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Abstract: Nearest neighbor techniques are commonly used in remote sensing, pattern
recognition and statistics to classify objects into a predefined number of categories based
on a given set of predictors. These techniques are especially useful for highly nonlinear
relationship between the variables. In most studies the distance measure is adopted a priori.
In contrast we propose a general procedure to find an adaptive metric that combines a
local variance reducing technique and a linear embedding of the observation space into an
appropriate Euclidean space. To illustrate the application of this technique, two agricultural
land cover classifications using mono-temporal and multi-temporal Landsat scenes are
presented. The results of the study, compared with standard approaches used in remote
sensing such as maximum likelihood (ML) or k-Nearest Neighbor (k-NN) indicate substantial
improvement with regard to the overall accuracy and the cardinality of the calibration data set.
Also, using MNN in a soft/fuzzy classification framework demonstrated to be a very useful
tool in order to derive critical areas that need some further attention and investment concerning
additional calibration data.

Keywords: land use classification; supervised classification; nearest neighbors; agricultural
land cover; crops
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1. Introduction

Remote sensing has become an important tool in wide areas of environmental research and planning.
In particular the classification of spectral images has been a successful application that is used
for deriving land cover maps [1, 2], assessing deforestation and burned forest areas [3], real time
fire detection [4], estimating crop acreage and production [5] or the monitoring of environmental
pollution [6]. Image classification is also commonly applied in other contexts such as optical
pattern and object recognition in medical or other industrial processes [7]. As a result, a
number of algorithms for supervised classification have been developed over the past to cope
with both the increasing demand for these products and the specific characteristics of a variety
of scientific problems. Examples include the maximum likelihood method [8], fuzzy-rule based
techniques [9, 10], Bayesian and artificial neural networks [11, 12], support vector machines [13, 14]
and the k-nearest neighbor (k-NN) technique [15, 16].

In general, a supervised classification algorithm can be subdivided into two phases: (i) the learning or
“calibration” phase in which the algorithm identifies a classification scheme based on spectral signatures
of different bands obtained from ”training” sites having known class labels (e.g., land cover or crop
types), and (ii) the prediction phase, in which the classification scheme is applied to other locations
with unknown class membership. The main distinction between the algorithms mentioned above is
the procedure to find relationships, e.g., “rules”, “networks”, or “likelihood” measures, between the
input (here spectral reflectance at different bands, also called “predictor space”) and the output (here
the land use class label) so that either an appropriate discriminant function is maximized or a cost
function accounting for misclassified observations is minimized [17–21]. In other words, they follow
the traditional modeling paradigm that attempts to find an ”optimal” parameter set which closes the
distance between the observed attributes and the classification response [9, 22].

A somewhat different approach has recently been proposed by [23] as the modified nearest-neighbor
(MNN) technique within the context of land cover classification in a meso-scale hydrological modeling
project. Their MNN algorithm is a hybrid algorithm that combines algorithmic features of a
dimensionality reduction algorithm and the advantages of the standard k-NN being: (i) an extremely
flexible and parsimonious—perhaps the simplest [24]—supervised classification technique which
requires only one parameter (k the number of nearest neighbor), (ii) extremely attractive for operational
purposes because it does neither require preprocessing of the data nor assumptions with respect to the
distribution of the training data [25], and (iii) a quite robust technique because the single 1-NN rule
guarantees an asymptotic error rate at the most twice that of the Bayes probability of error [24].

However, k-NN also has several shortcomings that have already been addressed in the literature.
For instance, (i) its performance highly depends on the selection of k; (ii) pooling nearest neighbors
from training data that contain overlapping classes is considered unsuitable; (iii) the so-called curse of
dimensionality can severely hurt its performance in finite samples [25, 26]; and finally (iv) the selection
of the distance metric is crucial to determine the outcome of the nearest neighbor classification [26].

In order to overcome at least parts of these shortcomings, the MNN technique abandons the traditional
modeling approach in finding an “optimal” parameter set that minimizes the distance between the
observed attributes and the classification response. The basic criteria within MNN is to find an



RemoteSensing 2009, 9 877

embedding space, via (non-)linear transformation of the original feature space, so that the cumulative
variance of a given class label for a given portion of the closest pairs of observations should be minimum.
In simple words, a feature space transformation is chosen in a way that observations sharing a given class
label (crop type) are very likely to be grouped together while the rest tend to be farther away.

