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Abstract: A ten-year data-set descriptive of Italian forest gross primary production (GPP) 

has been recently constructed by the application of Modified C-Fix, a parametric model 

driven by remote sensing and ancillary data. That data-set is currently being used to develop 

multivariate regression models which link the inter-year GPP variations of five forest types 

(white fir, beech, chestnut, deciduous and evergreen oaks) to seasonal values of temperature 

and precipitation. The five models obtained, which explain from 52% to 88% of the inter-

year GPP variability, are then applied to predict the effects of expected environmental 

changes (+2 °C and increased CO2 concentration). The results show a variable response of 

forest GPP to the simulated climate change, depending on the main ecosystem features. In 

contrast, the effects of increasing CO2 concentration are always positive and similar to those 

given by a combination of the two environmental factors. These findings are analyzed with 

reference to previous studies on the subject, particularly concerning Mediterranean 

environments. The analysis confirms the plausibility of the scenarios obtained, which can 

cast light on the important issue of forest carbon pool variations under expected  

global changes. 
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1. Introduction 

The increasing level of atmospheric CO2 and consequent global climate change are enhancing the 

need for assessing the amount of carbon stored by terrestrial ecosystems. Among them, forest 

ecosystems cover about 40% of the Earth’s ice-free land surface and represent a great part of the global 

carbon stock [1,2], which must be quantified also in view of the carbon emission trading by countries 

[3]. Worldwide forests account for about 75% of the carbon stored in terrestrial ecosystems (organic 

carbon, OC) and approximately 40% of the carbon exchange between the atmosphere and the terrestrial 

biosphere each year [4].  

It is widely accepted that OC sequestration in forest plants and soils is sensitive to meteorological 

factors such as air temperature and humidity, rainfall, radiation, etc. [5]. Consequently, climate changes 

that are already visible and that are expected to increase in the next decades may play a fundamental 

role in the capacity of carbon sequestration of forest ecosystems located in vulnerable areas like the 

Mediterranean basin [3]. A better understanding of the interactions between climate changes and the 

terrestrial biosphere is therefore crucial in planning future land management options [3].  

Different approaches have been used for such a purpose, including FACE [6–9], air-soil warming 

experiments and carbon isotopic techniques [10,11]. Most of the studies are conducted on a stand  

scale [e.g., 12] or at a coarse resolution [e.g., 13] to derive general information on forest development 

and biomass accumulation in future scenarios. Unfortunately, the experimental techniques applied 

cannot be easily extended to larger spatial and temporal scales. A more comprehensive understanding 

of change impact in highly heterogeneous Mediterranean areas would require the consideration of both 

climate and morphological spatial variability. This has stimulated the use of remotely sensed images, 

which offer the fundamental advantage of being directly applicable to estimate forest production over 

wide areas for multiyear periods.  

The current work examines a 1-km resolution data-set which includes meteorological measurements 

and estimates of forest gross primary production (GPP) covering the whole Italian national territory. 

The spatially distributed forest GPP estimates have been obtained by the application of Modified  

C-Fix, a parametric model driven by remote sensing and ancillary data. This data-set is statistically 

analyzed in order to develop multivariate regression models which link the inter-year GPP variations of 

five forest types to seasonal values of temperature and rainfall. The models obtained are then applied to 

predict the effects of expected environmental changes (+2 °C and increased CO2 concentration). 
The paper is organized as follows. The next section introduces the study area and data utilized. 

Modified C-Fix is then described together with the statistical methodology applied to quantify the 
effects of inter-year meteorological variations on forest GPP. The results section first introduces the 
present and expected future climate conditions for different forest areas. Next, the multivariate 
regression models developed are described, followed by the possible changes in forest productivity 
resulting from the considered environmental scenarios. The likely consequences of each scenario are 
finally discussed together with the main sources of uncertainty introduced.  
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2. Study Area 

Italy is geographically situated between 36° and 47°30’ North latitude and between 5°30’  

and 18°30’ East longitude. Its orography is quite complex, due to the presence of two main mountain 

chains, the Alps in the north and the Apennines in the centre-south. Italian climate ranges from 

Mediterranean warm to temperate cool and Alpine following the latitudinal and altitudinal gradients 

and the distance from the sea.  

