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Abstract: Tamarisk (Tamarix spp., saltcedar) is a well-known invasive phreatophyte 
introduced from Asia to North America in the 1800s. This report compares the efficacy of 
Landsat 5 Thematic Mapper (TM5), QuickBird (QB) and EO-1 Hyperion data in 
discriminating tamarisk populations near De Beque, Colorado, USA. As a result of highly 
correlated reflectance among the spectral bands provided by each sensor, relatively standard 
image analysis methods were employed. Multispectral data at high spatial resolution (QB, 
2.5 m Ground Spatial Distance or GSD) proved more effective in tamarisk delineation than 
either multispectral (TM5) or hyperspectral (Hyperion) data at moderate spatial resolution 
(30 m GSD). 
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1. Introduction 

The spread of invasive plant species to native ecosystems is a frequent consequence of land 
conversion, habitat fragmentation and commerce, resulting in diminished global biodiversity and 
ecosystem integrity [1,2]. Tamarisk (Tamarix spp. or saltcedar) is a well-known invasive phreatophyte 
introduced from Asia to North America in the 1800s as an ornamental or shade plant used 
subsequently for erosion control [3]. In the western USA, it occupies over 600,000 ha of riparian 
habitat [4] and continues to spread in semi-arid regions, consuming valuable resources [5–7]. Western 
states heavily infested with tamarisk include Texas, New Mexico, Colorado and California, where 
dense stands impact native vegetation and cause extensive groundwater loss [8]. Along the Colorado 
River, tamarisk has replaced much of the native riparian vegetation and reduced stream flow via 
sediment entrapment and groundwater depletion [7]. Such water depletion and obstruction to flow may 
elevate soil salinity [9]. The cumulative effects of tamarisk invasions justify its ranking as one of the 
ten worst noxious weeds in the USA [10]. In order to facilitate the monitoring of tamarisk invasions 
and quantify the effectiveness of tamarisk management practices, there is a clear need for accurate and 
economical methods of detecting and mapping tamarisk. 

Specific remote sensors and analytical methods used in tracking invasive species vary widely, 
depending on the geographical scale of interest. At a continental scale, relatively coarse spatial 
resolution (250 m Ground Spatial Distance or GSD) MODIS data have been used in mapping potential 
tamarisk habitat for the conterminous USA [11]. Although this approach would not have been suitable 
for the direct detection of tamarisk populations because of the coarse spatial resolution, the resulting 
map of current and potential tamarisk habitat is highly useful in predicting the spread of tamarisk. At 
intermediate spatial scales, multispectral imagery acquired by the Landsat Thematic Mapper (TM)  
(30 m GSD) were used to directly detect and classify tamarisk populations at the mouth of the Yellow 
River in China [12]. More recently, the use of Landsat 5 TM (TM5) data acquired during winter, when 
tamarisk branches were leafless, provided 98% discrimination of tamarisk from other riparian 
vegetation along the Arkansas River, Colorado, USA [13]. 

As with spatial resolution, enhanced spectral and radiometric resolutions may also be an advantage 
in the detection and mapping of invasive plants [2,14]. Tamarisk mapping accuracy reached 89% when 
a Mixture Tuned Matched Filtering algorithm was applied to airborne hyperspectral data acquired at 
2.5 m GSD in Colorado [15]. In determining the effectiveness of biological control of tamarisk in 
several western USA states from airborne hyperspectral imagery acquired at 1–2 m GSD during early 
July and late August, near-infrared (768 or 777 nm), green (539 or 548 nm) and red (653 or 670 nm) 
spectral bands were most useful [8]. Similarly, the selection via hierarchical clustering of 569 nm,  
702 nm, 719 nm and 770 nm spectral bands from airborne hyperspectral imagery acquired at 0.5 m 
GSD yielded optimal detection of tamarisk in Southern California [16]. Acquired from earth orbit at 30 
m GSD, data from NASA’s EO-1 Hyperion [17] were used to classify tamarisk in Western Nevada,  
USA [18]. When Discriminate Function Analysis was applied to the Hyperion data, tamarisk could be 
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mapped with greater accuracy compared with the use of Landsat Enhanced Thematic Mapper (ETM) 
data (86% versus 78%, respectively). 

With respect to the use of data from orbital sensors, the preceding review indicates that the 
discrimination of tamarisk from other riparian vegetation is most accurate when tamarisk is leafless 
and data are acquired during winter [13]. However, we were interested in comparing the efficacy for 
tamarisk delineation among high-spatial-resolution, multispectral satellite imagery (2.5 m QuickBird) 
and 30 m hyperspectral (Hyperion) or multispectral (TM5) data. This required the use of spatially-
overlapping, summer 2004 coverage from these sensors that were approximately coincident with a 
2003–2004 field sampling of the study area, located along the Colorado River, Colorado, USA. 