In [23] the MNN method has been introduced within a meso-scale hydrologically motivated
application where a Landsat scene has been used to derive a 3-class (forrest, pervious, impervious)
land cover map of the Upper Neckar–Catchment, Germany. MNN has also been extensively compared
to other classification methods and showed superior performance. In the following sections we extend
the analysis of the MNN method and demonstrate its performance to a smaller scale agricultural land use
classification problem of a German test-site using mono-temporal and multi–temporal Landsat scenes.
First, Section 2 briefly reviews the main features of the MNN method. In Section 3, the application
including test site and data acquisition are described, followed by an extensive illustration of the MNN
performance in Section 4. Results and future research directions are finally discussed in Section 5.

2. The MNN Method

2.1. Motivation

A very important characteristic of the proposed MNN technique, compared to conventional NN
approaches, is the way distances between observations are calculated. NN methods require the a priori
definition of a distance in the feature- or x-space. Because the selection of the distance affects the
performance of the classification algorithm [25, 27], a variety of reasonable distances is usually tested,
for instance: the L1 Norm (or Manhattan distance), the L2 Norm (or Euclidian distance), L∞ norm (or
Chebychev distance), the Mahalanobis distance [28], and similarity measures such as the Pearson-, and
the Spearman-Rank correlation.

In MNN, on the contrary, we search for a metric in a lower dimensional space or embedding space
which is suitable for separating a given class. In essence, MNN finds a nonlinear transformation (or
mapping) that minimizes the variability of a given class membership of all those pairs of points whose
cumulative distance is less than a predefined value (D). It is worth noting that this condition does not
imply finding clusters in the predictor space that minimize the total intra-cluster variance, which is the
usual premise in cluster analysis (e.g. in k-means algorithm) [8]. A lower dimensional embedding space
is preferred in MNN, if possible, because of the empirical evidence supporting the fact that the intrinsic
manifold dimension of the multivariate data is substantially smaller than that of the inputs [25]. A
straightforward way to verify this hypothesis is calculating the dimensionality of the covariance matrix
of the standardized predictors and to count the number of dominant eigenvectors [29].

An important issue to be considered during the derivation of an appropriate transformation or
embedding space is the effect of the intrinsic nonlinearities present in multivariate data sets (e.g.,
multi–temporal and/or multi–/hyperspectral imagery). It is reported in the literature that various sources
of nonlinearities affect severely the land cover classification products [30]. This in turn would imply that
dissimilar class labels might depend differently upon the input vectors. Consequently, it is better to find
class specific embeddings and their respective metrics rather than a global embedding.
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2.2. Problem Formulation

Supervised classification algorithms aim at predicting the class label h ∈ {1, . . . , l}—from
among l predetermined classes —that correspond to a query x0 composed of m characteristics, i.e.,
x0 = {x1, . . . , xm}0 ∈ Rm. To perform this task, a classification scheme c ”ascertained” from the
training set T = {(xi, ei) : i = 1, . . . n} is required. Here, to avoid any influence from the ordering,
the membership of the observation i to the class h is denoted by a unit vector ei ∈ {eh : h = 1, . . . , l}
[e.g., class 3 is coded in a three-class case as e3 = {0, 0, 1}]. Moreover, each class should have at least
one observation, i.e. nh > 0, and

∑l
h=1 nh = n, where n is the sample size of the training set.

In general, the proposed MNN algorithm estimates the classification response
y0 = c(x0) = {y1, . . . , yl}0 as a combination of selected membership vectors ei = {ei1, . . . , eil}
whose respective ”transformed” inputs Bh[xi] are the k-nearest neighbors of the transformed value of
the query Bh[x0].

Since there are l possible embedding spaces in this case, then l possible neighborhoods of this query
have to be taken into account in the estimation. Here Bh denotes a class specific transformation function.
A stepwise meta–algorithm for the estimation of the classification response can be formulated as follows:

1. An attribute (crop/landuse class) h is selected.

2. An optimal distance dh for the binary classification problem is identified.

3. The binary classification is performed using k-NN with the distance dh leading for each vector x0

a partial membership vector {yh′}0h, h′ = 1, . . . , l.

