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Abstract: Soil conservation (SC) is an important ecosystem regulating service. At present, methods
for SC mapping to identify priority areas are primarily based on empirical soil erosion models, such
as the RUSLE (Revised Universal Soil Loss Equation) based model. However, the parameters of the
empirical soil conservation model are based on long-term observations of field experiments at small
spatial scales, which are very difficult to obtain and must be simplified when implementing these
models at large spatial scales. Such simplification of model parameters may lead to uncertainty in
quantifying SC at regional scale. In this study, we have analyzed a new method to map SC in Jiangxi
Province of China based on the multiplication of multiple biophysical data. After comparing the
spatial-temporal changes of SC from the RUSLE based model and those from the surrogate indicator
based method in the study area, the similarities and differences of these methods for identifying
SC priority areas were revealed. The result showed that the two methods similarly represented the
effects of vegetation coverage and land use types on SC, however, they were significantly different
in representing the spatial pattern of SC priority areas and its temporal change. Based on the
comparisons, the advantages and drawbacks for both methods were made clear and suggestions were
made for the suitable use of the two methods, which may benefit for the research and application of
concerning the planning and assessment with SC as key criteria.

Keywords: ecosystem services mapping; ecosystem services conservation; RUSLE; ecological
indicators; Jiangxi Province of China

1. Introduction

Spatial conservation prioritization is a form of conservation assessment that supports conservation
planning and is the key technical phase within the systematic conservation planning process; it aims to
answer questions about when, where, and how conservation goals can efficiently be achieved [1–3].
Traditionally, conservationists have focused on the conservation of biodiversity to make systematic
conservation planning [4,5]. Recently, many conservationists have begun focusing on both the
conservation of biodiversity and the sustainable provision of ecosystem services (ESs), which are
the benefits that humans obtain from ecosystems that support the well-being of humans [6–9].
However, the goal of conserving both biodiversity and ESs is less likely to be achieved unless the
target types of ESs have been spatially explicitly mapped [7,8,10,11]. Spatially explicit mapping
of ESs is one of the critical methods of mainstreaming ESs into spatial conservation prioritization
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in systematic conservation planning that focuses on planning implementation and conservation
monitoring [10,12,13]. In addition, spatially explicit mapping of priority areas for ESs is an essential
step of incorporating ESs into policies and practices to ensure the continuous provision of ESs and
associated benefits to humans [10,14–17].

The SC refers to the integrative capability of terrestrial ecosystems and their vegetation cover,
root matrix, and soil biota to prevent soil damage from erosion/siltation [18], which is an important
ecosystem regulating service [6]. The worldwide degradation of ecosystem SC exacerbates serious
soil erosion problems [19] and has become a concern of stakeholders and decision-makers during the
conservation planning process. Recently, the degradation of terrestrial ecosystem SC of China has
resulted in serious soil erosion, which has become one of the most critical national ecological problems;
in fact, nearly one-third of China’s land area suffers from soil erosion, resulting in severe economic
losses in China. Therefore, a robust method should be provided to mapping ecosystem SC in order to
conserving ecosystem SC and release the damage of soil erosion. At present, methods for spatially
explicit mapping of the SC of terrestrial ecosystems are primarily based on empirical soil erosion
models, such as the RUSLE [17,20–22]. Based on the empirical models, the SC can be quantified by
determining the difference between the actual soil loss of the landscape and the potential soil loss,
which presumes no vegetation cover in an extremely degraded form of the landscape [21,23]. However,
this hypothesis may yield a considerable overestimation of SC. More importantly, the parameters of
the empirical soil conservation model are based on long-term observations of field experiments at
small spatial scales, which are very difficult to obtain and must be simplified when implementing these
models at large spatial scales. Such simplification of model parameters may lead to uncertainty in
quantifying SC at large spatial scales [24]. Recently, Carreño et al. [25] formulated a simple biophysical
method for estimating the effects of land use changes on the relative provision capability of ESs in
Argentina. This method was improved by Barral et al. [26] to evaluate ESs related to land use planning
in the southeast pampas of Argentina. Both methods utilized such biophysical data as biomass or NPP,
water coverage, soil infiltration capacity, slope, temperature, precipitation, and altitude as formulating
parameters. Because the availability of biomass (NPP as the indicator) and its stability over time, soil
erodibility factor, and the slope of the land surface are the main factors of soil conservation in the face
of erosion [25–29], a multiplication of these factors can be used as the biophysical-based surrogate
indicator for mapping the SC of ecosystems [25,26,30,31].

