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Abstract: The purpose of this research was to evaluate the performance of existing 

spectral band ratio algorithms and develop a novel algorithm to quantify phycocyanin (PC) 

in cyanobacteria using hyperspectral remotely-sensed data. We performed four 

spectroscopic experiments on two different laboratory cultured cyanobacterial species and 

found that the existing band ratio algorithms are highly sensitive to chlorophylls, making 

them inaccurate in predicting cyanobacterial abundance in the presence of other 

chlorophyll-containing organisms. We present a novel spectral band ratio algorithm using 

700 and 600 nm that is much less sensitive to the presence of chlorophyll.  
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1. Introduction  

A major threat to water quality and public health is the formation of Cyanobacterial Harmful Algal 

Bloom(s) (CHAB). CHAB not only hamper recreational activities and degrade aquatic habitats 

because they form a thick mat on the surface of water, they may also produce odorous compounds that 

destroy the aesthetics of the water and toxins that can sicken animals and humans, attracting the 

attention of coastal scientists, managers, and policy makers. Cyanobacteria, also known as blue-green 
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(BG) algae, are the largest, most diverse group of prokaryotes and can multiply very rapidly in summer 

when temperature, light, and nutrient runoff from fertilizer increase. Some of the genera of these BG 

produce various types of neurotoxins and hepatotoxins that adversely affect animals and humans [1-3]. 

Hence BG detection and monitoring is critical in lakes, coastal and estuarine environments, but 

traditional sampling techniques for this process can be time-consuming and expensive, and real time 

spatial monitoring of cyanobacteria in large lakes, estuaries and coastal waters has been extremely 

difficult [4]. BG have certain photosensitive pigments with distinct optical characteristics, allowing 

their detection and mapping by airborne and space-borne optical sensors.  

BG have photosynthetic reaction centers that are structurally and functionally similar to those found 

in eukaryotic chloroplasts, but their light-harvesting pigments are composed of Chlorophyll-a (Chl-a) 

and the phycobiliproteins (PBP)s [5,6]. BG minimally contain at least three different spectrally 

detectable PBPs including phycocyanin (PC) (Amax = 620 nm), allophycocyanin (AP) (Amax = 650 nm), 

and allophycocyanin B (APB) (Amax = 670 nm) [6,7]. Some BG may also contain phycoerythrin (PE) 

(Amax = 565 nm). These PBPs form a large protein complex which transfers energy primarily to 

Photosystem II reaction centers. Photosystem I reaction center binds approximately 100 Chl-a, the 

majority of which serve as antenna pigments for light absorption [5]. 

Hyperspectral remote sensing reflectance (Rrs) spectra for natural water bodies are generally 

complex because of the presence of many optically active constituents such as Chl-a, carotenoids, total 

suspended solids (TSS), and Colored Dissolved Organic Matter (CDOM). However, researchers have 

been reasonably successful in exploiting PC 620 nm absorption feature to develop empirical and  

semi-empirical models to detect PC as a marker for BG from water bodies [8]. Most research 

pertaining to the detection and mapping of cyanobacteria from in situ remote sensing spectra have used 

the absorption and reflectance features from 620 and 650 nm to develop a relationship between Rrs and 

PC concentrations. To date, three algorithms have been proposed to quantify PC based on its 

absorption feature at 620 nm: a single band ratio algorithm [9], a semi-empirical algorithm [10] and a 

nested semi-empirical band ratio algorithm [8]. 

Dekker [10] used a band addition and subtraction algorithm to quantify PC concentration from 

remote sensing reflectance while Schalles and Yacobi [9] developed a reflectance band ratio model 

using maximum reflectance between 640 and 660 nm to minimum reflectance between 615 and 635 nm 

to detect PC. The major drawbacks of these empirical models are that the researchers did not address 

the performance of the models in the case of varying Chl-a concentrations and did not account for the 

variable PC:Chl-a pigment ratio [11]. Although the reflectance peak between 640 and 660 nm has 

generally been used to develop empirical relationships to quantify PC, these empirical models for PC 

detection need narrower spectral resolution than is provided by commonly used ocean color satellite 

sensors [12]. In a separate study, Vincent et al. [13] developed a spectral band ratio model to quantify 

PC concentrations using Landsat 7 ETM+ data and were successful in detecting and mapping PC in 

the western basin of Lake Erie. They used all bands of Landsat 7 sensor except the band 6 (thermal 

infrared) in the band ratio model including the near-and middle infrared bands (i.e., band 4:760–900 nm; 

band 5:1,550–1,750 nm; and band 7: 2,080–2,350 nm). However, radiance (Lw) in these infrared bands 

is greatly reduced due to water absorption and modeling reflectance spectra beyond 750 nm could be 

accounting for turbidity in the lake caused by algal biomass instead of phycocyanin [12]. Simis et al. [8] 

developed a semi-empirical algorithm that used the band ratio from 709 nm to 620 nm to estimate PC. 



