspots [23], flood assessment [24], delineating urban-rural boundary [25], and other applications.
However, few studies utilise it to generate land cover regions. Therefore, we utilise kernel density to
estimate areas of each land cover class according to the classified POIs in Table 1. The equation of
kernel density f̂ (x) is shown as follows:

f̂ (x) =
n

∑
i=1

1
h2 × k(

x− xi
h

) (1)
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where h represents the bandwidth of the kernel density, determining the generated areas of POIs.
We set the bandwidth as 30 m according to the analysis of POI location in Figure 4. n indicates the
number of POIs that are within the distance of bandwidth h. k(·) is the kernel function that is applied
in kernel density. x represents the POI that is to be estimated, and xi represents the surrounding POIs
with in bandwidth. The values of the kernel density f̂ (x) are represented in the resolution of 30 m
× 30 m. While the calculated f̂ (x) value changes with different densities, areas where the density is
larger than 0 are extracted as land cover regions that POIs represented. Part of the generated land
cover regions is shown in Figure 5. As the POIs in these areas are classified as artificial surfaces, we
apply kernel density with the bandwidth of 30 m and generate continuous land cover regions of
artificial surfaces.
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After regions of each land cover nomenclature are generated from POIs using kernel density,
these generated regions can be overlapped in the areas that feature a high density of POIs. Table 3
summarises the overlapping conditions of regions generated by POIs. Group 1 represents land cover
regions that are not overlapped, including cultivated land, forest/grassland, water bodies, and artificial
surfaces. These regions are the readily identified areas and can be used directly in detecting land
cover regions. Group 2 includes overlapped land cover regions that are mixed by cultivated land,
forest/grassland, and water bodies. These regions can hardly be classified into a single land cover
class without other reference data. To ensure the land cover changes accuracy, we move out these
regions from group 2. On the other hand, group 3 represents areas which contain artificial surfaces
and other land cover classes. As each kind of mixed region includes artificial surfaces, we converge
all of these regions into artificial surfaces. The reason is that artificial surfaces are usually related to
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human activities, and it is relatively complex because artificial surfaces often contain public facilities
related to water bodies or other land cover classes. The land cover regions generated by POIs with
a certain class can be seen in Figure 6 in Section 4.1.

For LCC detection, both the baseline map in 2010 and land cover regions generated by POIs in
2016 are overlaid to identify changes by proposing the post-classification method, and all land cover
transitions can be detected during the 2010–2016 period. However, it should be noted that as we group
forest and grassland into a single land cover category, any areas that show conversions from forest to
forest/grassland or from grassland to forest/grassland are considered as unchanged areas.

Table 3. Overlapping conditions of land cover regions generated from POIs.

Group 1 Group 2 Group 3

Cultivated land Cultivated land +
Forest/Grassland Artificial surfaces + Cultivated land

Forest/Grassland Cultivated land + Water bodies Artificial surfaces + Forest/Grassland
Water bodies Forest/Grassland + Water bodies Artificial surfaces + Water bodies

Artificial surfaces Artificial surfaces + Cultivated land + Forest/Grassland
Artificial surfaces + Cultivated land + Water bodies

Artificial surfaces + Forest/Grassland + Water bodies
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3.3. Accuracy Evaluation

To validate land cover regions generated from POIs, a random stratified sampling is proposed as
reference data with 50 points for the classes of cultivated land, forest/grassland, and water bodies, and
100 points for artificial surfaces, which is the dominant land cover class in Beijing. More reference points
in artificial surfaces are collected because artificial surfaces take up the largest areas in the generated
land cover regions in 2016 (see details in Section 4.1). These 250 reference data are classified through
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visual interpretation based on remotely sensed images on Google Earth. Then, a confusion matrix is
created by comparing generated land cover regions in 2016 and reference points. Both the producer’s
accuracy and user’s accuracy can be calculated to assess classification accuracy for each land cover class.
Moreover, an overall accuracy is applied to evaluate land cover classification of all classes.

4. Results

4.1. Land Cover Regions Deriving from POIs

Land cover classification results of POIs are shown in Table 4. One million five hundred eleven
thousand, three hundred and eight (1,511,308) of a total 1,528,104 POIs are considered as artificial
surfaces, occupying 98.90% of all POIs. Water bodies contain 2496 POIs, which only covers 0.16%
of total POIs. Cultivated land and forest/grassland contain 1830 and 815 POIs, relatively, with the
proportion of 0.11% and 0.05% of total POI number. The remaining 11,655 POIs are unclassified, taking
up 0.76% of all POIs. This indicates that the largest proportion of POIs belongs to artificial surfaces.
Further, POIs corresponding to non-artificial surfaces (namely cultivated land, forest/grassland, water
bodies, and unclassified class) take up only no more than 2% of all data.