The objective of this research is to compare the new biophysical-based surrogate indicator method
and the traditional RUSLE-based method in quantifying SC using the Jiangxi Province in China as
the case study area. The comparison aims to clarify the advantages and disadvantages of the two
methods and thereby to contribute to the rational selection of suitable quantitative methods for SC
assessment as support in the decision-making process associated with sustainable land use planning
and ecosystem management.

2. Materials and Methods

2.1. Study Area

Jiangxi Province (113.57◦~118.5◦E, 24.5◦~30.1◦N) is located in the southeastern region of China;
the capital is Nanchang (Figure 1). Jiangxi has an area of approximately 167,000 km2 and around
46 million people (Census 2016). The mean altitude of Jiangxi is 249 m, while the maximum and
minimum altitudes are 2150 m and 22 m below sea level, respectively. The topography of Jiangxi
consists of higher mountain ranges in the southern areas and the marginal areas of the entire province,
and small hills and lowlands in the central and northern parts of the province. The province has five
large rivers. Gan River, Fu River, Xin River, Rao River, and Xiu River, which flow into Poyang Lake,
the largest freshwater lake in China. Poyang Lake is located in the northern part of Jiangxi, which is
also home to internationally important freshwater wetlands that serve as habitat for many endangered
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waterfowl species. Therefore, Jiangxi Province makes up the greatest part of the Poyang Lake basin,
approximately 96.6% of whose area is located in the Jiangxi Province [32].Sustainability 2017, 9, 1577  3 of 12 
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vegetation coverage of Jiangxi is approximately 65.55%, while the maximum value is 91.97%. The 
high values of vegetation coverage are mainly located in the mountainous areas, which have a 
relatively high altitude with relatively low human disturbance. The main climate type in Jiangxi is a 
subtropical monsoon climate, and the annual mean air temperature and precipitation amount to 
approximately 18 °C and 1700 mm, respectively. The annual mean air temperature increases from the 
southwestern to the northeastern region of Jiangxi. The precipitation increases from the northwestern 
to the southeastern region of Jiangxi [34]. Recently, identifying the hotspots for conserving 
biodiversity and ESs has been a great concern as population growth and economic development have 
continued to impose enormous pressures on Jiangxi Province’s natural environment [35] (Figure 1). 

2.2. Data Sources 

The critical data of the soil conservation mapping methods were obtained as follows. The daily 
meteorological data (solar radiation, precipitation, and temperature) for the year 2000 and 2010 were 
retrieved from the China Meteorological Data Service Center [36].The 52 meteorological stations 
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(250 m resolution) by using the Kriging method of the ArcGIS 10.2 software. The 250 m MODIS NDVI 
data were composites of 16-day NDVI maximum values and were acquired from the Level 1 and 
Atmosphere Archive and Distribution System (LAADS) [37].The land use data were interpreted from 
Landsat 5 TM of the 2000 and 2010 land cover map with 30-m thematic resolution. The vegetation 
coverage of the 2000 and 2010 used the dimidiate pixel model, which is a simplified linear spectral 
unmixing method to calculate the coverage of vegetation [38,39]. Topographical parameters were 
derived from STRM digital elevation data at a resolution of 90 m [40].The soil property data used in 
the RUSLE model came from the Chinese soil dataset [41]. All data were interpolated or resampled 
to a 250-m resolution before being input into the ES models for further analysis. 
  

Figure 1. Location, meteorological stations, and land use types in Jiangxi Province, China.

