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Abstract: Unlike traditional ground-based methodology, remote sensing allows for the 

rapid estimation of crop residue cover (fR). While the Cellulose Absorption Index (CAI) is 

ideal for fR estimation, a new index, the Shortwave Infrared Normalized Difference Residue 

Index (SINDRI), utilizing ASTER bands 6 and 7, is proposed for future multispectral 

sensors and would be less costly to implement. SINDRI performed almost as well as CAI 

and better than other indices at five locations in the USA on multiple dates. A minimal 

upgrade from one broad band to two narrow bands would provide fR data for carbon cycle 

modeling and tillage verification. 

Keywords: crop residue; non-photosynthetic vegetation; ASTER; agricultural remote sensing 

 

1. Introduction 

Agricultural soils are an important reservoir of carbon globally and are a major component in 

models of the global carbon cycle [1-4]. One important input into agricultural soil organic carbon 

(SOC) models is tillage practice. Conventional tillage practices (Figure 1a) greatly disturb the soil 

surface and plow under crop residues (i.e., non-photosynthetic vegetation), and can result in a decrease 

in SOC over time [2]. However, reduced- and conservation tillage (Figure 1b), which minimally 

disturb the soil surface and crop residues, allow for the sequestration of atmospheric carbon to the  
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soil [2]. Reduced- and conservation tillage methods require fewer passes over the soil with farm 

machinery, thus saving fuel and further reducing net agricultural greenhouse gas emissions [5,6]. 

Residues from crops and other vegetation act as a barrier to wind and water, reducing erosion and 

evaporation. The breakdown of surface residues increases soil fertility over time. Whereas 

conservation tillage cropping systems often have reduced yields in comparison with conventional-till 

systems, cost reductions in labor, equipment, fuel, and irrigation increase net farm profitability [5-7], 

particularly when coupled with conservation subsidies and the sale of carbon sequestration  

credits [1,2]. Tillage practice is also an important variable for biogeochemical models in agricultural 

soils [1,2]. Increasing demand for biofuels can result in increased tillage or encourage the harvesting of 

crop and vegetation residues [8]. These factors all require a more efficient method for measuring and 

monitoring vegetation residue cover compared to ground surveys.  

Figure 1. Photographs of (a) conventional (intensive) and (b) conservation (no-till) tillage 

from the area surrounding Ames, Iowa, USA. 

 

Remote sensing of crop residue cover (fR) offers a rapid means for determination of tillage method 

when compared with ground-based methods, such as the line-point transect methodology [9-12]. A 

number of remote sensing indices for discrimination of fR have been devised for Landsat Thematic 



Remote Sens. 2009, 1              

 

 

973

Mapper (TM) [13-15], the NASA Terra Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) sensor [12], hyperspectral methods [11,12], and spectral angle methods [16]. 

Serbin et al. [17] compared six indices for fR estimation for spectral contrast between soils, crop 

residues, and green vegetation for Landsat TM, ASTER, and hyperspectral shortwave infrared (SWIR) 

sensors utilizing the soil spectral library of Brown et al. [18]. With extensive field and laboratory data, 

the Landsat TM-based indices fared the worst and the hyperspectral Cellulose Absorption Index  

(CAI) [11] fared the best [12,17], with the ASTER Lignin-Cellulose Absorption (LCA) index in 

between. Among the Landsat TM-based indices, the Normalized Difference Tillage Index (NDTI) [14] 

performed the best [17].  

While CAI may be the best index for fR, it is currently impractical to use as it can be only acquired 

from space using the EO-1 Hyperion sensor, which is past its designed lifetime, suffers from detector 

scan-line problems and noise, and has a narrow (7.5 km) swath width [19]. ASTER has been applied 

for crop residue and non-photosynthetic vegetation cover mapping in previous studies [12,20-23]. 

Many ASTER scenes of agricultural areas were collected prior to the shortwave infrared (SWIR) 

detector failure in April 2008 [24]. The aim of this research is to evaluate a new ASTER-based index, 

the Shortwave Infrared Normalized Difference Residue Index (SINDRI), which utilizes ASTER SWIR 

bands 6 and 7, against CAI, LCA, and NDTI. SINDRI, if effective, would allow for the least costly 

upgrade from Landsat TM Band 7 on future multispectral sensors for detection of vegetation residue, 

improving the accuracy of soil carbon-cycle models. 