Remote Sens. 2009, 1              

 

 

760

They discussed the influence of Chl-a absorption at 620 nm and also included the impact of the 

variable PC:Chl-a ratio on the performance of the algorithm. They concluded that the model error 

significantly increased as the PC:Chl-a ratio decreased, providing evidence for the effect of Chl-a 

absorption at 620 nm. 

In a recent study, Simis et al. [11] documented the influence of phytoplankton pigments other than 

Chl-a on the remote estimation of cyanobacterial biomass. They concluded that the presence of Chl-a, 

b and c, and pheophytin tend to overestimate the PC concentrations in predictive models, and that 

estimation errors tend to be significant at low PC concentrations. Therefore, even if a semi-empirical 

model to predict PC concentrations is corrected for Chl-a, the absorption by the above mentioned 

pigments still influences the 620 nm absorption, affecting the accuracy of PC quantification.  

Randolph et al. [14] validated the semi-empirical algorithm developed by Simis et al. [8] and reported 

that the performance of the algorithm was promising in retrieving PC concentrations and estimating 

BG abundance in Geist and Morse reservoirs, Indiana. However, further validation and fine-tuning of  

Simis et al. [8] algorithm using spectroscopic studies was suggested.  

Metsamaa et al. [15] documented that the absorption and reflectance features at 630 and 650 nm 

respectively on the reflectance spectra of a cyanobacterium are dependent on Chl-a concentrations in 

the water body. These optical features appear only when Chl-a concentration reaches 8–10 mg m−3 

and, can be detected by specific remote sensing instruments with 10 nm spectral resolution and 1000:1 

signal-to-noise ratio. They also concluded that the use of 630 nm absorption features in early warning 

systems for monitoring CHABs is not feasible by remote sensing techniques. Dekker [10] and Schalles 

and Yacobi [9] have used the reflectance peak between 640 and 660 nm with some success. 

Unfortunately, there have not been many other studies on the appearance and dynamics of these 

characteristic reflectance peaks at varying PC concentrations and also when PC is associated with 

other common optically active pigments like chlorophyll, present in other potential organisms in the 

environment such as green algae.  

In this research, we studied the reflectance characteristics of two lab cultured blue-green algae 

species, particularly the dynamics of the reflectance peak between 640 and 660 nm and its dependence 

on varying Chl-a concentration. The two specific objectives of this research include, (1) to observe the 

appearance and dynamics of the reflectance peak between 640 and 660 nm and examine its usefulness 

in band ratio models for quantifying PC concentrations and (2) to evaluate the performance of the 

existing band ratio PC algorithms under varying Chl-a concentrations and to develop a novel band 

ratio algorithm to predict PC concentrations. To achieve these objectives, we cultured two BG species 

and one green algal species in the laboratory, studied their spectroscopic properties in four separate 

experiments using an in situ hyperspectral radiometer. The rationale behind our experimental approach 

was a basic assumption that the inherent relation between a band ratio algorithm and pigment 

concentration can sometimes be clearly understood by analyzing spectral data collected during 

controlled experiments and that the contribution from other optically active constituents in natural 

water and the common atmospheric interference found in remotely sensed data can easily be avoided.  
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2. Materials and Methods  

2.1. Strains of Cyanobacteria, Green Algae, and Culture Condition 

Two species of cyanobacteria, Synechocystis sp. (PCC 6803) and Anabaena (also known as Nostoc) 

sp. PCC 7120 and one species of green algae (Ankistrodesmus falcatus) were grown in BG11  

medium [16] supplemented with 10 mM Hepes-KOH, pH 8.0. Small cultures of 100 mL were grown  

in 500 mL Erlenmeyer flasks with shaking under constant illumination of cool white light at 40–80 mol 

photons m−1s−1 to the mid-to-late exponential phase of growth (OD730 = 0.8–1.5).  