4. Steps 1) to 3) are repeated for each attribute h.

5. The partial memberships are aggregated into the final classification response y0.

6. The class exhibiting the highest class membership value is assigned to x0.

In total, h optimal metrics have to be identified observing some conditions. A distance measure dh

is considered suitable for the binary classification of a given attribute h if the following discriminating
conditions are met:

(a) The distances in the transformed space between pairs of points in which both correspond to the
selected attribute are small, and

(b) The distances in the transformed space between pairs of points in which only one of them correspond
to the selected attribute are large.

These conditions ensure that the k-NN classifier works well at least for a given attribute in its
corresponding embedded space. The distance between two points in MNN is defined as the Euclidean
distance between their transformed coordinates

dBh
(ui,uj) = ‖Bh[xi]−Bh[xj]‖ (1)
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where Bh is a transformation (possibly nonlinear) of the m-dimensional space x into another
κ - dimensional space uh usually with (κ ≤ m):

uh = Bh[x] (2)

As a result, MNN requires finding a set of transformations Bh so that the corresponding distance
dh performs well according to the conditions (a) and (b) mentioned above. In the present study, this
was attained by a local variance function GBh

(p) [31] that accounts for the increase in the variability
of the class membership eh with respect to the increase in the distance of the nearest neighbors in a
nonparametric form.

Formally, GBh
(p) can be defined for 0 < p ≤ 1 as [22]

GBh
(p) =

1

N (p)

∑

dBh
(i,j)<DBh

(p)

(i,j)∈Ch

(eih − ejh)
2 (3)

where p is the proportion defined as the ratio of N (p) to Nh, dBh
(i, j) is the distance between points i

and j in the transformed space, DBh
(p) is the p percentile of the dBh

distribution, and Ch is the set of all
possible pairs having at least one element in class h, formally

Ch ≡ {(i, j) : (ei = eh) ∨ (ej = eh) ∧ j > i} ∀h ∈ {1, . . . , l} (4)

here Nh denotes the cardinality of the set Ch given by

Nh = |Ch| = nh

2
(2n− nh + 1) (5)

andN (p) refers to the number of pairs (i, j) ∈ Ch that have a dBh
(i, j) smaller than the limiting distance

DB(p), formally defined as

N (p) = |{(i, j) ; dBh
(i, j) < DB(p) ∧ (i, j) ∈ Ch ∀h}| (6)

where |{.}| denotes the cardinality of a given set.
The transformation Bh can be identified as the one which minimizes the integral of the curve GBh

vs.
p up to a given threshold proportion p∗, subject to the condition that each GBh

is a monotonic increasing
curve (see later Figure 4 in Section 4.) for an illustration of this minimization problem). In simple words
this procedure aims at close neighbors having the same class membership, whereas those further away
should belong to different classes.

Formally, this can be written as follows: Find Bh, h = 1, . . . , l so that

min

∫ p∗

0

GBh
(p)dp (7)

subject to

GBh
(p) ≤ GBh

(p + δ) ∀ p, δ > 0 (8)

where δ is a given interval along the axis of p. It is worth noting that the objective function denoted
by (7) will be barely affected by outliers (i.e. those points whose close neighborhood is relatively quite
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far), which appear often in unevenly distributed data. For computational reasons, equ. (7) can be further
simplified to

Q∑
q=1

GBh
(pq) → min (9)

where {pq : q = 1, . . . , Q} is a set of Q portions such as pq−1 < pq < 1, ∀q, and pQ = p∗. The total
number of pairs within the class h can be defined as N ∗

h = |{(i, j) (ei = eh)∧ (ej = eh) ∧ j > i}| ∀h,
thus this threshold for the class h can be estimated by

ph =
N ∗

h

Nh

=
nh − 1

2n− nh + 1
(10)

In summary, this method seeks different metrics, one for each class h, on their respective embedding
spaces defined by the transformations Bh so that the cumulative variance of class attributes for a given
portion of the closest pairs of observations is minimized. Consequently these metrics are not global.
The approach to find class specific metrics in different embedding spaces is what clearly differentiates
MNN from other algorithms such as the standard k-NN or AQK. In contrast to MNN, k-NN employs
a global metric defined in the input space, whereas AQK uses a kernel function to find ellipsoidal
neighborhoods [25]. The kernel, in turn, is applied to find implicitly the distance between points in
a feature space whose dimension is larger than the input space x [26].