 

2. Remote Sensing Crop Residue Cover 

 

2.1. Spectral Properties of Soils and Residues 

 

Remote detection of fR works best when there is a clear contrast among the index values of fR and 

those of soils and live green vegetation [12,17]. Soil spectral properties are a function of  

multiple factors, including mineralogy and composition [18,25-29], water content [30-34], grain  

size [26,27,35], structure [36], and SOC [17,18,34,37,38]. Crop residue and soil can be very similar 

spectrally below 1,920 nm (Figure 2), as shown by Daughtry et al. [12], except for an absorption 

feature around 1,440 nm shared with vegetation and atmospheric water vapor [39,40]. However,  

above 1,920 nm the O-H bending and C-O stretching combination at 2,101 nm exists for cellulose and 

other sugars [12,26,40-42], which is not found in common soil minerals [43], and provides a clear 

contrast between soils and crop residues [17]. 

 

2.2. Previously Existing Spectral Indices for Crop Residue Detection 

 

Within this study, three established spectral indices were used for estimation of fR. The first index, 

CAI [11], utilizes three narrow spectral bands: 
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where R denotes reflectance and the subscripts denote 11 nm-wide bands centered at 2,031, 2,101,  

and 2,211 nm wavelength. CAI essentially measures the depth or intensity of the 2,101 nm  

absorption [40,41] as shown in Figure 2. R2031 is determined at 2,031 nm wavelength and not 2,000 nm 

in order to avoid a narrow atmospheric CO2 absorption feature centered at 2,010 nm [39,44]. 

Figure 2. Visible, NIR, and SWIR spectra acquired from a ground-based 

spectrophotoradiometer of soil, crop residue, and live corn canopy along with ASTER, 

Landsat TM, and CAI bands. 2031, 2101, and 2211 denote CAI bands. Soil and residue 

spectra were acquired in the lab, corn canopy outdoors. Relative spectral response 

functions for ASTER and Landsat TM are courtesy USGS [45]. Abbreviations in legend: 

Cla is Clarion loam (0.8% SOC) from Ames, IA; CrA, Hm, and Res are Crosier  

loam (0.5% SOC), Houghton muck (44.9% SOC), and 7 month old corn residue from a 

field with standing stubble from Fulton, IN, respectively; LC is live corn canopy at silking 

(R1) [46] stage in Beltsville, MD.  
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Table 1. Dates, locations, sensors, residue and soil water contents, and comparisons of the 

Cellulose Absorption Index (CAI), the Shortwave Infrared Normalized Difference Residue 

Index (SINDRI), the Lignin-Cellulose Absorption Index (LCA), and the Normalized 

Difference Tillage Index (NDTI). N, RMSE, and r2 denote number of samples, root mean 

square error, and coefficient of determination, respectively, in comparison between 

spectral index value and line-point transect ground-truth of crop residue cover. Three-class 

accuracy assessments (3 × 3 acc.) for 0%–15%, 15%–30%, and 30%–60% residue cover 

classes for the four indices evaluated in this paper. Classification accuracy is assessed 

using k-hat, an estimate of the kappa statistic, and the Z-statistic (Z-stat), which is used to 

test the null hypothesis that classification accuracy is not significantly different from 

chance. Comp. denotes composite (mean) values. Non-ASTER data were acquired using 

either a ground-based spectroradiometer or an airborne hyperspectral sensor. CMD and 

PIL denote Centreville, MD and Pesotum, IL, respectively. bna and dna denote “bands not 

available” and “data not available”, respectively. 

Location Beltsville, MD CMD Ames, IA Fulton, IN PIL 

C
om

p
os

it
e 

(m
ea

n
) 

va
lu

e 

Date 
20 May 

2002 
22 May 

2002 
10 Jun 
2003 

1 Jun 
2004 

2 Jun 
2004 

10 Apr 
2007 

22 May 
2005 

19 May 
2007 

27 May 
2007 

29 May 
2006 

6 Jun 
2007 

8 Jun 
2006 

Sensor Ground 
Air-

borne 
ASTER 

Air-
borne 

Airborne 
Air-

borne

N 77 95 41 41 71 32 107 104 104 95 136 37 
Residue Water 

g g–1 
0.09 0.08 1.80 1.10 0.10 dna dna dna dna dna dna dna 

Soil Water 
g g–1 

dna 0.09 0.30 0.28 0.09 dna dna dna dna dna dna dna 

C
A

I 

r2 0.899 0.882 0.935 0.554 0.815 0.885 bna bna 0.821 0.798 0.829 0.722 0.814 

RMSE 0.097 0.094 0.085 0.151 0.152 0.100 bna bna 0.078 0.117 0.107 0.128 0.111 

3×3 acc. 0.829 0.779 0.902 0.732 0.761 0.813 bna bna 0.654 0.674 0.695 0.757 0.759 