Table 4. Numbers and proportions of POIs in each land cover class.

Land Cover Class Number of POI Percentage (%)

Cultivated land 1830 0.11%
Forest/grassland 815 0.05%

Water bodies 2496 0.16%
Artificial surfaces 1,511,308 98.90%
Unclassified class 11,655 0.76%

Total 1,528,104 100%

Based on the POI classification in Table 3, land cover regions are generated from POIs, and the
results are shown in Figure 6. Most of the areas belong to artificial surfaces, which is consistent with
the proportion of POIs classified as the same class. For the regions of cultivated land, forest/grassland,
and water bodies, they occupied much smaller proportions of areas because of the relatively low
number of POIs.

A detailed analysis is displayed in Table 5 In total, 96,128.28 ha were generated from the classified
POIs, with 1,068,092 grids (each grid was 30 m × 30 m). Among these land cover classes, artificial
surfaces occupy the largest areas, with 95,035.5 ha, which take up 98.86% of the total 96,128.28 ha area.
Five thousand nine hundred and seventy-three (5973) grids are classified as water bodies with areas of
537.57 ha, about 0.56% of all areas. Only 4089 grids refer to cultivated land, which occupies 368.01 ha
in total generated areas. Forest/grassland takes up the smallest areas and totals 187.2 ha with the
percentage of 0.19%.

Table 5. Classes of land cover regions in 2016 with the number of grids, areas, and the percentage of
total areas.

Land Cover Class Number of Grids Areas/ha Percentage (%)

Cultivated land 4089 368.01 0.38%
Forest/Grassland 2080 187.2 0.19%

Water bodies 5973 537.57 0.56%
Artificial surfaces 1,055,950 95,035.5 98.86%

Total 1,068,092 96,128.28 100.00%

4.2. Accuracy Evaluation

Table 6 shows the confusion matrix between land cover regions generated from POIs and reference
points. The result indicates that an overall accuracy of 89.20% is achieved in this area. In terms of
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producer’s accuracy (PA), a value of 94.23% is achieved in the artificial surfaces class. The accuracy of
cultivated land and forest/grassland are 80.36% and 81.48%, respectively. As for the class of water
bodies, the user’s accuracy (UA) is much lower, with the value of 72.00%, while the value 100% is
achieved in producer’s accuracy. Visual inspection of the low user’s accuracy in water bodies show
that several points are actually located in cultivated land and forest/grassland, and a few of them are
distributed in artificial surfaces. Forest/grassland shows a user’s accuracy of 88.00%, which is much
higher than that of producer’s accuracy. Cultivated land and artificial surfaces achieved an UA value
of 90.00% and 98.00%, respectively, with an increasing value of approximately 10% and 4% compared
with producer’s accuracy.

Table 6. Classification results for the land cover regions in 2016. (PA for producer’s accuracy, UA for
user’s accuracy).

Land Cover Class CL FG WB AS Total UA (%)

Cultivated land (CL) 45 5 0 0 50 90.00%
Forest/Grassland (FG) 3 44 0 3 50 88.00%

Water bodies (WB) 6 5 36 3 50 72.00%
Artificial surfaces (AS) 2 0 0 98 100 98.00%

Total 56 54 36 104 250
PA (%) 80.36% 81.48% 100.00% 94.23% 89.20%

In general, the classification accuracy in Table 6 indicates that the land cover regions in 2016
generated from POIs are reliable in the application of land cover changes detection. It is worth noting
that the user’s accuracy of water bodies is relatively low. Therefore, future work will investigate
other land cover classification approaches in order to improve the classification accuracy. Further,
the classification of Globeland30 in 2010 shows an accuracy of approximately 80% [21]. Based on the
above analysis, it shows that GlobeLand30 and regions generated from POIs can be used to detect land
cover changes from 2010 to 2016.