2.3. Deriving an Optimal Transformed/Embedding Space

There are infinitely many possibilities of selecting a transformation Bh. Among them, the most
parsimonious ones are the linear transformations [22]. Here, for the sake of simplicity, l matrices of size
[κ×m] are used:

uh = Bhx h = 1, . . . , l (11)

It is worth mentioning that the standard k-NN method is identical to the proposed MNN if
Bh = diag(1, . . . , 1). Appropriate transformations Bh have to be found using an optimization method.
Du to the high dimensionality of the resulting optimization problem (see (9)), the following global
optimization algorithm based on simulated annealing [32] is proposed:

1. Select a set of threshold proportions p1 < p2 < . . . < pQ < 1. The value of pQ can be chosen to
be equal k

n
with k being the number of the nearest-neighbors to be used for the estimation. For the

other proportions, pq = q
Q
pQ is a reasonable choice.

2. Select h = 1, . . . , l.

3. Select the dimension of the uh space κ.

4. Fix an initial annealing temperature t.

5. Randomly fill the matrix Bh.
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6. Check the monotonic condition using: Wh =
∏Q

q=2 max(1,
GBh

(pq−1)

GBh
(pq)

).

7. Calculate the objective function O = Wh

∑Q
q=1 GBh

(pq).

8. Randomly select a pair of indices (i1, i2) with 1 ≤ i1 ≤ κ and 1 ≤ i2 ≤ m.

9. Randomly modify the element bi1,i2 of the matrix Bh and formulate a new matrix B∗
h.

10. Calculate the penalty for non-monotonic behavior: W ∗
h =

∏Q
q=2 max

(
1,

GB∗
h
(pq−1)

GB∗
h
(pq)

)

11. Calculate O∗
h = W ∗

h

∑J
q=1 GB∗h(pq).

12. If O∗ ≤ O then replace Bh by B∗
h. Else calculate R = exp(O−O∗

t
). With the probability R, replace

Bh by B∗
h.

13. Repeat steps (8)-(12) M times (with M being the length of the Markov chain [32]).

14. Reduce the annealing temperature t and repeat steps (8)-(13) until the objective function O

achieves a minimum.

It should be stated here, that in case a nonlinear function Bh would be required, the proposed
algorithm is not affected, in general, and the generation of new solutions can be done as proposed in
steps 8) to 9) after some modification. Also, any other global optimization method, such as Genetic
Algorithms (GA) [33] or the Dynamically Dimensioned Search (DDS) algorithm [34] (among many
others) could have been used here in principal, but good experience with the simulated annealing method
in earlier applications has led to that choice.

2.4. Selection of an Estimator

The prediction of the classification vector y0 based on a given vector x0 is done with an ensemble
of predictions (one with each transformation Bh) to ensure interdependency among the l classes. This
characteristic of the system was already assumed during the selection of the matrices Bh by means of
their simultaneous optimization achieved in Equation (7). Consequently, the local estimator should also
consider this fact.

There are many types of local estimators that can be employed, for instance: the nearest neighbor,
mean of close neighbors, local linear regression, local kriging, among others, as presented in [22]. For
the classification problem stated in section 1., however, the mean of the k closest neighbors is the most
appropriate one because it considers several observations. Thus, the expected value of the observation 0

can be estimated as:

y0h′ =
1

l k

l∑

h=1

∑
j

ejh′

j ∈ {j′ : dBh
(0, j′) < Dh(k) j′ = 1, . . . , n}

h′ = 1, . . . , l (12)
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where Dh(k) is the distance of the k-nearest neighbor of observation x0 in the transformed space uh.
The advantage of this approach is that one can always find an estimate for a given observation. Its

main disadvantage, however, occurs for those points that do not have close enough neighbors (i.e., false
neighbors), which, in turn, might lead to an erroneous estimation.

As a result of Equation (12), the classification vector y0 has values in the interval 0 ≤ yh0 ≤ 1

h = 1, . . . , l hence
∑l

h=1 yh0 = 1, i.e., it is a soft classification. Since these values have been derived
from a sample, they could be understood as the empirical probability that the observation 0 belong to the
class h. If a hard classification is required, then the class having the highest y value can be assigned to
the given observation x0. This procedure to obtain a binary classification also allows the estimation of
the measure of ambiguity b(y0) as

b(y0) = 1−max
h

yh0 (13)

which indicates whether or not the classifier c has yielded a clear response [9].