 
2. Methods 
 
2.1. Study Area 
 

The study area was located along the Colorado River near De Beque, Colorado (39º33’ N, -108º2’ W). 
Average elevation of the area is approximately 1,500 m, with the southeastern edge of the Roan Cliffs 
located to the northeast. The area contains substantial amounts of tamarisk that have been well-
documented by a number of field survey teams. Tamarisk stands used in image classifications were 
located via GPS between January, 2003 and May, 2004. A total of 40 plots located within the De 
Beque 7.5 minute USGS quadrangle were surveyed using a purposive sample design [19] and releveَ 
principles [20] to maximize variation in habitat. Plots were placed in each major vegetation zone to 
cover the full range of environmental gradients present. The releveَ method quickly determines relative 
cover by species in a plot that represents a particular vegetation type. 

The primary sampling unit was a 30 m × 30 m cluster plot which corresponded with the 30 m GSD 
of Hyperion and TM5 data. Within each of these 900 m2 areas, nine subplots, each 10 m × 10 m 
(100 m2) in dimension, allowed for analysis at the finer resolution enabled by QB data (2.5 m GSD). 
Within each of these plots and subplots, percent cover of tamarisk and other dominant vegetation was 
recorded.  
 
2.2. Remote Sensing 
 

TM5 and Hyperion data (USGS EROS Data Center, Sioux Falls, South Dakota, USA) acquired on 
July 13 and July 5, 2004, respectively, and QB data (Digital Globe, Longmont, Colorado, USA) 
acquired on August 16, 2004, corresponded with the approximate time of field sampling. Additionally, 
QB data acquired on June 8, 2005 were available for comparison with the 2004 QB data. Airborne 
hyperspectral data from the HyMap sensor (HyVista Corp., New South Wales, Australia) acquired on 
July 6, 2002, were used in calibrating the TM5 and QB data to reflectance units. While the dates of 
field sampling and image acquisition may differ, tamarisk populations in the study area are notably 
stable from year-to-year (T. Stohlgren, USGS, Fort Collins, CO, USA, personal communication). Thus, 
the surveyed locations of tamarisk stands were applicable for all image acquisitions. 
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2.3. Georectification and Reflectance Calibration 
 

All images were registered using the nearest-neighbor resampling method to a rectified 1 m digital 
ortho quarter quad (DOQQ) of the De Beque area. Rectification of the Level I Hyperion and TM5 
imagery was refined further to a root mean square error (RMSE) of less than 0.5 pixels. Rectification 
of QB standard-bundle imagery was refined to a RMSE of 0.4 and 0.5 pixels for the 2004 and 2005 
acquisitions, respectively. 

The HyMap imagery consisted of 126 spectral channels (bands) covering a 440 nm to 2,500 nm 
spectral range at a full-width-at-half-maximum (FWHM) bandwidth of approximately 15 nm. The 
flight altitude of 3,500 m produced a GSD of 3.7 m. The data were calibrated at-sensor to radiance 
units (µW/cm2

 nm sr) and processed subsequently to apparent reflectance using Fast Line-of-Sight 
Atmospheric Analysis of Hypercubes (FLAASH) (ENVI v. 4.2, ITT Visual Information Systems, 
Boulder, CO, USA). FLAASH employs an atmospheric correction based on MODTRAN 4+ radiative 
transfer models and corrects for absorptions by atmospheric water vapor, methane, oxygen, carbon 
dioxide and ozone on a pixel-by-pixel basis. The FLAASH calibration to apparent reflectance was 
refined using an Empirical Line calibration (ENVI v. 4.2) based on the in situ reflectance of an asphalt 
road collected in June, 2005 (ASD FS, Analytical Spectral Devices, Boulder, CO, USA). Although 
field measurements of asphalt road reflectance were not made simultaneously with image acquisitions, 
all data were acquired when the road surface was dry. Thus, the road was acceptable as a pseudo-
invariant calibration target. The Empirical Line calibration forces spectral data to match field reference 
data using a linear regression for each band. When only one ground target is used, as in the present 
case, the regression line is assumed to pass through a zero origin. HyMap bands 1 (437 nm), 31 (873 nm), 
63–66 (1,405–1,447 nm), 94 (1,805 nm), 95 (1,949 nm) and 126 (2,484 nm) were deleted due to strong 
atmospheric interference, detector overlap or detector insensitivity. The remaining 117 bands spanned 
the 443 nm to 2,468 nm range. 