4.3. Rapid LCC Detection Using POIs

We proposed a post-classification method with land cover regions generated by POIs in 2016 and
GlobeLand30 in 2010. Based on the POIs classification and the corresponding land cover regions above,
four kinds of unchanged land cover classes and 18 kinds of changed classes were detected during
this period. However, since the POI classification accuracy of water bodies in Table 2 is relatively low,
LCC that is from other land cover classes to water bodies is considered as the unchanged original land
cover. On the other hand, LCC that is from artificial surfaces or water bodies to other land cover classes
is regarded as unchanged artificial surfaces. This is due to the fact that artificial surfaces and water
bodies are not likely to be transitioned to other classes. Moreover, as Table 5 indicates that cultivated
land, forest/grassland, and water bodies only collectively contain a small proportion of areas, they are
less able to be fully used in LCC detection. As a result, four kinds of unchanged classes and six kinds
of changed classes are represented in Figure 7. Changes from forest/grassland to cultivated land,
cultivated land to forest/grassland, cultivated land to artificial surfaces, forest/grassland to artificial
surfaces, shrubland to artificial surfaces, and bareland to artificial surfaces are detected in this area. For
a visual overview of land cover changes in Beijing, artificial surfaces remain the largest areas among
four unchanged classes. Other unchanged classes including cultivated land, forest/grassland, and
water bodies only occupy a small proportion of the total areas. Both LCC from cultivated land and
forest/grassland to artificial surfaces have a high percentage increase among the changed land cover
regions, while other changes occupy fewer regions due to the limited number of POIs.

In detail, LCC can be shown in both rural and urban regions. Figure 8 displays land cover
transition from cultivated land to artificial surfaces in rural regions. Areas in yellow represent artificial
surfaces. Compared with the artificial surfaces in 2010 in Figure 8a, areas in 2016 in Figure 8b have a
much wider distribution. This indicates that a large number of areas of cultivated land are replaced by
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artificial surfaces in the period of 2010 to 2016. We highlight these changes in Figure 8c with green
areas. These changes can be validated visually by referring to the images provided by Esri, one of
which is shown in Figure 8d. This shows that an expansion of built-up areas replace cultivated land
during this period.
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LCC can also be detected in urban areas, where land cover transitions from forest/grassland to
artificial surfaces (Figure 9). Figure 9a,b display the changes of artificial surfaces and forest/grassland in
the period of 2010 to 2016. An increase of artificial surfaces can be seen in the north and west of the area,
although the land cover regions generated by POIs are sparser because of the lack of POIs (Figure 9c).
These changes are highlighted in red in Figure 9c, which can be evaluated based on images in Figure 9d.
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4.4. LCC Detection Comparison between Remotely Sensed Images and CGI

To compare the LCC detection efficiency between POIs and remotely sensed images, a traditional
method is proposed to monitor LCC in the 2010–2016 period. In general, LCC detection usually
contains two methods, namely post-classification approaches and direct radiometric comparison
approaches. LCC detection with post-classification approaches is based on the comparison of land
cover classification using remotely sensed images, while direct radiometric comparison approaches
propose a comparison of images before classifying land cover. Noting that we use the GlobeLand30
product as land cover in 2010 and do not rely on remotely sensed images, we use post-classification
approaches for LCC detection.

We selected three images from Landsat 8 in 2016 as experimental data. Since these images are not
generated in the same time, the atmospheric conditions can be variable. Therefore, both radiometric
calibration and atmospheric correction are required for data pre-processing. Then, we used Maximum
likelihood classifier to classify land cover with the processed images. As training data are required
via image interpretation, we selected eight data samples as water bodies, twenty-five data samples
as forest/grassland, thirty data samples as cultivated land, and thirty-two data samples as artificial
surfaces. On the other hand, CGI usually contains land cover information and does not rely on
selecting training data via image interpretation. After images from Landsat 8 were classified with
different land cover classes, a post-classification approach was applied to detect LCC using classified
regions and GlobeLand30 in 2010. The result is shown in Figure 10. Since land cover regions generated
by Landsat 8 data are much wider than POIs, the LCC transitions are more complicated with different
land cover classes.
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Then, we analysed the differences and efficiency of these two data sources. The methods
comparison is displayed in Table 7. In the stage of data pre-processing, both remotely sensed images
and CGI are processed to extract useful land cover information. However, pre-processing with remotely
sensed images is very time consuming, as radiometric calibration, atmospheric correction, and image
mosaic are very complicated. More importantly, the increasing number of remotely sensed images
could extend this pre-processing routine. Taking the experiment above as an example, three images
from Landsat 8 covering Beijing are processed within two hours. In contrast, unclassified CGI can
be easily extracted based on their textual information. For instance, processing POIs according to
their categories was completed within 10 min in the study. Such POI pre-processing cannot be more
complex due to the standard categories of POIs.

Table 7. Methods comparison of LCC detection between crowdsourced geographic information (CGI)
remotely sensed images and CGI.

Remotely Sensed Images CGI

Data pre-processing Requiring radiometric calibration,
atmospheric correction, image mosaic etc.

Extracting unclassified CGI based on
their textual information.

Data classification Selecting training data of each class by
interpreting images.

Classifying CGI based on their textual
information.

Land cover regions
generation/classification

Auto-classification by Maximum
likelihood classifier, Decision tree

classifier etc.