k-hat 0.68 0.63 0.84 0.13 0.61 0.66 bna bna 0.42 0.51 0.45 0.51 0.54 

Z-stat 8.90 9.62 11.82 0.77 8.19 5.81 bna bna 5.26 6.73 5.43 3.62 6.61 

S
IN

D
R

I 

r2 0.853 0.811 0.769 0.640 0.835 0.596 0.611 0.605 0.674 0.821 0.834 0.868 0.743 

RMSE 0.117 0.119 0.159 0.135 0.144 0.187 0.106 0.116 0.106 0.093 0.106 0.088 0.123 

3 × 3 acc. 0.855 0.768 0.805 0.780 0.887 0.750 0.710 0.587 0.712 0.653 0.811 0.784 0.758 

k-hat 0.73 0.61 0.69 0.43 0.81 0.53 0.42 0.30 0.51 0.48 0.68 0.57 0.56 

Z-stat 9.93 9.19 7.48 3.22 12.96 4.13 5.56 3.95 6.93 6.39 10.16 4.21 7.01 

L
C

A
 

r2 0.815 0.767 0.634 0.487 0.842 0.651 0.575 0.632 0.664 0.390 0.618 0.860 0.661 

RMSE 0.131 0.132 0.200 0.161 0.140 0.174 0.111 0.112 0.107 0.171 0.161 0.091 0.141 

3 × 3 acc. 0.737 0.737 0.780 0.707 0.789 0.813 0.673 0.606 0.587 0.547 0.611 0.703 0.691 

k-hat 0.51 0.55 0.64 0.09 0.63 0.66 0.34 0.33 0.29 0.34 0.34 0.43 0.43 

Z-stat 6.18 7.87 6.61 0.57 7.71 5.51 4.04 4.11 3.67 4.17 4.22 2.97 4.80 

N
D

T
I 

r2 0.281 0.247 0.089 0.272 0.569 0.229 0.490* 0.640* 0.004 0.419 0.182 0.161 0.299 

RMSE 0.258 0.227 0.316 0.192 0.232 0.259 0.122* 0.111* 0.185 0.167 0.235 0.222 0.210 

3 × 3 acc. 0.618 0.589 0.366 0.780 0.634 0.563 0.720* 0.625* 0.462 0.463 0.589 0.649 0.588 

k-hat 0.16 0.28 0.11 0.32 0.37 0.12 0.44* 0.37* 0.01 0.22 0.24 0.33 0.25 

Z-stat 1.49 3.48 0.73 1.92 4.07 0.76 5.28* 4.94* 0.06 2.61 2.48 1.80 2.47 

* denotes NDTI calculated by averaging ASTER Bands 5-8 into an equivalent Landsat TM band 7. 

The second index, LCA [12], is a similarly devised index for the ASTER sensor: 

LCA = 100·[2 ASTER6 – (ASTER5 + ASTER8)] (2) 
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where ASTER5, ASTER6, and ASTER8 denote ASTER shortwave infrared (SWIR)  

bands 5 (2,145–2,185 nm), 6 (2,185–2,225 nm), and 8 (2,295–2,365 nm) [47]. The last index,  

NDTI [14], was developed for the Landsat TM platform and was used in this study for comparison 

between hyperspectral, ASTER, and Landsat sensors: 

75

75

TMTM

TMTM
NDTI




  (3) 

where TM5 and TM7 denote Landsat TM bands 5 (1,550–1,750 nm) and 7 (2,080–2,350 nm), 

respectively [48]. Where equivalent Landsat TM data are unavailable, but ASTER data are, we 

calculate NDTI by replacing Landsat TM band 5 with ASTER band 4 and Landsat TM band 7 with the 

average value of ASTER bands 5–8. Hyperspectral reflectance data were convolved over the ASTER 

and Landsat TM band passes using sensor relative spectral response functions [45] to determine the 

equivalent bands for SINDRI, LCA, and NDTI.  

 

3. Spectral Data Acquisition and Processing Methods 

 

3.1. Ground-Based Spectrophotometric Measurements 

 

Ground-based measurements were acquired on several dates in 2002, 2003, and 2004 (data from 

Daughtry and Hunt [30]) over a number of corn, soybean, and wheat production fields in Beltsville, 

MD (Table 1) using an Analytical Spectral Devices Inc. Fieldspec Pro FR spectroradiometer (Boulder, 

CO) and calibrated using a 45 cm square Spectralon panel (Labsphere, Inc., North Sutton, NH). The 

spectrophotoradiometer acquired 2,151 data points interpolated to 1-nm resolution between 350  

and 2,500 nm. The crop residues had been present in the fields for approximately seven months. 