2.2. Data Collection 

We conducted four experiments using a hyperspectral USB 4000 radiometer (Ocean Optics, Inc., 

Dunedin, FL, USA) for the spectroscopic analysis of the cyanobacterial species. The objective of these 

experiments was to study the spectral reflectance properties of cyanobacteria with changing pigment 

concentration. Synechocystis was used in the first three experiments whereas Anabaena was studied in 

the fourth experiment. In all experiments, we acquired the % reflectance () data of the two 

cyanobacterial species at varying concentrations and also in association with different concentrations 

of green algae. In the experiments, water samples that were scanned to acquire () data were prepared 

as follows. First, 100 mL of an exponential phase culture of a particular BG species was mixed  

with 500 mL of water for dilution and the dilution sequence was continued by adding 100, 200,  

and 500 mL of tap water subsequently to achieve the PC concentration levels shown in Table 1.  

Samples were placed in containers painted black and scanned under controlled light from two 500 

watt halogen lamps. Calibrated USB 4000 spectroradiometer with a 25o field of view (FOV) optical 
fiber was used to acquire the upwelling radiance (Lλ,target) data of the water samples. The 

spectroradiometer was calibrated by measuring the upwelling radiance (Lλ,cal) of a Spectralon reflectance 

standard with 99% reflectance (Labsphere, Inc., North Sutton, NH, USA). ρλ was computed using the 

calibration panel coefficient (calcoeff) (available in the CALMIT Data Acquisition Program (CDAP; 
CALMIT, University of Nebraska-Lincoln, NE, USA). ρλ data were collected within a range  

of 400–900 nm with a spectral resolution of 1 nm. The equation used to compute ρλ is presented below: 
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PC and Chl-a concentrations were measured after each dilution step by using a chlorophyll sensor 

(part no. 6025) and BGA (PC) sensor (part no. 6131) attached to a YSI 6600 Multi-parameter water 

quality sonde (YSI Inc., Yellow Springs, OH, USA). Chl-a sensor measures in a range 0 to 500 µg L−1 

with a resolution of 0.1 µg L−1 and linearity with an R2 of 0.9999 relative to serial dilution of 

rhodamine with solution in the range from 0 to 500 µg L−1. BGA (PC) sensor for PC measures in a 

range 0:280,000 cell mL−1. The resolution of the BGA (PC) sensor is 220 cells mL−1. Linearity of the 

BGA (PC) sensor has R2 of 0.99 for serial dilution of rhodamine with solution from 0 to 400 µg L−1 

(YSI user's manual). Sensors were calibrated before use as per the instructions in the YSI user manual. 

However, the readings from YSI sensors are in cells mL–1, a relative unit, which should be considered 

as a proxy for PC concentrations or cyanobacterial biomass. In the first experiment (Exp I), measured 
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ranges of Chl-a and PC were 0.7 to 7.8 µg L−1 and 7,050 to 247,960 cells mL−1, respectively. The same 

procedure and dilution sequence was repeated in the second experiment (Exp II) on a different day. 

The measured Chl-a and PC ranges for Exp II were varied from 1.8 to 3.7 µg L−1 and from 506  

to 126,570 cells mL−1 respectively.  

In experiment III and IV (Exp III and Exp IV), measurements were started with low concentrations 

of pigment in the water samples. BG cells from a dense culture were added step-wise to increase 

concentrations subsequently. The minimum and maximum concentration of recorded Chl-a and PC in 

Exp III were 2.1 and 21.9 µg L−1, and 4,095 and 273,883 cells mL−1 respectively. In Exp IV, we 

studied Anabaena with cell densities ranging from 4,550 to 244,500 cells mL−1. The descriptive 

statistics of all experimental data are summarized in Table 1. 

Table 1. Descriptive statistics of pigment measurements in the four proximal sensing 

experiments. N refers to the total number of readings acquired. Chl-a data was not acquired 

in Exp. IV.  