2.5. Validation

As the transformation Bh is derived from observations it is necessary to validate it. Possible methods
for validation are cross-validation and split sample testing. If the latter method is used, then x0 ∈ V and
T ∩ V ≡ ∅. V is commonly known as the validation set and should be similar in composition to the
calibration set. Its cardinality, however, may vary. Here, the sample size of V is denoted by v = |V|.

3. Applications

3.1. Study Area and Data Availability

The proposed method was applied to two different land cover classification examples using i) single,
and ii) multi-temporal Landsat TM/ETM+ images for the year 1999. Both examples use data from
agricultural test sites located in the Parthe-catchment, southeast of Leipzig, Germany (see Figure 1).
The study area is part of the German ”loess band” consisting of highly productive soils with land use
dominated by agricultural activities. The elevation above sea level ranges from 150 to 190 m with only
very mild slopes. The yearly mean air temperature is 9.8 ◦C, the mean annual precipitation is 610 mm.

The test sites comprise 23 fields with a total area of 426 ha. Main soil types are Cambisol, Luvisol,
and Stagnic Gleysol; and dominating crops are summer and winter cereals with a total fraction of over
70%. Table 1 summarizes the considered crops and land use classes as well as their spatial fractions.
These data, as well as detailed tillage and management information for the year 1999, were collected
and provided by the farm cooperative Landwirtschafts GmbH KÖG Kleinbardau.

In addition, three Landsat images of the study region have been made available for the growing season
of 1999: two Landsat 5-TM scenes from 30. April and 3. July (path/row 193/025) and a Landsat 7-ETM+
scene from 13. September 1999 (path/row 193/024). All three images were geo-referenced within the
ERDAS imagine software using a digital topographic map at the scale 1:25,000 (Landesvermessungsamt
Sachsen) and 40 significant reference points resulting in a maximum RMSE-error of 7.8 m. For both
examples we only used the 6 bands in the visible and near infrared region, thus ignoring the thermal
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bands of TM and ETM+ as well as the panchromatic channel of ETM+. Figure 2 summarizes the
vegetation periods of considered crops, the time schedule of soil and crop management activities and the
dates of available remote sensing images. An atmospheric correction has not been considered here.

Figure 1. Distribution and location of the test sites.
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Table 1. Summary of the land use classes and its distribution within the test area.

No. Land use Number Area %
type of plots [ha] Total

1 Summer barley 4 81.5 14.2
2 Winter barley 8 219.9 38.1
3 Winter wheat 2 97.9 17.0
4 Winter rye 1 60.4 10.5
5 Winter rape 2 22.4 3.9
6 Alfalfa 1 19.8 3.4
7 Potatoes 3 36.6 6.3
8 Grassland 1 22.1 3.8
9 Fallow land 1 15.9 2.8

Total 23 576.5 100.0
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Figure 2. Chronogram of the vegetation periods and management activities. The dates of
the landsat scenes are also depicted.
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3.2. Variable Definition

For the calibration and validation phases of this study, several disjoint sets were sampled without
replacement from the images mentioned above. The sample size of the validation set was fixed ad hoc
to 270 observations distributed equally among all nine classes (i.e., l = 9). Additionally, six calibration
sets were also sampled to perform a sensitivity analysis of the impact of the sample size on the efficiency
of the classifier, thus, the number of observations per class were fixed as nh ∈ {5, 10, 15, 20, 25, 30}. For
all these calibration sets, the variables listed in Table 2 were extracted from the original images and then
tabulated as indicated in Section 1.

Table 2. Definition and notation of the selected predictors at different points in time.

Mono-temporal Multi-temporal
Variable Landsat Date Landsat Date
Name Band Band (dd.mm.yyyy)

x1 1 3
x2 2 4 30.04.1999
x3 3 5
x4 4 30.04.1999 3
x5 5 4 03.07.1999
x6 7 5
x7 3
x8 4 13.09.1999
x9 5

It is convenient to visualize the relationships that might exist between predictors (see Figure 3) before
the calibration starts, as the main task of a supervised classifier is finding patterns and rules within the
predictor’s space aiming at forming disjoint classes. In fact, as it is shown at the panel (c) of this figure,
these relationships can be so intertwined that most classifiers produce a high number of false positives.
In this example, for instance, classes 1, 2, 3, 4, 7, and 9 are heavily clustered as can be seen in each
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pairwise scatterplot of variables x7, x8, and x9, respectively. This highlights the main motivation behind
this paper stated in Section 2. to find an embedding space u where close points in the x space correspond
to a similar class.