Next, regions-of-interest (ROI) representing specific pseudo-invariant targets of lake water and bare 
gravel were created using the HyMap data. ROI spectra of these surfaces were extracted to a spectral 
library (ENVI v. 4.2). The water served as a low-reflectance target while reflectance of the bare gravel 
was substantially greater. HyMap spectral reflectances of these dark-to-bright targets were re-sampled 
to TM5 or QB spectral bands (ENVI v. 4.2) and used in an Empirical Line calibration of the TM5 and 
QB data. This corrected the data for atmospheric interference and yielded units of percentage 
reflectance. QB data were acquired in four broad spectral bands centered at 485, 560, 660 and 830 nm 
(Table 1) at 2.5 m GSD and 11-bit radiometric resolution. TM5 data included these bands as well as 
mid-infrared bands at 1,650 and 2,215 nm (Table 1) and were acquired at 30 m GSD with 8-bit 
radiometric resolution. 

Hyperion data include 242 spectral bands ranging from 356 nm to 2,577 nm at a FWHM bandwidth 
of 10 nm and 12-bit radiometric resolution. Because Hyperion bandwidths are narrower than the ca.  
15 nm bandwidths in HyMap data, the latter could not be used to calibrate the Hyperion data to 
reflectance units. Instead, Hyperion data were spectrally subset to remove bands 1–8 (357–417 nm) 
and 225-242 (2,406–2,577 nm), owing to data noise, and bands 58–70 (925–1,068 nm) and  
71–77 (852–912 nm) were eliminated due to detector overlap. The remaining 196 Hyperion bands 
covered the 426 nm to 2,396 nm spectral range and were calibrated to apparent reflectance using 
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FLAASH. The field spectroradiometric data could not be used to refine the Hyperion calibration 
because the gravel road was not clearly visible in the 30 m GSD Hyperion image. Inspection of the 
reflectance-calibrated Hyperion data revealed substantial noise or extreme image striping in the  
1,356–1,457 nm, 1,820–1,992 nm, 2,022–2,042 nm, 2,062–2,082 nm and 2,284–2,396 nm regions. 
These spectral regions were deleted, leaving 148 bands for potential use in tamarisk mapping. 
 
2.4. Image Classification 
 

Initially, an unsupervised classification algorithm (isodata, ENVI v. 4.2) was applied to the TM5, 
QB and Hyperion data. This allowed a preliminary assessment of tamarisk discrimination in the De 
Beque area. Additionally, principal components analysis (PCA) [21,22] and the Minimum Noise 
Fraction (MNF) procedure [21] were applied to the Hyperion data (ENVI v. 4.2). However, band 
correlation analysis (ENVI v. 4.2) applied to each reflectance-calibrated data set indicated substantial 
redundancy among spectral bands in the reflectance of vegetated terrain (see Results). Based on these 
initial assessments, data dimensionality was reduced by removing redundant bands. This facilitated use 
of the Maximum Likelihood (ML) algorithm and normalized-difference indices [21,22] in subsequent 
comparisons among sensor data in tamarisk delineation. ML was selected because it is widely accepted 
and generally provides the greatest accuracy among various supervised classification procedures [21]. 
It computes the probability that a certain pixel belongs to one of a pre-defined number of classes, 
taking into account the variability in each ROI and assuming that training data statistics in each band 
for each class are normally distributed. The pixel is then assigned to the class to which it most likely 
belongs. Inspection of training data for the bands selected from each sensor indicated general 
normality with slight skewing in some bands, but no bi-modal distributions. Nevertheless, as a 
parametric method, ML is robust to violations of training-data normality and performs well when 
training data are limited [23]. 

Training data for supervised classifications of TM5 or Hyperion images were based on 30 m plots 
which contained 80% or greater coverage by tamarisk. For QB classifications, 10 m subplots 
containing 100% tamarisk cover were used. The same 30 m plots and 10 m subplots were used in 
determining value ranges of remote sensing indices that were representative of tamarisk stands. Indices 
applied were the NDVI [23] and a similar index which incorporated green-band rather than red-band 
reflectance (Green NDVI or GNDVI). Additionally, data from these plots and subplots were used to 
assess image classification accuracy. For data from each sensor, 40% of plot data were used in 
classification training. The remaining 60% were reserved for post-classification accuracy assessment. 
All image classifications were based on sample plot (training) areas of at least 0.3 ha. 