The land is mostly covered by agricultural areas, forests and pastures. The total extent of forest areas 

varies around 90,000–100,000 km2, depending on the definition used [14]. 95% of forest land is on 

hills and mountains. 32% of the forest formations are included in the Alpine biogeographical region, 

16% in the Continental region and 52% in the Mediterranean region (sensu Habitat Directive of the 

European Commission 43/92). Due to such a pronounced biogeographical variability, forest 

ecosystems in Italy are characterized by a high biodiversity (e.g., 117 native forest tree species). The 

most widespread forest formations are dominated by various oak species (Quercus spp.) and beeches 

(Fagus sylvatica L.). Among conifers, the most abundant are white fir (Abies alba Mill.) and Norway 

spruce (Picea abies), followed by various pines (Pinus spp.). 53% of forest land is managed as 

coppices, 43% as high-stands, and 4% is Mediterranean maquis. Even-aged stands represent 60% of 

the total high-stands [14]. 

3. Study Data 

Daily meteorological data from 1999 to 2008 were collected from the national network of weather 

stations managed by UCEA (http://www.ucea.it). In particular, monthly average minimum and 

maximum temperatures and total precipitation were collected from about 90 stations spread all over the 

national territory. These data were interpolated following the method described by Blasi et al. [15], which 

provided digital maps of mean monthly temperatures and rainfall having a pixel size of 1 km2.  

A digital forest map at the same resolution was derived from the original CORINE Land  

Cover 2,000 map of Italy [16]. This map was produced by manual photointerpretation of Landsat 

imagery supported by ancillary information [17]. The map classifies forests and other wooded land in 

13 types on the basis of the prevalent species, maintaining the geometric and thematic congruency with 

the original dataset [18]. In the present work the five forest types (FT) which are most widespread over 

the Italian territory were selected: Norway spruce/white fir (FT 1), chestnut (FT 2), beech (FT 4), Holm 

oak (FT 7) and deciduous oak (FT 8). The main features of these five forest types are summarised in 

Table 1, whilst their spatial distribution is shown in Figure 1. 

NDVI images taken by the SPOT Vegetation (VGT) sensor were downloaded from the archive of 

VITO (http://free.vgt.vito.be), which freely distributes preprocessed ten-day Maximum Value 

Composite (MVC) images for the entire globe since April, 1998. The applied preprocessing steps 

comprise the radiometric calibration of the original channels and their geometric and atmospheric 

corrections [19]. The final product of these steps were 10-day NDVI MVC images having a pixel size 

of 1 km2. These images were acquired from 1999 to 2008, a ten-year period which should be sufficient 

to depict the mean environmental situation of the study forests. 
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Table 1. Main characteristics of the forest types examined. The annual average GPP refers 

to the 10-year study period used as baseline (1999–2008). 

Index Forest type 
BIOME-BGC 

type 
Area 
(km2) 

Mean altitude 
(Low/High 

altitudinal belt) 

Mean annual 
C-Fix GPP 
(g C/m2/y) 

FT 1 White fir / 
Norway spruce 

Evergreen 
needleleaf 

7,742 1,424 m asl.(H) 997 

FT 2 Chestnut Deciduous 
broadleaf 

8,437 691 m asl.(L) 1,442 

FT 4 Beech Deciduous 
broadleaf 

11,602 1,256 m asl.(H) 1,141 

FT 7 Holm oak Evergreen 
broadleaf 

7,025 516 m asl.(L) 1,489 

FT 8 Deciduous oaks  Deciduous 
broadleaf 

21,347 651 m asl.(L) 1,444 

 

Figure 1. Spatial distribution of the five forest types considered in Italy. 