Figure 3. Scatterplots depicting the location of the land use classes in the predictor space
x at three different points in time as indicated at each panel. In this case, the reflectance
measurements represent bands 3-4-5 of the training set whose sample size is n = 270.

4. Results

To find the embedding spaces uh, h = 1, . . . , l, the algorithm presented in subsection 2.3. was
sequentially applied. In each optimization, the maximum limit of the integration was pQ = 0.30

(see Equation 9). The result of the optimization can be seen in Figure 4. This graph shows that
the variance function G exhibits a completely different behavior depending on whether the distance
is calculated in the original predictors’ space x or in the embedding space u. In the former, the variance
of the (p) closest neighbors remains almost constant for different values of p, whereas in the latter an
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abrupt change occurs at p1 ≈ 0.057. This threshold represents the ratio between the number of pairs
within class 1 and the total number of pairs of the boundary of the set C1 and has already been defined in
Equation 10. Therefore, as a result of the optimization, the variance of the ”outputs” ei has been reduced
to zero, i.e., approximately the 6% of the closest neighbors belong to class 1 in the transformed space
u1. This can also be visualized in Figure 5, where it can be seen that class 1 (encircled by a continuous
line) was clearly pulled apart from the rest.

Figure 4. Effect of the optimization on the variance function GB1 . Here h = 1, i.e., the
variance function of class 1 for the training set T .
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The robustness and the reliability of the MNN method was estimated with the standard confusion
matrix approach [8]. Based on this sort of contingency table, several efficiency measures were evaluated,
including: the probability of detection or producer accuracy, the user accuracy which is the complement
of the false positive rate, and the overall accuracy OA ∈ [0, 1] where 0 ≡ worst, and 1 ≡ best. Figure 6
depicts the robustness of the proposed approach compared with both ML and the k-NN using the standard
Euclidian distance in the predictors’ space (B not optimized). The 90% confidence interval of the
statistic OA is almost independent with respect to the number of nearest neighbors N , which is not
the case in the non-optimized case. For the estimation of empirical confidence intervals shown in
Figure 6, 100 independent training sets (n = 135, nh = 15 ∀h) were randomly sampled without
replacement. The simulation results show that the average OA obtained for MNN is even greater
than the upper 95%-confidence limit of the results obtained with ML. The standard k-NN (without any
transformation) performs poorly in all these independent samples.

Several sensitivity analysis were carried out to determine the behavior of MNN with respect to
variable composition as well to several key parameters. First, we investigated how the selection of
the variables influence the efficiency of the different methods. Based on Figure 7, it can be concluded
that the multi-temporal supervised classifications provide, in general, better results than those of the
mono-temporal ones. In the present case, however, k-NN with data from the 30th of April, 1999, is an
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exception. This indicates that k-NN might be sensitive to artifacts present (e.g., related with climate,
vegetative cycle) in the data that may severely affect the efficiency of the classifier. This shortcoming
has not been observed in the several hundreds of tests carried out with MNN. Another results derived
from these experiments is that MNN performs much better than ML when the sample size per class (nh)
is small (see Figure 7). Furthermore, influence of nh on the efficiency is small. This is an advantage
because it reduces the cost of data collection without jeopardizing the quality of the results.

Figure 5. Scatterplots depicting the location of the land use classes in the embedded space
u1. Class 1 (encircled by a continuous line) is completely isolated from the others. Sample
size n = 270.
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Figure 6. Graph showing the variation of the 90% confidence interval depending on the
number of nearest neighbors. As reference the confidence intervals for ML and k-NN (B not
optimized) are also shown.
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The selection of the dimension of the embedding space k plays a very important role on the efficiency
of MNN as can be seen in Figure 8. Because there are no rules for the determination of k the
trial-and-error approach was followed. This figure shows that embedding a large dimensional space
into an scalar (i.e., k = 1) is not a good solution. As k approaches m, the same effect is observed, i.e.
large values of k do not perform much better than that of the k−1-case. It should be noted that increasing
k by one increases the number of degrees of freedom l times. In the present case the best results were
obtained for k = 3 in the mono-temporal experiment. A modification of the Mallows-CP [35] statistic,
however, was suggested in [22] to help determine the most efficient embedding dimension, which can
also be used in this context.