Exp. Pigment Mean Std. Dev. Range Min Max N 
I PC (cells mL–1) 85529.82 75586.96 240910.00 7050.00 247960.00 11 

Chl-a (µg L–1) 3.40 2.39 7.10 0.70 7.80 8 
II PC (cells mL–1) 50409.40 41727.17 126064.00 506.00 126570.00 20 

Chl-a (µg L–1) 2.48 0.78 1.90 1.80 3.70 5 
III PC (cells mL–1) 118360.00 100771.72 269788.00 4095.00 273883.00 12 

Chl-a (µg L–1) 13.32 7.12 19.80 2.10 21.90 12 
IV PC (cells mL–1) 94137.09 76424.23 239950.00 4550.00 244500.00 11 

 

Two additional datasets were acquired during Exp III and IV in order to study the reflectance 

spectra of Synechocystis and Anabaena in association with varying concentration of green algae 

(Ankistrodesmus falcatus). The data were used to study the influence of high Chl-a concentration on 

reflectance spectra of PC and the dynamics of various optical features in PC reflectance spectra. The 

PC concentration was kept constant at 180,000 cells mL−1 for Synechocystis and 220,000 cells mL−1 

for Anabaena; whereas the green algae concentration was increased in sequence for both of the 

experiments. This was achieved by keeping the Synechocystis or Anabaena at the above described 

concentration level, while continuing to add Ankistrodesmus in order to increase the  

Chl-a concentration.  

3. Results and Discussion 

3.1. Analysis of Reflectance Spectra 

Spectral characteristic features of the pigments Chl-a and PC are prominent in the reflectance 

spectra of Synechocystis (Exp I-III) and Anabaena (Exp IV) (Figure 1). The green peak at 

approximately 550 nm is due to the scattering from algal cells in the water and also due to the 

relatively low absorption by Chl-a and carotenoids [17,18] (Figure 1). The spectral troughs near 617 nm 

and 680 nm appear because of strong absorption by PC and Chl-a, respectively [9,18,19], whereas the 

peak at 654 nm appears because of the prominent absorption on both sides at 617 nm and 680 nm and 



Remote Sens. 2009, 1              

 

 

763

also because of the phycocyanin fluorescence maximum at 650 nm [20]. The magnitudes of the 654 nm 

peak observed in the reflectance spectra of both laboratory cultured cyanobacteria species were 

significantly higher compared to several previously published spectra acquired from natural  

water [9-11,14]. Similarly, a peak near 700 nm appears because of two strong absorption features on 

either side, one by Chl-a at 680 nm and the other by water itself at 750 nm [17]. The spectral 

characteristics of Anabaena (the position of absorption minima and reflectance maxima) appeared 

similar to those found for Synechocystis PCC 6803 (Figure 1D). 

Figure 1. (A, B, C) Percent reflectance spectra of Synechocystis PCC 6803 from Exp I, II, 

III respectively. (D) Percent reflectance spectra of Anabaena from Exp IV. 

 

3.2. Context for Model Development 

We wanted to develop a relationship between PC concentration and several band ratios. Our first 

approach was to test previously used band ratio algorithms from the literature to quantify PC. The 
performance of two widely used band ratio algorithms including  654

1
617  [9] and  709

1
620  adopted 
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from [8] is presented (Figure 2). During model calibration, simple linear regression was performed 

between band ratios and measured PC concentrations from the first three experiments. Both band 

ratios were highly correlated to PC concentration with high coefficients of determination (R2) of 0.96 

and 0.97, respectively, in each individual experimental dataset, but they did not perform well during 

validation with the dataset from Exp IV (Figure 2). We concluded that the performance of existing 

band ratios are highly dependent of varying chlorophyll-a concentrations, and hence dependant on PC 

to Chlorophyll ratio. The poor validation result can be explained by analyzing the model calibration 

plot of both band ratio algorithms (Figure 2A,B). It showed that at the same PC concentration, spectral 
band ratios  654

1
617  and  709

1
620  (from three different experiments have different trend lines. 

Hence, it can be concluded that PC is not the only parameter, rather there might be other pigments, 

most likely Chl-a, that control the reflectance at both 620 and 654 nm. This preliminary research 

provided the context for studying the dynamics of 620 and 654 nm peaks and their usefulness in band 

ratio algorithms to quantify PC concentration from remote sensing data. 

Figure 2. Scatter plots of spectral band ratios such as, A.  654
1

617 B.  709
1

620  and C. 