 

4. Methodology 

4.1. Application of C-Fix to Present Environmental Conditions 

C-Fix is a Monteith type parametric model driven by temperature, radiation and the fraction of 

absorbed photosynthetically active radiation (fAPAR), quantified through its generalized relationship 
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with the normalized difference vegetation index (NDVI) [20,21]. C-Fix combines satellite-derived 

fAPAR with field based estimates of incoming solar radiation and air temperature, which are jointly 

used to simulate total photosynthesis. C-Fix is therefore conceptually simple and generally applicable, 

and can use inputs averaged over different time periods (most commonly ten-day to monthly). In 

particular, the monthly GPP (g C m−2 month−1) of a forest can be computed as: 

∑
=
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where ε is the radiation use efficiency, N is the number of periods considered, Tcori is a factor 

accounting for the dependence of photosynthesis on air temperature Ti, fAPARi is the fraction of 

absorbed PAR, CO2fert is the normalised CO2 fertilisation factor, and Radi is the solar incident PAR, 

all referred to month i. fAPAR can be derived from the top of canopy NDVI according to the linear 

equation proposed by Myneni and Williams, [22]. The normalized CO2 fertilization factor (CO2fert) is 

computed as [20]: 
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where Km is the affinity constant for CO2 of Rubisco (%CO2), K0 is the inhibition constant for  

O2 [%O2] and [CO2] and [O2] are the CO2 and O2 concentration in the mesophyll tissue of  

leaves, respectively.  

The original C-Fix does not include a specific index which accounts for the possible short-term 

effect of water stress on photosynthesis, as is done by other Monteith type models [e.g., 5,23]. The 

need to apply C-Fix also in Mediterranean environments, that are characterized by a long summer dry 

season during which vegetation growth is limited by water availability [24], induced  

Maselli et al. [25] to include such an additional water stress index. This modification is currently 

accompanied by the use of the MODIS temperature correction factors and radiation use efficiency [26] 

in place of the original coefficients proposed by Veroustraete et al. [20]. A justification of all these 

choices is provided in Chiesi et al. [27].  

Modified C-Fix was applied to simulate monthly GPP values of Italian forests for the present study 

period (1999–2008) following the multistep methodology which is fully described in [25]. In summary, 

a 1-km dataset of monthly minimum and maximum temperatures, precipitation and solar radiation was 

derived from the available meteorological maps. These data were further processed to compute 

relevant maps of the temperature and water stress correction factors which are needed to predict forest 

GPP. The Spot-VGT 10-day NDVI images of the ten study years were composed over monthly periods 

and processed to obtain fAPAR maps. All these maps were used to apply Modified  

C-Fix using a normalized CO2 fertilization factor equal to 370 ppm. This operation yielded 1-km2 

monthly GPP images descriptive of present forest conditions; an example of these images is shown in 

Figure 2 for August 2003. 
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Figure 2. Monthly GPP image of August 2003 obtained by the application of 

Modified C-Fix (see text for details). 

 

4.2. Simulation of Future Environmental Scenarios 

Monthly meteorological data were extracted from the maps previously produced for the five 

CORINE forest types. Only pixels almost completely covered by forests (>90%) were considered in 

this process. The obtained data were averaged for each forest type and used to create future climate 

scenarios. Specifically, the meteorological data for the future period (2080–2099) were derived from 

the MRI-20km-AGCM model [30] and empirically downscaled over the observed data using the 

“delta-approach” technique [31].  

The MRI-20km-AGCM is a regional circulation model (RCM) jointly developed by the 

Meteorological Research Institute (MRI), the Advanced Earth Science and Technology Organization 

(AESTO) and the Japan Meteorological Agency (JMA). This RCM is based on an operational 

numerical weather prediction model used at JMA with some modifications in radiation and land 

surface processes deriving from a climate model of MRI. The model is commonly applied over the 

European domain at a spatial resolution of 20 × 20 km. The present-day climate or baseline simulation 

of the MRI-20km-AGCM for the 20-year period 1979–1998 was forced with sea surface temperature 

(SST) taken from 20th-Century climate simulations (20C3M) of the MRI-CGCM2.3. The future 
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climate simulation of the MRI-20km-AGCM for the 20-year period 2080–2099 was forced with SST 

taken from SRES A1B simulations of the MRI-CGCM2.3 [32]. 