Based on the results of the sensitivity analysis, the final classification of the whole area of the test sites
was carried out using multi-temporal data (bands 3-4-5 form the three scenes) embedded into a three
dimensional space, i.e. B[3× 9] and using N = 5 neighbors. As a result, the land cover map depicted in
Figure 9 was obtained. Additionally, the ambiguity index b(y0) proposed in Equation (13) was estimated.
With the help of this index, it is possible to determine those places where the classification is not clear
(say b(y0) > 0.5). Consequently, one should interpret the results in those areas carefully and try to
determine why the classifier performs ambiguously on these areas (e.g., a very mixed class or errors in
the determination in the ground truths). Furthermore, by plotting the density distribution of the ambiguity
index and estimating statistics like the mean ambiguity index or the portion of pixels exceeding a given
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threshold, one can have a very reliable measure of the uncertainty of the classification (see Figure 10).
Taking, for example, a threshold value of b = 0.2 we observe that a training set consisting of only
nh = 5 observations for each class will have a large number of false positives, whereas with nh = 25

we only obtain a very small number indicating a more reliable classification. The slight increase of the
classification uncertainty between nh = 25 and nh = 30 suggest that large training sets might be less
efficient due to possible data artifacts introduced during the sampling process. We here find an optimum
sample size of nh = 25 observation per class.

Figure 7. Graph showing the influence of the sample size per class nh on the overall
accuracy of the classification. The dimension of the transformation matrix B in the mono-
and multi-temporal classifications is [3× 6] and [3× 9] respectively.



RemoteSensing 2009, 9 890

Figure 8. Graph showing the influence of the type of transformation and the number of
nearest neighbors on the overall accuracy of the classification.
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Figure 9. Ambiguity index [panel (a)] and land cover map obtained with the MNN classifier
using N = 5 neighbors [panel (b)].
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Figure 10. Histograms depicting the ambiguity index b(y0) as a function of the sample
size of the training set nh. (All histograms were obtained with the MNN classifier using
N = 5 neighbors.)
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5. Summary and Conclusions

Here, we have introduced an improved k-NN technique based on a combination of a local variance
reducing technique and a linear embedding of the observation space into an appropriate Euclidian space
(MNN) and applied this method to a (supervised) land use and cover (LULC) classification example
using mono- and multi-temporal Landsat imagery. Results show that MNN performs significantly better
than both Maximum Likelihood (ML) and the standard k-NN method for all cases considered. The
advantage of using multi-temporal data was also confirmed for the MNN method.

While the efficiency of the ML is dependent on a sufficient large sample size, a further strength
of MNN is its small sensitivity to the cardinality of the training set leading to a more robust and
cost-effective calibration of the classification problem. The formulation of an ambiguity index and its
distribution provides a good measure of the uncertainty associated with a classification. Analysis of its
spatial extent and characteristic will allow critical areas and LULC types within the classification process
to be identified so that additional effort in ground-truth and calibration activities can be organized in a
more focussed and efficient way.

Given these advantages of MNN compared with standard methods, it will be of particular interest
for any of the current and future global or regional observation activities, where large areas have to be
(frequently) explored under limited resources. Good examples are the Global Observation of Forest
and Land Cover Dynamics (GOFC-GOLD) or the Monitoring Agriculture by Remote Sensing and
Supporting Agricultural Policy (MARS-CAP) projects (among many others).
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However, before becoming operational, some further aspects of the method still have to be
investigated. So far, we have limited our analysis to the classification of agricultural land use types using
Landsat images with a spatial resolution of 30m as presented here in this paper and to hydrologically
related application considering 3 different land use classes (forest, pervious and impervious). This needs
to be extended considering a broader spectrum of LULC types as well as different levels of informational
aggregation. Data from different sensors and platforms need to be analyzed in order to explore the
sensitivity and efficiency of our method to different spatial and spectral resolutions. However, given the
results presented here and in our previous application [23], MNN is expected to also outperform other
classification methods under these conditions.

Analyzing in detail the robustness and transferability of the optimized transformation of the
observation space to other geographic locations will help to keep the cost for calibration to a minimum.
Also, information on the scale and temporal invariance of the transformation will be of great importance.
The MNN technique might be further improved by considering non-linear transformations and/or some
appropriate formulation for its variations within the observation space. While being beyond the scope of
this paper, these aspects will direct our future research activities and will be presented in the near future.
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