Classification accuracy was determined by error matrix and the Khat coefficient of agreement [21,22]. 
This produced values for errors of omission (percentage of tamarisk pixels that were not classed as 
tamarisk) and errors of commission (percentage of non-tamarisk pixels that were classed as tamarisk). 
Khat represents the extent to which a given classification procedure improved classification accuracy 
relative to a random classifier [22]. Thus, for example, Khat = 0.33 would indicate a 33% improvement 
in accuracy relative to classification by chance. 
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3. Results 

Initial assessments of the TM5, QB and Hyperion data indicated that an unsupervised classification 
approach was inadequate for tamarisk detection. Because Hyperion bands within a given spectral 
region tended to be strongly correlated for vegetated riparian and agricultural areas, the data set was 
reduced, with no significant loss of information, to include only those spectral bands which 
approximated the central wavelengths of the TM5 bands (Figure 1, Table 1). In total, the resulting  
6-band set correlated with the original Hyperion spectrum at r ≥ 0.95 (Table 2) and yet included band 
pairs with r ≥ 0.72 which were potentially useful in tamarisk delineation (Table 3). The use of 
Hyperion PCA or MNF bands versus the minimally-correlated band set yielded no improvement in 
ML classification accuracy. 

 
Figure 1. Spectral correlations (r) of Hyperion reflectance with reflectance in bands of 
central wavelength similar to TM5 bands 1-5 and 7. Dark triangles are located at the 
reference central wavelength (listed in each graph) where r = 1. 

 

 

 

 

 

 

 

 

 

 
 
 
 

In addition to correlations among Hyperion bands, redundancy was found also among TM5 and QB 
bands (Table 3). For all three sensors, reflectance in the blue band correlated strongly with other 
visible-spectrum bands. Thus, and owing to greater blue-band susceptibility to atmospheric 
interference, the blue band was eliminated from each data set prior to image classifications. Likewise, 
green versus red bands correlated strongly (Table 3). Consequently, the red band was not included in 
multiband ML analyses but was used necessarily in classifications based on the NDVI [24]. As a result 
of these band correlations (Table 3), image classification procedures utilized a maximum of four TM5 
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or Hyperion bands, or two QB bands. ML classifications incorporated green, near-infrared and two 
mid-infrared bands from TM5 or Hyperion, or the green and near-infrared QB bands (Table 1). 
 

Table 1. Central wavelength and approximate bandwidth of QB, TM5 and Hyperion bands 
used in tamarisk delineation. 

QB or TM5 Hyperion 

Band Wavelength (nm) Bandwidth (nm) Band Wavelength (nm) Bandwidth (nm)
1 485 70 14 488 10 
2 560 80 21 559 10 
3 660 60 31 661 10 
4 830 140 48 834 10 

TM5      
5 1,650 200 150 1,649 10 
7 2,215 270 206 2,214 10 

 

Table 2. Ranges in band central wavelength through which Hyperion reflectance data 
correlated at r ≥ 0.95 with reflectance at central wavelengths similar to TM5 bands (given 
in parentheses). 

Hyperion Band Central Wavelength (nm) Correlated Wavelength Range (nm)

14 (1) 488 437–702 
21 (2) 559 437–712 
31 (3) 661 457–702 

  1,477–1,558 
  2,052–2,274 

48 (4) 834 722–1,326 
150 (5) 1,649 701–722 

  1,155–1,810 
  2,052–2,274 

206 (7) 2,214 610–722 
  1,467–2,274 

 
Maximum classification accuracies, determined by Khat, were produced by NDVI threshold values 

from 2004 Hyperion and QB data, whereas a four-band ML classification produced maximum 
accuracy from 2004 TM5 data (Table 4). Generally, Khat values of 0.4 to 0.8, as with Hyperion and QB 
results, indicate moderate to good improvement in classification accuracy relative to a random 
classification [22,25]. QB 2004 data yielded the greatest classification accuracy, followed by Hyperion 
and TM5. Results from 2005 QB data were similar to those from 2004 data, except the GNDVI yielded 
a greater accuracy than the NDVI. The greatest accuracy produced in classifications of TM5 data 
indicated little improvement over a random classification (Khat = 0.18). 
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In the use of 2004 Hyperion, TM5 and QB data for tamarisk mapping, 88%, 80% and 91% of 
reference pixels, respectively, were classified correctly (Table 5). However, errors of commission, the 
inclusion of non-tamarisk pixels as tamarisk pixels, were high for all classifications (Table 5). In 
particular, errors of commission were demonstrated in best-classification images for each sensor by the 
inclusion of agricultural fields as well as riparian habitat in the tamarisk class (Figure 2). Errors of 
omission, the failure to include known tamarisk areas in the tamarisk class, were also appreciable 
except for the Hyperion classification (Table 5). Classification of 2005 QB data produced results 
similar to the classification of 2004 QB data. Thus, a 2005 QB classified image and corresponding 
percentage accuracies are not shown. 
 