The RCM deltas for monthly average temperature and cumulated rainfall were obtained as average 

differences between the baseline period 1979–1998 and the future time slice 2080–2099 over the study 

areas. In particular, for average temperature the delta was expressed as absolute difference between 

baseline and future periods, while a delta ratio was calculated for rainfall. Since the model baseline 

differs from the time slice used for the GPP model calibration, the simulated baseline 1979–1998  

was corrected to match the observed baseline 1999–2008 using the CRU dataset TS 3.0 

(http://badc.nerc.ac.uk/data/cru/). This dataset contains global monthly average data from 1901 to 2006 

at a spatial resolution of 0.5° × 0.5° and was used to calculate the differences between the  

periods 1979–1998 (baseline of the RCM model) and 1999–2006 (baseline of the observed data). The 

obtained CRU deltas were then used to force the relevant RCM deltas to the periods 1999–2008  

and 2080–2099. The resulting corrected monthly dataset, having a spatial resolution of 20 × 20 km2, 

was spatially interpolated to match the areas covered by the five forest types considered.  

The 2080–2099 concentration of CO2 in A1B scenario was set to 670 ppm, which approximately 

corresponds to the average CO2 concentration throughout the relevant period.  

4.3. Evaluation of Future GPP 

The effects of the expected climate changes on forest GPP were simulated both separately and 

jointly to those of the corresponding ambient CO2 increase. In particular, the effects of temperature and 

rainfall changes on GPP were assessed through the application of a statistical methodology. First, the 

strength of the present relationships between these variables was quantified by performing correlation 

analyses between annual GPP and seasonal temperature and rainfall values. Monthly GPP values were 

extracted from the pixels covered by each forest type. These values were aggregated on an annual basis 

and correlated to the corresponding seasonal values of the two weather variables derived from the same 

pixels. Correlation coefficients were computed for each ecosystem type using the ten years of observed 

GPP and weather data [33]. 

Linear regression models were then developed which could explain GPP variability on the basis of 

the available meteorological data. A model was constructed for each forest type using the annual GPP 

as dependent variable and the seasonal temperature and rainfall as independent (explanatory)  

variables [33]. Since data from ten years were available to train each model, a maximum of six 

independent variables was considered, including temperature and rainfall series of all seasons from 

winter to summer. The exclusion of autumn was justified by the low influence which is generally 

exerted by this season on the GPP of the concurrent year, which was verified by examining the results 

of the previous correlation analyses (see results). 

The five models found were applied to predict the GPP which would correspond to the expected 

climate changes. First, the temperature and rainfall values of the expected scenario were extracted from 

the pixels covered by each forest type and averaged on a seasonal basis. These plausible temperature 

and rainfall averages were then inserted into the five models.  

The effect of changing CO2 was simulated by considering the previously mentioned CO2 

concentration (670 ppm) within equation 2. The combined effect of changing climate and increasing 
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CO2 concentration was simulated by adding the effects of the two simulations. The interaction between 

the two factors was taken into account by using an increased temperature to compute Km and K0 within 

equation 2, which simulated the enhancement of future CO2 fixation due to the expected  

climate change.  

5. Results 

Figure 3 shows the monthly average temperature and total precipitation of the areas covered by 

deciduous oaks (FT 8), which is the most widespread and uniformly distributed forest type in Italy 

(Table 1); the data are reported both for the present and the future scenarios. The present annual mean 

temperature is about 11.9 °C, with a minimum in January of about 4 °C and a maximum in August of 

about 21 °C. The present annual rainfall total is about 1,178 mm. The distribution of rainfall is 

bimodal, with a primary peak in autumn and a secondary peak in spring. The summer dry period lasts 

about one month. The expected future scenario implies an average temperature increase of almost 2 °C 

(from about 11.9 °C to 13.6 °C), mostly effective during late summer and winter. Total annual rainfall 

is almost stable, but its seasonal distribution is irregularly reduced during some months and increased 

in others.  