Generating land cover regions by
kernel density and overlapping rules.

Land cover changes detection
Post-classification by comparing land

cover classification between land cover
products and remotely sensed images

Post-classification by comparing land
cover classification between POIs and

land cover products.
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In terms of data classification, conventional methods require training data for each class.
To complement this process, image interpretation is required by selecting several regions for each class
from remotely sensed images. In this study, a total number of sixty-five training data were randomly
selected in the area of Beijing, and it took approximately two hours for one volunteer to confirm the
actual land cover classes of each training data. On the other hand, we group POIs into different classes
according to their categories. This process takes about less than half an hour, since ambiguous POI
categories have been removed in the pre-processing stage. Furthermore, the POI classification process
would not be extended when detecting LCC in much wider regions, while image classification indeed
requires considerable time to select more training data.

Land cover regions generation/classification using remotely sensed images and CGI are both
utilised by automatic methods, with the formal using Maximum likelihood classifier, Decision tree
classifier, etc. and the latter using kernel density and overlapping rules. In this study, we classified
Landsat 8 data using Maximum likelihood classifier, and it took about fifteen minutes to complete the
process. Although it is much more effective than data pre-processing and classification, the generation
of land cover regions with POIs only takes a few seconds to automatically complete the entire area.

In the last stage, changes are extracted by comparing up-to-date land cover regions with the
baseline map. Since land cover regions have been generated by both remotely sensed images and
CGI, the efficiency of this stage is quite similar, with approximately fifteen minutes required for
either process.

5. Conclusions and Future Work

In this study, we employed POIs from commercial Internet maps for rapid LCC detection. Taking
Beijing as study area, POIs in 2016 were selected to represent land cover currently, and GlobeLand30
with the resolution of 30 m × 30 m was applied to offer detailed land cover information in 2010.
To generate land cover regions of 2016, POIs were classified into different land cover classes based on
their textual information. Then, kernel density was utilised to estimate the regions of different land
cover classes. In order to find proper bandwidth in kernel density, we analysed the different positions
of 30 m × 30 m grids that POIs can locate. Furthermore, the overlapping regions that were generated
from POIs were analysed to determine the final land cover class. Finally, a post-classification method
was proposed using land cover regions generated from POIs and GlobeLand30 in 2010 to detect LCC
in Beijing in the period of 2010–2016. The overall accuracy of land cover regions generated from POIs
was 89.20%, suggesting the usability of POIs in terms of LCC detection. Additionally, LCC detection
efficiency was compared between remotely sensed images and POIs, indicating the reliability of rapid
LCC detection using POIs.

In spite of the rapid LCC detection we proposed, several questions are still beyond consideration
and will be solved in future work, which are listed below as follows:

(1) Due to the spatial heterogeneity of POIs [26], most POIs are located in artificial surfaces.
This limits the application of the proposed method to some extent. However, as POIs are
often generated because of human activities, which are usually the main reason behind rapid
land cover changes, it is possible to utilise POIs to monitor land cover changes effectively. Further,
considering that commercial Internet maps contain more types of data except for POIs, there
are possibilities to extract sufficient information corresponding to various land cover classes.
Furthermore, due to the uneven distribution, remotely sensed images are still required in areas
with few POIs.

(2) When generating land cover regions, we defined a radius of 30 meters in kernel density based
on the resolution of GlobeLand30. However, the land cover regions generated by POIs can be
various, due to the diversity of textual information in POIs [19]. For example, a POI representing
“golf course” refers to much larger areas than a POI representing “shop”. One solution may be to
focus on selecting the proper parameter of radius in kernel density. Each kind of POI is set by
a typical weight when determining the radius of land cover regions. In that case, POIs named
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“golf course” will be given a larger weight of radius before being applied to kernel density. Based
on this consideration, we will investigate more effective approaches considering both CGI textual
information and spatial distributions in future work.

(3) Considering the uneven proportion of land cover regions which are generated by POIs, it is not
appropriate that all classes should be applied for LCC detection. Therefore, this study analyses
the LCC result in Section 4.3, and considers several LCC as invalid transitions. However, as our
proposed method is not limited to utilising POIs, multi-sourced data including commercial
Internet maps and OpenStreetMap can also be utilised to fill the gap between the uneven
distribution of POIs and continuous land cover regions.

(4) Since most POIs are simply classified as artificial surfaces, detailed information that is related
to human activities is ignored, such as land use information [27]. For example, POIs with
“Restaurant” and ”Apartment” categories represent commercial areas and residential areas,
respectively. Future works would consider CGI for land use changes detection by applying the
textual information in CGI.
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