 700
1

600 , versus measured PC concentration (cells mL−1). Note that the newly developed 

spectral band ratio (C) has similar trends in all three experiments and outperforms the 

existing spectral band ratios. 
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3.3. Usefulness of 654 nm Peak in PC Band Ratio Models 

We observed from our experimental data that the peak at 654 nm, which appears because of the 

absorption by PC and Chl-a on both side at 617 and 680 nm respectively, is very dynamic in nature. Its 

appearance and magnitude depends on PC, Chl-a and b concentrations. Metsamaa et al. [15] reported 

that Rrs peak at 650 nm only appears and can be detected by remote sensing instruments (with 10 nm 

spectral resolution and 1,000:1 signal-to-noise ratio) when Chl-a concentration reaches 8–10 mg m−3. 

However, in a few experiments we observed that the 654 nm peak appeared on the reflectance spectra 

acquired by USB4000 (sampled at 10 nm spectral resolution with 250:1 signal-to-noise ratio) even 

when the Chl-a and PC concentration were 0.7 µg L−1 (or 0.7mg m−3) and 7,050 cells mL−1, 

respectively (Figure 3). On the other hand, in another experiment, we did not observe the peak at 654 

nm even when the Chl-a and PC concentrations were 7.4 µg L−1 and 21,050 cells mL−1, respectively. 

That proved our initial conclusion that the proportion of the concentration of PC to Chl-a controls the 

appearance of the 654 nm peak. 

Figure 3. Percent reflectance spectra of Synechocystis and Anabaena showing appearance 

and dynamics of 650 nm peak at different Chl-a concentrations. 
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Similarly in Exp III, when the Chl-a concentration was 2.1–7.4 µg L−1 and PC concentration  

was 4,095–21,050 cells mL−1, the high Chl-a concentration strongly absorbed light at 654nm, thereby 
lowering the  654

1
617  ratio. Consequently, no peak appeared at 654 nm even if the PC concentration 

was sufficient enough to form the peak. Hence, two conclusions can be drawn from the experimental 

data: (1) when Chl-a concentration is ≥2.1 µg L−1, the 654 nm peak does not appear on the reflectance 

spectra of BG even with cell concentrations up to 21,050 cells mL−1, whereas with the prescence  

of 0.5 µg L–1 of Chl-a and 7,050 cells mL–1 of PC, the 654 nm peak appeas; and therefore the 

appearance of 654 nm peak is entirely dependent on PC to Chl-a ratio; (2) 654 nm peak is dynamic 

and influenced by Chl-a, therefore cannot be used in algorithms to predict PC concentrations.  

Therefore, it is clear from the experiments that the appearance of the 654 nm peak depends on both 

Chl-a and PC concentration, and also on the 654 to 617 nm reflectance ratio. The specific absorption 

spectrum of PC shows that the absorption at 617 nm is three-fold higher than at 654 nm [21], however, 

if Chl-a is also present in the water along with PC, the absorption at 654 nm would increase. Hence in 

the presence of high Chl-a, higher concentrations of PC are also required to be present in the water in 

order to form the prominent 654 nm peak. This suggests that Chl-a is the major contributing pigment 

that affects the magnitude of the 654 nm peak. The predictive ability of the spectral band ratio 
algorithms containing 654  therefore depends on the concentration of Chl-a, and because of this,  

the 654 nm peak cannot be accurately used to quantify PC efficiently in the case of variable PC:Chl-a 

ratios in water.  

In the two additional experiments, the PC concentration was kept constant and the Chl-a 

concentration was increased in sequence by adding cultured Ankistodesmus, a green algae, to explore 

the dependence of the peak at 654nm on Chl-a and Chl-b. As the Chl-a concentration increased,  

the 654 nm peak shifted to 660 nm, and another reflectance peak appeared at 640 nm when the Chl-a 

concentration reached 122.8 µg L−1 (Figure 4A,B). Movement of the 654 nm peak to 660 nm might be 

due to absorption by Chl-b which is a major accessory photopigment in green algae. On the other 

hand, the Chl-a absorption feature blue-shifted from 680 nm to 670 nm at 310 µg L−1 of Chl-a. This blue-

shift may be explained by the dominance of scattering by algal cells and fluoresence by Chl-a at 680 
nm over absorption at the same wavelength. Thus the 682678  started increasing and the absorption by  

Chl-a became prominent at 670 nm. This instability of the 654 nm peak with increasing Chl-a and b 

also points to the lack of utility of this peak in empirical models to quantify PC. 

3.4. Model Development and Calibration 

We discussed in the previous section that  654
1

617  ratio does not have good PC predictive ability 

because both of the bands are sensitive and respond to the change in Chl-a and PC concentrations. 