Figure 4 shows the correlation coefficients computed between the seasonal GPP averages estimated 

by Modified C-Fix and the corresponding temperature (A) and rainfall (B) averages of the four 

seasons. These statistics highlight the importance of the different driving variables in relation to the 

ecophysiological characteristics of each species. In general, the positive influence of temperature is 

stronger for the forest types which are spread on the high altitudinal belt (especially for FT 1), while 

forest types that cover the warmest and driest areas (i.e., FT 7 and FT 8) are more sensitive to rainfall. 

As expected, autumn temperature and rainfall variations have generally marginal correlations with 

annual GPP. 

Figure 3. Thermo-pluviometric diagram descriptive of the present and future climate 

scenarios for the areas covered by deciduous oaks forests (FT 8), which are the most 

widespread forest type over the Italian territory. 
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The other four forest types are spatially spread, following a gradient from temperate-humid to 

Mediterranean-arid climates (Table 2). FT 1 and FT 4 characterize the high Italian altitudinal belt and 

show the lowest average temperature (respectively of 6.0 °C and 7.6 °C) and the highest precipitation. 

FT 7 shows the highest annual temperature and the lowest total rainfall. These spatial distributions are 

obviously reflected in the autoecological characteristics of these species, which are differently adapted 

to the typical Mediterranean summer dryness. 

The multivariate regression models derived from the same data-set are summarized in Table 3. The 

models account for 52% to 88% of the total GPP variations. In general, the regression coefficients are 

positive for spring temperatures, mixed for winter temperatures and negative for summer temperatures. 

This reflects the relevance of the thermal factor in controlling the beginning of the growing season and 

the negative effect of high summer temperatures, which usually coincide with drought occurrence [24]. 

The patterns are more complex and variable for rainfall, whose regression coefficients are positive in 

winter and mixed in spring and summer. This indicates that winter water recharge is important for all 

forest types, while spring and summer rainfall exerts a positive effect on FT 7 and FT 8 due to the 

relevance of water availability in these arid Mediterranean environments. 
As regards to the expected climate changes (Figure 3 and Table 2), all future scenarios show rather 

uniform monthly temperature increases (from 1.7 to 2.1 °C) and more variable rainfall variations  

(from 3% up to 9%). The highest temperature increase is simulated for FT 1 (2.1 °C), which is placed 

in the coldest, most humid areas.  

The GPP responses of the five forest types to these expected scenarios are summarized in Figure 5. 

The effects of the simulated climate changes are generally negative except for FT 1 (fir/spruce), which 

covers the highest altitudinal belt. The productivity of this forest type increases of about 3%, while that 

of the other forest types shows a variable reduction. This reduction is low for deciduous broadleaves 

(FT 8) and Holm oak (FT 7) forests (−4% and −5% respectively), that are the most adapted to high 

temperatures, is intermediate for beech (FT 4, −6%), and is more evident for chestnut  

forests (FT 2, −15%). The last forests are spread on relatively low altitudes (Table 1), but are more 

sensitive to high temperature than deciduous oaks and Holm oak. 

Table 2. Mean annual temperature and precipitation found over the five forest types 

examined for the present and future scenarios. 

Forest 
type 

OBSERVED FUTURE 
Temperature 

(°C) 
Rainfall  

(mm) 
Temperature 

(°C) 
Rainfall 

(mm) 
FT 1 6.0 1,463.7 8.1 1,582.1 
FT 2 11.1 1,537.8 12.8 1,696.9 
FT 4 7.6 1,983.8 9.4 2,092.6 
FT 7 13.3 1,011.3 15.1 1,043.0 
FT 8 11.9 1,177.7 13.6 1,221.1 
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Figure 4. Correlation coefficients found for the five forest types between annual GPP 

estimated by Modified C-Fix and seasonal temperatures (A) and rainfall (B). 