The dominant land use type is forest, which accounts for 66% of Jiangxi’s area, followed by 21%
farmland, 6% artificially built-up land, 5% wetland, 2% grassland, and 1% barren land (Figure 1). Major
soil types include red soil, weakly developed red soil, and brown soil [33]. The annual mean vegetation
coverage of Jiangxi is approximately 65.55%, while the maximum value is 91.97%. The high values of
vegetation coverage are mainly located in the mountainous areas, which have a relatively high altitude
with relatively low human disturbance. The main climate type in Jiangxi is a subtropical monsoon
climate, and the annual mean air temperature and precipitation amount to approximately 18 ◦C and
1700 mm, respectively. The annual mean air temperature increases from the southwestern to the
northeastern region of Jiangxi. The precipitation increases from the northwestern to the southeastern
region of Jiangxi [34]. Recently, identifying the hotspots for conserving biodiversity and ESs has been a
great concern as population growth and economic development have continued to impose enormous
pressures on Jiangxi Province’s natural environment [35] (Figure 1).

2.2. Data Sources

The critical data of the soil conservation mapping methods were obtained as follows. The daily
meteorological data (solar radiation, precipitation, and temperature) for the year 2000 and 2010 were
retrieved from the China Meteorological Data Service Center [36].The 52 meteorological stations
(Figure 1) within and around Jiangxi Province were used to produce the interpolation raster maps
(250 m resolution) by using the Kriging method of the ArcGIS 10.2 software. The 250 m MODIS NDVI
data were composites of 16-day NDVI maximum values and were acquired from the Level 1 and
Atmosphere Archive and Distribution System (LAADS) [37].The land use data were interpreted from
Landsat 5 TM of the 2000 and 2010 land cover map with 30-m thematic resolution. The vegetation
coverage of the 2000 and 2010 used the dimidiate pixel model, which is a simplified linear spectral
unmixing method to calculate the coverage of vegetation [38,39]. Topographical parameters were
derived from STRM digital elevation data at a resolution of 90 m [40].The soil property data used in
the RUSLE model came from the Chinese soil dataset [41]. All data were interpolated or resampled to
a 250-m resolution before being input into the ES models for further analysis.
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2.3. Soil Conservation Mapping Methods

2.3.1. RUSLE-Based Model for Mapping Soil Conservation

The annual soil erosion can be calculated by means of the RUSLE empirical model [27] as
follows [34]:

A = R × K × LS × C × P (1)
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where A describes the estimated average soil loss (t·hm−2·year−1); R is the rainfall erosivity factor
calculated by means of the Wischmeier empirical formula [27]; Pi identifies the monthly precipitation
(mm), and P refers to the annual total precipitation (mm); K is the soil erodibility factor, which was
calculated using the EPIC (Erosion—Productivity Impact Calculator) equation [28]; Sa, Si, Cl, and C
encompass the percentage (%) of the sand, clay, silt, and organic matter of the soil, respectively; L is the
slope length factor [27], and S is the slope steepness factor [42]; m describes a dimensionless constant
dependent on the percent slope (θ); C is the crop and management factor; and P is the conservation
practices factor. The values of C and P were the same as in Zhang et al. [34].

If both C and P are assigned a value of 1, then the calculated soil erosion is the potential soil
erosion, which presumed the land to be bare or to have no vegetation protection. Therefore, the amount
of soil retention can be estimated by the difference between the potential soil erosion and actual soil
erosion. The SC model based on the empirical equation of RUSLE is as follows:

SCRUSLE = R × K × L × S × (1 − C × P) (6)

where SCRUSLE is the annual amount of soil conserved (t·hm−2·year−1), and the other parameters
were calculated in the same fashion as in Equation (1).

2.3.2. The Surrogate Indicator Method for Mapping Soil Conservation Service

The biophysical-based surrogate indicator method for mapping SC can be calculated by Equation (7):

SCSUR = NPP × (1 − VCnpp) × (1 − K) × (1 − Fslo) (7)

where SCSUR refers to the capability of the SC of the ecosystem, NPP is the sum of the annual
net primary production of vegetation, VCnpp describes the standard deviation of the NPP within
a year, and K is the soil erodibility factor, which was calculated by means of the EPIC equation
(Equation (3)). Fslo refers to the slope of the land surface, which can be calculated using Arcgis10.2
software. The parameters of VCnpp, K, and Fslo were standardized between zero and one by the
maximum and minimum value of their values. Lü et al. [30] and Zhang et al. [31], using the modeling
framework of this NPP based surrogate indicator, incorporated the K factor into the model, mapped
the SC of ecosystems, characterized the spatio-temporal variations of SC in China, and revealed the
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representation of critical natural capital in China. The above-mentioned works showed the usability
and reliability of the NPP based surrogate indicator for mapping SC well.