Therefore, any empirical relation developed for one dataset using these bands will not hold for another 

dataset with varying Chl-a concentration. Hence, our research was designed to develop an empirical 

relationship between spectral reflectance and PC using a band ratio that would be nearly independent 

of Chl-a influence, so that it will have better PC predictive ability. 
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Figure 4. Effect of varying green algae concentrations on (A) Synechocystis and (B) 

Anabaena reflectance spectra. 

 
 

The desired band ratio required two wavelengths those that are maximally and minimally sensitive 

only to PC concentration. Absorption spectra of Chl-a, b, PC, PE, xanthophylls show that 695–705 nm 

is a narrow window where water, Chl-a, and PC absorbance are low [22]. Since PC absorption 

decreases significantly from 705 to 720 nm [22], 700 nm was selected as one spectral band with 

minimal sensitivity to PC and other pigments. Similarly, another band at 600 nm was selected instead 

of 617 nm, which is the location of PC absorption maxima, to avoid the influence of Chl-a absorption 

at 617 nm discussed earlier. Emerson and Lewis’s [23] findings on the photosynthetic efficiency of PC 

in Chroococcus, a cyanobacterium, shows that the total absorption of light by pigments at 600 nm is 

because of 89% absorption by PC and 11% absorption by chlorophylls, whereas at 617 nm, the 

chlorophyll absorption increases to approximately 18%. Hence 600 nm was selected as the second 
band with maximum sensitivity to change in PC concentration. Thus,  700

1
600  ratio was developed 

on the assumption that it is most sensitive to changes in PC concentration and least sensitive to 

changes in any other pigment concentration. Scatter plots between the spectral band ratios and PC 

concentrations for the three experimental datasets show that the performance of the new spectral band 

ratio was promising in all datasets irrespective of the Chl-a concentration (Figure 2C). The most 

important finding was that the new algorithm is relatively insensitive to varying Chl-a concentration 

and also different cyanobacterial species.  

All datasets acquired from the experiments I, II, and III were combined and randomly divided into 

two sets to be used for model calibration and validation. Simple linear regressions between several 
band ratio algorithms including, (i)  700

1
600  (this paper); (ii)  654

1
617  [9]; and (iii)  709

1
620  

(adopted from Simis et al. [8]), and measured PC concentration (Figure 5A-D; Table 2). The 
coefficient of determination involving  654

1
617  and  709

1
620  models were 0.71 and 0.88, 

respectively, whereas the newly developed algorithm  700
1

600   was strongly correlated with PC (R2 = 

0.97). However, we observed a small nonlinearity between  700
1

600   and measured PC concentration, 
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and therefore the natural logarithm of the same ratio was regressed with the measured PC 
concentration. The modified version of the new model   700

1
600ln   was strongly correlated with 

measured PC concentration (R2 = 0.98) and also showed very strong predictive ability in the validation 

procedure. In the next step, we extended the model to a different BG species, Anabaena, which was 

studied in Exp IV to test the applicability of the developed models on other species. Observations from 

all four experiments were randomly divided into two datasets including one for model calibration  

(n = 30) and the other for validation (n = 24). The calibration results for both models yielded strong 
correlation (R2 = 0.95) (Figure 5E, F; Table 2). Calibration results suggest that both the  700

1
600  and 

  700
1

600ln 

 
models can be applied to quantify the concentration of different species of cyanobacteria 

with high accuracy. 

Figure 5. Calibration scatter plots (PC concentration versus Index) for different band ratio 

models: (A, B, C, D) data from EXP I, II and III (Synechocystis) and (E, F) data from EXP 

I–IV (Synechocystis and Anabaena). Coefficients of determinations (R2) for each model 

are also reported in corresponding figures. Outer pairs of lines (solid) represent 95% 

prediction band, inner pairs of lines (dash) represent 95% confidence band and the central 

solid lines are linear regression fits.  

 



Remote Sens. 2009, 1              

 

 

769

Table 2. Model parameters and performance: Intercept (a0) and slope (a1) with 

corresponding standard error of estimate (STE); coefficient of determination (R2); adjusted 

coefficient of determination; STE of estimate for linear regression of different models 

obtained using the calibration dataset. 