(A) 

 

(B) 

 

Table 3. Determination and regression coefficients and offsets of the multivariate linear 

models found for the five forest types examined. The models relate annual forest  

GPP (g C /m2/year) to seasonal temperature (°C) and rainfall (mm), with the exclusion of 

winter (see text for details). 

Temperature Rainfall 

r2 Winter Spring Summer Winter Spring Summer Offset 
FT1 0.718 4.433 41.139 −1.898 0.147 −0.323 0.065 666.87 
FT2 0.876 −11.317 46.918 −98.756 0.072 −0.289 −0.271 2,783.09 
FT4 0.521 −10.656 47.212 −44.719 0.153 0.033 −0.092 1,240.69 
FT7 0.563 −2.610 20.898 −37.422 0.671 0.500 0.329 1,633.60 
FT8 0.607 5.385 23.150 −50.240 0.315 0.238 0.221 1,840.39 
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Figure 5. Annual GPP predicted by Modified C-Fix for the five Italian forest types 

in the environmental scenarios considered (present scenario, climate change, 

increased atmospheric CO2 and combination of the two factors). 

 
 

The increased ambient CO2 concentration yields effects which are summarized in the same 

histogram (Figure 5). Overall, such concentration leads to quite uniform increases in forest production 

(about 31%). Deciduous broadleaf (FT 8), chestnut (FT 2) and Holm oak (FT 7) forests are the most 

sensitive ecosystems, showing increases of about 36%. The lowest increase is found for Norway 

spruce/white fir forests (FT 1, about 23%).  

The last simulated scenario, which considers the combined effects of the two factors (climate 

change + increased CO2 concentration), leads to GPP rises which are almost coincident with those 

brought by the latter factor. The highest GPP increases are found for Norway spruce/white fir (FT 1), 

deciduous broadleaf (FT 8) and Holm oak (FT 7) (+35%, +37% and 38%, respectively). The GPP 

increase of beech forests (FT 4) is of 27%, while that of chestnut (FT 2) is 23%. 

6. Discussion and Conclusions 

The performance of the statistical methodology applied to simulate future GPP patterns is dependent 

on the quality of the data-set analyzed and on its representativeness for the inter-year meteorological 

variability which can affect forest production.  

As regards the first issue, the meteorological data layers (temperature, rainfall and radiation) which 

describe the present climate conditions were produced by a method which has been fully tested by 

Blasi et al. [15]. Similarly, the capacity of Modified C-Fix to correctly estimate forest production 

variations in space and time has been assessed in previous investigations [18,20,21,25]. The theoretical 

basis of this model has also been recently validated by Jung et al. [34], who indicated that cumulative 

fAPAR of the growing season derived from space is directly linked to gross carbon uptake in  

European ecosystems.  

The length of the data-set analysed (10 years), which is imposed by the availability of Spot-VGT 

imagery, represents a major constraint for the current investigation. This length is actually suboptimal 
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to grasp the temporal variability of the relationships which link weather factors to forest GPP. The 

period considered, however, includes growing seasons with extreme characteristics, such as that  

of 2002, quite humid, and that of 2003, exceptionally hot and dry. This should guarantee a sufficiently 

high representativeness of the regression models found for most possible weather situations which can 

occur in Italy. 

As regards the definition of future environmental conditions, the climate data currently considered 

are the results of a General Circulation Model (GCM) dynamical downscaling. Raw outputs of GCMs, 

in fact, are not directly suitable for local impact studies since their spatial resolution (~300 km) does 

not resolve important subscale hydro-meteorological processes [e.g., 35]. Dynamical downscaling, that 

consists of a high resolution regional climate model (RCM) (20 km in this specific case) nested inside 

a GCM, provides a more accurate reproduction of local topography and a more realistic simulation of 

fine scale weather features [36]. Unfortunately, systematic errors in variable simulations, as found 

comparing RCM to observed data [37,38], may compromise the direct use of RCM data for impact 

assessment. The relevance of these systematic errors was currently reduced by expressing the climate 

change for the 2080–2099 period as difference (temperature) and ratio (rainfall) values with respect to 

the baseline 1999–2008.  