The terrestrial Carnegie Ames-Stanford Approach (CASA) was used to estimate the NPP of
vegetation. The CASA model advocates determining the NPP of vegetation as the product of
the modulated absorbed photosynthetically active radiation (APAR) and the light use efficiency
(ε) factor [43]:

NPP(x, t) = APAR(x, t)× ε(x, t) (8)

where NPP(x, t) describes the net primary production of location x at time t, APAR refers to the
canopy-absorbed incident solar radiation (MJ·m−2), and the parameter ε is the light use efficiency
(g·C·MJ−1). Land cover, NDVI, and climate data are needed for the CASA model. The annual total
NPP (g·C·m−2·year−1) is the sum of the NPP during the twelve months within a year [34].

3. Results

3.1. Spatial Patterns of SC

After mapping the SC of Jiangxi Province using the two methods provided in the paper, the
spatial patterns of SC were revealed (Figure 2). The results indicated that the spatial patterns of
SC maps which using the SCSUR method are heterogeneous and the high SC areas are scattered in
regions of high altitude and with a high fractional vegetation cover. The spatial patterns of SC are
similar in 2000 and 2010. The high values of SC maps using the SCRUSLE method were located in the
southern and northeastern region of the mountain areas of Jiangxi in 2000, and then moved to the
middle-eastern and northeastern region of the mountain areas of Jiangxi in 2010. The variation in the
spatial patterns using the SCRUSLE method is significantly impacted by the variation in the annual
rainfall erosivity factor for Jiangxi. The mean values of SC quantifying by means of the biophysical
surrogate indicator (SCSUR) method were 381.43 in 2000, and 385.72 in 2010, while the mean values of
SC modeled by the RUSLE-based method are 351.69 t·hm−2·year−1 in 2000, and 579.92 t·hm−2·year−1

in 2010. The minimum values of the results of the two methods are zero, while the maximum values of
the two methods increased from the 2000 to 2010.
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Figure 2. Spatial patterns of the surrogated soil conservation model (SCSUR) (A,B) and RUSLE-based
soil conservation model (SCRUSLE) (C,D) in 2000 and 2010. The results of SCSUR have no units, while
the units of the results of SCRUSLE are t·hm−2 year−1.
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3.2. SC Variations under Different Land Use Types, Fractional Vegetation Covers and Land Surface Slopes

After comparing the differences in the two SC methods in each land use type in 2000 and 2010, the
results indicated that variations in the results of the SCSUR model tend to be smaller than the variations
of the results of the SCRUSEL model among different land use types (Figure 3). The mean capacities of SC
of the SCSUR and SCRUSLE model in each land use type are ranked as follows: forest > grassland > barren
land > wetland (Figure 3). The relationship between the results of the two SC methods under different
vegetation coverages was analyzed using ArcGIS 10.2 software. The results showed that the values of
SC mapped by both the SCSUR and SCRUSLE methods increase with the increase in fractional vegetation
covers (Figure 4). The values of SC mapped by the SCRUSLE model increase with the increase in slope;
however, the values of SC mapped by the SCSUR method decreases with the increase in land surface
slopes (Figure 4).
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Figure 3. Variations of the surrogated soil conservation model (SC_SUR) (A) and RUSLE-based soil
conservation model (SC_RUSLE) (B) for different land use types in the year 2000 and 2010.