Band 
Combination 

a0 (STE) a1 (STE) R2 Adj. R2 STE  

Synechocystis dataset (Exp I, II and III) 
 654

1
617  1.0176 (0.0526) 3.1921 × 10−7 (4.3934 × 10−7) 0.71 0.70 0.1732 

 709
1

620  0.9270 (0.0365) 3.8154 × 10−6 (3.0458 × 10−7) 0.88 0.87 0.1201 
 700

1
600  0.9773 (0.0098) 2.4985 × 10−6 (8.1863 × 10−8) 0.97 0.97 0.0323 
  700

1
600ln   −0.0044 (0.006) 1.9394 × 10−6 (5.0150 × 10−8) 0.98 0.98 0.0198 

Synechocystis and Anabaena dataset (Exp I, II, III and IV) 
 700

1
600  1.0085 (0.0101) 2.2589 × 10−6 (9.3327 × 10−8) 0.95 0.95 0.0387 
  700

1
600ln   0.0199 (0.0083) 1.7889 × 10−6 (7.616 × 10−8) 0.95 0.95 0.0316 

3.5. Model Validation 

Model validation was performed using an independent dataset and the results were compared 

between the four algorithms (Table 3; Figures 6A-D). The Schalles and Yacobi [9] algorithm 
 654

1
617  yielded the lowest accuracy with maximum root-mean-square-error (RMSE) and relative 

RMSE (RMS) and numerous negative values. The RMSE and RMS of PC prediction for the model 

was 725,709 cells mL−1 and 1,140% respectively with a coefficient of determination (R2) of 0.45. As 

discussed in earlier sections, the predictive ability of the PC detection band ratio algorithms is 

significantly dependent on the influence of Chl-a absorption on the selected bands. We believe that the 

poor accuracy is because the 654 nm peak is strongly affected by Chl-a absorption. Our experimental 

results show that the 654 nm peak is very sensitive to small changes in Chl-a concentration 

irrespective of the change in PC concentration. 

Table 3. Model validation results: root-mean-square-error (RMSE) in cells mL–1, relative 

root-mean-square-error (RMS), and coefficient of determination (R2) are reported for  

all models. 

Band Combination RMSE RMS R2 
Synechocystis data set (Exp I, II and III) 

 654
1

617  725,709 11.4 0.45 
 709

1
620  39,168 2.35 0.70 

 700
1

600  15,260 1.01 0.94 
  700

1
600ln   13,885 0.69 0.95 

Synechocystis and Anabaena dataset (Exp I, II, III and IV) 
 700

1
600  19,957 1.28 0.94 
  700

1
600ln   19,130 2.73 0.94 
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Figure 6. Validation scatter plots of different models. The solid lines represent the 1-to-1 

lines: (A,B,C,D) data from EXP I,II and III (Synechocystis) and (E,F) data from EXP I–IV 

(Synechocystis and Anabaena). Root-mean-square-error (RMSE) and relative  
root-mean-square-error (RMS) for each model are also reported. Note that  654

1
617  

model predicts many negative values. 
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Similarly, the band ratio used in Simis et al. [8] algorithm  709
1

620  performed poorly with a 

prediction RMSE of 39,168 cells mL−1 and RMS of 2350 % (Figure 6B). Our initial observation is that 

the 620 nm peak is also slightly affected by Chl-a absorption and that this is the cause behind the poor 
performance of the model. In contrast, our newly developed model  700

1
600  showed promising 

validation accuracy with an RMSE of 15,260 cell mL−1 and a comparatively low RMS of 101 % 
(Figure 6B; Table 3). Similarly, the natural logarithmic transformation of our index   700

1
600ln   

yielded very low RMSE of 13,885 cells mL−1 and RMS of 69 % (Figure 6D). Also, both models 

showed very high R2 of 0.94 and 0.95 respectively. In order to test that the newly developed models 

are independent of PC species, we performed a validation test on the multiple species dataset (Figure 6E, F). 

Validation results of newly developed models for the mixed species dataset are summarized in  
Figure 6E, F and Table 3. RMSE and RMS of the  700

1
600  model are 19,957 cells mL−1 and 128 %, 

respectively, and similarly the RMSE and RMS of   700
1

600ln   are 19,130 cells mL−1 and 273 %. The 

  700
1

600ln    model produced slightly lower RMSE but yielded higher RMS. However, the R2 

between measured and predicted PC for both models were found to be same (i.e., 0.94).We used PC: 

Chl-a pigment ratio as a proxy for PC abundance whereas the units of measurement for PC (cells 

mL−1) and Chl-a (µg L−1) were different. Hence the calculated pigment ratio in the residual analysis of 

all four models carries a pseudo unit (Figure 7).  