The CO2 concentration corresponding to this future scenario (670 ppm) derives from consolidated 

theoretical and experimental observations. The enhancements in photosynthetic activity simulated in 

the current study critically depend on this concentration and on the robustness of Equation 2. This 

equation was calibrated using the results of various FACE experiments, which should guarantee its 

applicability to a wide range of ecosystems and environmental situations [21,39]. 

In general, the application of the simulation methodology produces plausible results for all forest 

types considered. The simulated climate scenarios reduce ecosystem production in all cases except for 

FT 1 (white fir / Norway spruce forests). This increase is in accordance with other works on the same 

subject which demonstrate that GPP is strictly dependent on mean annual temperature in  

temperate-humid climates [40]. In contrast, a decrease in productivity similar to that currently observed 

can be expected for forest ecosystems placed in warmer and drier areas, since in these conditions plants 

limit photosynthetic activity in order to reduce water loss by transpiration [1,41].  

The rise of ambient CO2 leads to notable simulated GPP increases (from 23% to 39%), which can 

be explained by the improved water use efficiency due to reduced stomata conductance and canopy 

transpiration rates [42,43]. These reductions improve plant and soil water relations, slowing the rate of 

soil water loss during droughts [44,45]. Such an interpretation is supported by the results of 

Hattenschwiler and Korner [46], who found that trees exposed to higher CO2 levels are more tolerant 

to drought stress.  

A number of other experimental studies confirm the fertilizing effect of CO2 on forest production. 

Most of these studies, however, refer to a concentration of 550 ppm instead of the currently used 670 ppm, 

and consequently indicate lower GPP increases. For example, Norby et al. [6] and Gielen et al. [9] 

reported increases of 18% for Liquidambar at 530 ppm, and of 11% and 22% for poplar at 550 ppm, 

respectively. Similar effects were found in Tuscany by our research group [47]. Also in that case the 

GPP increase caused by a CO2 rise to 550 ppm was lower than that currently found (21% versus 31%). 
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That study also indicated that the GPP increase is maximum for more thermophylous species, due to 

the positive effect of temperature on CO2 fertilization. 

A significant increase in forest production is obtained for all forest types also when the effects of 

climate changes and increased ambient CO2 are jointly considered. This implies that, in general, the 

effects of the CO2 rise tends to prevail on that of the climate changes. These combined effects, 

however, are more difficult to evaluate against experimental evidences, because the interaction of the 

two factors is usually not considered by FACE experiments. Consequently, comparisons can only be 

made with the results of previous modelling approaches. For instance, the simulation experiment of 

Chiesi et al. [47] indicated a mean production increase of 19% for Tuscany forests (Central Italy) 

exposed to increased temperatures (+2 °C) and a CO2 concentration of 550 ppm. 

The approach currently applied has some relevant limitations. For example, changes in plant species 

composition or nutrient soil contents cannot be considered, which can have profound consequences in 

primary production. Some authors indicated that also changes related to the genetic characteristics of 

the existing populations should be taken into consideration [48]. Additionally, the use of remotely 

sensed and ancillary data at 1-km spatial resolution may be not sufficient to accurately reproduce the 

spatial variability of Italian Mediterranean landscapes, which are extremely heterogeneous and 

fragmented [24,49].  

In spite of these limitations, the approach has been successful in combining conventional and 

remote sensing data to simulate the large scale responses of Italian forests to three likely environmental 

scenarios. The plausibility of the results obtained is supported by their substantial coherency with the 

findings of previous studies carried out in similar environments. Already in their present form, these 

results can provide important information on the expected evolution of Italian forest ecosystems. 

Moreover, the approach can be easily replicated on different spatial and temporal resolutions (e.g., 

using MODIS data) in order to assess the likely responses of other forest areas. 
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