3.3. Distance Distributions from Artificial Land, Farmland, and Wetland

The spatial patterns of the distance distribution from artificial land, farmland, and wetland of
the two SC models were analyzed using ArcGIS 10.2 software, which was based on the raster land
use maps for 2000 and 2010. The results showed that the high values of SC mapped by the SCSUR

method were located near artificial land and farmland, while the high values of SC mapped by means
of the SCRUSLE model were located relatively far from artificial land and farmland. High values of SC
mapped by the SCSUR model were located near wetlands, while the high values of SC mapped by the
SCRUSLE model were located relatively far from wetlands (Figure 4).
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Figure 4. Variations in soil conservation service (SC) based on different mapping methods under 
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4. Discussion

4.1. Characteristics of Using the Two SC Methods in Practice

The spatial patterns of SC mapped by means of the SCSUR and SCRUSLE methods have certain
similarities and differences when used in practice (Table 1). In selecting the appropriate method for
mapping SC, decision makers need to consider the different purposes of the task in question, as well
as the similarities and differences in the spatial patterns and temporal variations of the priority areas
that may arise from using these methods. Because the values of SC of the two mapping methods
both increase with increasing of the vegetation coverage, the priority areas for SC selected by the two
models will be located in the area in which the fractional vegetation cover is relatively high. Moreover,
both mapping methods resulted in higher values of SC in forest and grassland than the other two land
use types, which can lead to greater attention given these land uses safeguard the SC capacity of the
landscape. Because the values of SC modeled by the SCSUR method decrease with the increasing slope
of the land surface while the values of SC modeled by the SCRUSLE method increase with the increase
in the slope of the land surface, the priority areas for SC selected by these two methods may differ
markedly. Similarly, the priority areas identified by the SCRUSLE model for conserving SC are more
likely to be located in precipitous regions than those identified using the SCSUR method.
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Table 1. Comparison of the two methods for mapping soil conservation service in the Jiangxi Province.

Variables SCSUR SCRUSLE

Land use types
Mean values of the SC of each land
use types are: forests > grasslands
> barren lands > wetlands

Mean values of the SC of each land
use types are: forests > grassland >
barren lands > wetlands

Slope Decreases with the increase in
land surface slope

Increases with increasing land
surface slope

Vegetation coverage Increases with the increasing of
the vegetation coverage

Increases with increasing of the
vegetation coverage

Distance from artificial land
and farmland Close Far

Distance from wetland Close Far

Given that the distribution of the high values of the SCSUR model are closer to artificial land and
farmland than those of the SCRUSLE model, the efficiency of conservation actions in the priority areas
of SC identified by the SCSUR model will be higher than that of the SCRUSLE model. In the anthropic
zones, disturbance and impacts from human activities on the natural ecosystems were very high;
thus, the degradation of the SC was usually more severe in these areas. In contrast, in remote areas,
the disturbance of human activities was relatively limited, the cost of building conservation areas to
protect the SC will be considerably lower than in nearer anthropic locations. Nevertheless, the SC of
the entire region may continue to degrade because the degraded areas of SC are located near anthropic
zones, such as croplands and grazing grassland.

Therefore, the two mapping methods have a similar utility in discerning the influence of different
land use types and vegetation coverage on the SC, whereas, there are large differences in the
representation of the spatial distribution of SC. The slope factor, the rainfall erosivity factor, and
the SCRUSLE method as a whole reflect the soil erosion risk [44,45] but not necessarily the ground
truth soil conservation capacity of ecosystems. Research based on field observations has revealed
important characteristics of the relative ranking stability of different terrestrial ecosystem types on
the soil conservation capability in both dry [46–48] and humid environments [49]. These ground
truth observations under various environmental conditions support the relatively stable pattern of
the ecosystems SC (Figure 2A,B) but defy the significant regional spatiotemporal variability of the
SC capability (Figure 2C,D). Indeed, the spatial dimension of SC is crucial to land use planning and
ecosystem management applications with practical soil erosion and nutrient loss control as key targets.
In this sense, SCSUR seems to perform better than SCRUSLE.