Table 3. Matrices of correlation among TM5, QB and selected Hyperion bands for 
vegetation in the De Beque, CO area. 

Band 
Correlation Coefficient (r) 

TM5 or QB Band 
 1 2 3 4 5 

TM5  
2 0.95     
3 0.94 0.94    
4 -0.14 -0.09 -0.14   
5 0.74 0.79 0.81 0.13  
7 0.85 0.86 0.89 -0.13 0.92 

QB  
2 0.98     
3 0.96 0.98    
4 -0.05 0.01 -0.05   
 Hyperion Band 

 14 21 31 48 150 
Hyperion      

21 0.99     
31 0.98 0.99    
48 0.72 0.81 0.76   
150 0.88 0.93 0.94 0.88  
206 0.90 0.94 0.96 0.80 0.98 

 
Table 4. Accuracies of Tamarisk mapping (Khat) in classifications derived from Hyperion, 
TM5 and QB data. 

 Khat 

Algorithm Hyperion, 2004 TM5, 2004 QB, 2004 QB, 2005 

ML, 4-band 0.18 0.18 - - 

ML, 2-band 0.23 0.10 0.69 0.66 

GNDVI 0.36 0.00 0.73 0.72 

NDVI 0.50 -0.03 0.74 0.64 
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Table 5. Algorithms that yielded maximum accuracies in tamarisk classification when 
applied to 2004 Hyperion, TM5 and QB data. 

Sensor Algorithm 
% 

Accuracy Omission Error Commission Error 

Hyperion NDVI 88 0 62 

TM5 ML, 4-band 80 40 83 

QB NDVI 91 18 78 

Figure 2. Generalized map (a) with tamarisk distributions (red) estimated for the De 
Beque, Colorado area based on classifications of Hyperion (b), TM5 (c) and QB (d) data. 
These images represent the greatest classification accuracy for each sensor and were 
produced from ML classification of TM5 bands 2, 4, 5 and 7 (c) or NDVI thresholds for 
Hyperion (b) and QB (d). 

(a)      (b) 
 
 
 
 
 
 
 
 
 
 
 
 

(c)      (d) 
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4. Discussion and Conclusions 

High-spatial-resolution measurements of green or red along with near-infrared reflectance yielded 
substantial improvement in Khat, similar to the results of earlier studies which relied on airborne 
hyperspectral data [8,16]. Multispectral data at a 2.5 m GSD (QB) proved more effective in tamarisk 
mapping than either the same bands (TM5) or hyperspectral data (Hyperion) at 30 m GSD. The high 
spectral resolution of Hyperion did not yield an improvement over QB classifications, even though the 
radiometric precision of Hyperion (12-bit) is twice that of QB (11-bit). Similar spectral characteristics 
among riparian species during summer [13] and within-pixel spectral mixing reduced the utility of 
high spectral resolution. Also, there were few ground plots containing 80–100% tamarisk coverage 
that were of sufficient size to yield 30 m GSD reference pixels. In contrast, the combination of high 
spectral and spatial resolutions previously enabled high-accuracy mapping of tamarisk in the De Beque 
area [15] and in Southern California [16] and has been useful in monitoring the biological control of 
tamarisk in Nevada [8]. 

At comparable GSD, the greater spectral and radiometric resolutions of Hyperion versus TM5 (8-bit) 
data enhanced tamarisk delineation. Similarly, in western Nevada, Hyperion yielded greater tamarisk 
classification accuracies than ETM+ [18]. 

For QB data, overall classification accuracy ranged to 91% but errors of commission were large. 
This likely was a consequence of data being acquired in summer when the foliage of riparian plant 
species was green [13]. The moderate spectral resolution of QB was not sufficient to distinguish subtle 
spectral differences among vegetation types. Thus, non-tamarisk riparian vegetation and portions of 
agricultural fields were frequently included in the tamarisk class. Had the imagery been acquired 
during autumn, when the color of tamarisk foliage changes to yellow-orange [9], or during late-autumn 
to winter when tamarisk is leafless [13], errors of commission likely would have been reduced. 
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