Figure 7. Comparative scatter plots of PC residuals versus PC:Chl-a ratio for four spectral 
indices such as, A.  654

1
617  B.  709

1
620  C.  700

1
600 , and D.   700

1
600ln  . 
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Simis et al. [8] documented that their PC model error significantly increased with a decrease in 
PC:Chl-a ratio which is consistent with our observation for the  709

1
620 model. However, the 

residuals of the  654
1

617 model showed a clear trend of either under-or over-estimation, and the error 

increased significantly when PC: Chl-a ratio increased. Newly developed models did not show any 

trend in the residual analysis.  

 

Figure 8. (A, B, C) 3-D surface plots demonstrating the sensitivity of the three indices 

against Chl-a and PC. (D, E, F) 3-D surface plots of residuals, for the three models against 

Chl-a and PC. 
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Errors associated with the spectral band ratio models can be primarily attributed to the model 

architecture such as selection of spectral bands and their sensitivity to Chl-a and PC concentrations 

(Figure 8). Unlike other band ratios, the newly developed band ratio is nearly insensitive to change in 

Chl-a concentration but is highly sensitive to changes in PC concentration (Figure 8A). Surface plot of 

residuals of the newly developed model does not show any trend in the error (Figure 8D). For the 
 654

1
617  ratio, both of the spectral bands are sensitive to changes in Chl-a concentration at low PC 

concentration (Figure 8B). The spectral band ratio is insensitive to the change in Chl-a at low PC 

concentration, however, at high PC concentration, response of this spectral ratio is completely 

irregular, which explains the failure of this model at high PC levels (Figure 8B). Surface plot of 

residuals shows that the model error has a trend of either underestimating or overestimating PC 
concentration (Figure 8E). The spectral band ratio  709

1
620  is highly sensitive to changes in the 

concentration of Chl-a (Figure 8C). The ratio has a linear trend with an increase in Chl-a concentration 

and a nonlinear trend with an increase in PC concentration. The surface residual plot for this band ratio 

also clearly shows the trend of over-and underestimation (Figure 8F). 

4. Conclusions 

We have discussed the dynamics and utility of the 654 nm peak in PC prediction models, and our 

results show that 654 nm peak of BG is highly sensitive to the changes in Chl-a concentration, 

therefore, algorithms using the 654 nm peak offer poor PC predictive ability. We also presented a 

novel band ratio algorithm for quantifying PC in water bodies. The newly developed model shows 

promising results by yielding low RMSE (15,260 cells mL−1), significantly low RMS (101%) as 

compared to the existing band ratio algorithms. Natural logarithmic transformation of the new model 

yielded the lowest RMSE (13,885 cells mL−1) and RMS (69%) with high coefficient of determination (0.95) 

between measured and predicted PC concentrations. One reason of the uncertainty observed in the 
newly developed model could be due to the specific absorption coefficient of PC  *

PCa  that varies with 

cell morphology and photo-adaptation [24,25]. Unfortunately this study does not discuss the errors 
associated with change in *

PCa  Rather it discusses the effect of Chl-a as a confounding photo 

constituent on the performance of model. 

We applied this newly developed model to calibrate and validate a mixed data set containing 

observations from experiments on two cyanobacterial species (Synechocystis sp. and Anabaena sp.). 

Calibration and validation results showed that this model has the ability to accurately predict PC 

concentrations in mixed species of BG. The newly developed algorithm is a simple band ratio 

algorithm that can assist in monitoring of BG in water bodies. A comparison of this algorithm with 

other known band ratio algorithms corroborates its superior predictive performance even with varying 

Chl-a conncentration. This band ratio algorithm can directly be used to quantify BG or can be used in 

semi-empirical algorithms to solve for PC absorption at 600 nm which can be safely assigned to PC 

and Chl-a. Although this is a proximal sensing study, the final application of this model is intended to 

be used by spaceborne hyperspectral sensors and other airborne sensors that can offer the required 

band combination. There is a strong demand for accurate satellite PC products for monitoring water 

quality in lakes, estuaries and coastal water bodies. Hyperspectral satellite sensors such as Earth 
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Observation 1 (EO-1) Hyperion has the specified band combinations and hence, the newly developed 

model can be applied on Hyperion images to map spatial distribution of cyanobacteria. 
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