4.2. Enlightenment after the Comparison of the Two SC Methods

As humans have already served as an important driving force of various biogeochemical processes
on the earth surface, contemporary soil erosion by water can be largely impacted by the interactions
between ecosystems and human society under the control of broad environmental regimes (e.g., climate
and geomorphology) [50]. Therefore, contemporary soil erosion by water is the final representation of
the complex mix from natural erosion and human-accelerated erosion. Humans can never destroy
natural erosion or tolerable soil erosion [51]. However, humans’ significant contribution to accelerating
and decelerating soil erosion is well documented at various spatiotemporal scales and in various
geographical locations [52–55]. Consequently, one of the key tasks of soil conservation is to avoid
human-accelerated erosion [53]. Research also suggests that human-accelerated erosion tends to
spread from human disturbance centers to remote areas [56]. The above observations seem to
support findings from the SCSUR approach in this research that suggest that the soil conservation
service of natural ecosystems is usually higher near anthropogenic land use and wetlands (Figure 4).
These may also explain the widespread use of various kinds of vegetated buffer strips to reduce fluxes
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of eroding soil and associated chemicals from hill slopes into water bodies in mitigating on-site land
degradation and off-site water pollution [57–59]. However, the conservation values of ecosystems near
anthropogenically used lands and wetlands will be largely neglected if solely dependent on the results
from the SCRUSLE approach (Figure 4).

The SCRUSLE method can calculate the specific amounts of soil that are conserved in a region,
although the accuracy of these amounts of SC cannot be validated because of the absence of suitable
observed data on ESs provisioning [60] and the exaggeration of model assumptions, which supposed
no vegetation cover in an extremely degraded landscape [21,23,34,61]. In addition, the main limitations
of RUSLE-based model are that it requires data at affine spatial scales, the using of this model in the
broad spatial scales needs to simplification of the model parameters [62], which may hamper the
accuracy and the usability of SCRUSLE in practical applications.

The SCSUR method differs from the SCRUSLE method in that the former is based on the causal
relationships between the SC and multiple environmental variables, and the results of the SCSUR

method only reveal the relative rankings of the provisioning capability of ecosystems on SC in a region.
The SCSUR method incorporates the parameters of NPP into the model, and the NPP is modeled by the
remote-sensing data of NDVI and a series of environmental variables. Therefore, the SCSUR method can
explicitly relate spatially to the realistic spatial patterns and temporal variations of SC as an important
service of ecosystems [16,30,31,63]. These characteristics can meet the needs of policy-making related
to soil conservation and ecosystem management, such as the assessment of SC variation caused by
changes in land use and the priority setting of conservation planning.

5. Conclusions

Spatially explicit mapping of ESs is the critical method of incorporating ESs into decision-making
associated with land use and ecological conservation planning. Traditionally, empirical soil erosion
models are usually used to map SC. However, the soundness of these models is largely taken for
granted with little verification. Therefore, selecting suitable quantifying methods for SC mapping,
especially at a large spatial scale, remains challenging but promising to facilitate conservation decision
making and actions. This paper compared a newly formulated biophysical-based surrogate indicator
method and a traditional RUSLE based method in SC mapping. Findings suggest that the biophysical
indicator method can effectively rank terrestrial ecosystems in terms of their capability to provide
SC services at a large spatial scale. The mapping results conform to both findings based on field
observations in various environmental settings and the general implementation of soil conservation
practices. Therefore, the biophysical indicator method is suitable for large-scale SC mapping meant to
support efforts related to soil conservation planning and conservation effectiveness evaluation, despite
being much simpler than the traditional empirical models, such as RUSLE. The RUSLE based model
is similar to the biophysical indicator method in reflecting different ecosystem (or land cover) types
in SC capability ranking. However, the results related to SC spatial patterns are problematic due to
lack of support from published literature on soil conservation monitoring and practical applications.
This problem may be largely rooted in its very extreme and unrealistic assumption when RUSLE is
borrowed to map the SC of ecosystems. In fact, RUSLE has been used and verified globally in soil
loss assessment and its environmental risks. However, this support does not necessarily guarantee its
usability as a sound SC mapping tool. On the contrary, findings of the present research recommend
great caution when using RUSLE to map the SC service of ecosystems, as shown in this paper and the
published literature, especially regarding the spatial pattern of SC and its temporal change. Therefore,
the newly formulated simple biophysical-based surrogate indicator method is by no means worse
at mapping the rankings and spatiotemporal variations of SC in terrestrial environments, and this
research revealed the advantages of this new method of SC mapping for soil conservation planning
and conservation performance assessment, especially at large spatial scales.
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