Ground measurements were acquired under varying soil and residue moisture and green cover 

conditions (Table 1). Bare soil, residue, and green vegetation were determined by classifying digital 

photographs acquired at nadir from a height of 2.3 m. Within these data sets, data points with a green 

vegetation cover of over 30% were excluded from analysis. Soil and crop residue water contents were 

determined gravimetrically by drying soils at 105 °C for 48 hours and crop residues 70 °C for four 

days. For more information on this specific data set, the reader is encouraged to refer to Daughtry and 

Hunt [30]. Reflectance spectra of green corn canopies were acquired in corn fields on 7 July 2006 at 

the silking (R1) stage for the corn [46] using the ASD spectroradiometer and the 18° fore-optic. 

Results from these spectra are shown in Figure 2. 

 

3.2. Air- and Space-Borne Measurements 

 

Airborne hyperspectral data were acquired on several dates in the spring of 2006 and 2007 in 

Indiana, Illinois, Iowa, and Centreville, Maryland, by SpecTIR LLC (Sparks, NV, USA) as seen in 

Table 1. Airborne hyperspectral data acquired in 2006 consisted of 356 data points between 398.5 nm 

and 2,455.0 nm with a spectral resolution of approximately 4.8 nm between 398.5 nm and 953.5 nm 

and 6.3 nm between 964.1 nm and 2,455.0 nm. The airborne hyperspectral data from 2007  

contained 178 data points between 400 and 2,450 nm with a spectral resolution of approximately 9.5 nm 
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between 400.7 nm and 951.0 nm and 12.6 nm between 967.2 nm and 2,451.8 nm. Spaceborne ASTER 

data were acquired on 22 May 2005 and 19 May 2007 for the Ames, IA area. All aircraft data had 

pixel sizes of 4 m with the exception of the Centreville, MD set, which were acquired at 2 m 

resolution. For aircraft data, atmospherically corrected reflectance data were further corrected for 

cross-track illumination effects, geometrically corrected, and mosaicked. Atmospherically and 

geometrically corrected surface reflectance ASTER imagery were acquired from the USGS EROS 

Data Center (Sioux Falls, SD) for the Ames, IA area with a pixel size of 30 m. Ground truth data were 

acquired using the line-point-transect method and located using a Garmin e-Trex handheld global 

positioning system (GPS) with 15-m field accuracy.  

At a number of these locations soil and crop residue samples were also acquired for laboratory 

analysis. These soil and residue samples were then analyzed in the lab using the ASD 

spectrophotometer. Lab samples were illuminated by six 100-W quartz-halogen lamps mounted on the 

arms of a camera copy stand at 45 cm over the sample at a 45° illumination zenith angle. A  

current-regulated DC power supply stabilized the output of the lamps. A digital camera and the  

fore-optic of the spectroradiometer were aligned and positioned 90 cm from the sample surface at a 0° 

view zenith angle. A 1 fore-optic with a 1.6-cm-diameter field of view was used for the additional soil 

samples; an 18° fore-optic with a 28.5-cm-diameter field of view was used for the crop residues. The 

illumination and view angles were chosen to minimize shadowing and to emphasize the fundamental 

spectral properties of the samples.  

Four spectra of 100 scans each were acquired from each sample by rotating the sample tray 90° 

after each spectrum. All samples were placed in trays that were spray painted flat black. A 61-cm 

square Spectralon reference panel was placed in the field of view, illuminated, and measured in the 

same manner as the samples. Reflectance factors were calculated and corrected for the reflectance of 

the Spectralon. Because the additional soil sample spectra were acquired using a different method than 

used by Brown et al. [18], the two data sets were analyzed separately, which included estimation of 

total soil carbon using a LECO TruSpec CN gas analyzer (LECO Corp., St. Joseph, MI) and soil 

carbonate content via modified pressure calcimetry [49]. Soil organic carbon contents were determined 

by subtracting the carbonate contents from the total carbon contents. In this work we only report 

ranges of values for the Iowa and Indiana sites.  

Thirty-meter buffers were used around each GPS point to extract mean spectral signatures from 

imagery, with the exception of the Maryland imagery, where 20-m buffers were used due to the 

smaller field sizes. In all cases crop residues were present in the field at least seven months; soybean 

residues frequently contained corn residues from the previous year. Because green covers were not 

assessed with the hyperspectral and ASTER imagery, all data points were used. 

 

3.3. Data Processing and ASTER Index Determination 

 

The hyperspectral data acquired from the ASD spectrophotoradiometer and the 2006 airborne 

hyperspectral data acquired in Indiana and Illinois were convolved to 178 data points using cubic 

spline interpolation, for comparative analysis with later airborne hyperspectral acquisitions in Iowa, 

Indiana, and Maryland. These data were then used to compute three-dimensional generalized 

normalized difference index (gNDI) matrices via: 
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  (4) 

where R denotes reflectance and the subscripts i and j denote wavelengths for sampling location k. The 

coefficients of determination (r2) were calculated for each gNDIi,j set against line-point transect 

measured fR for assessment of correlation. Lastly, a composite gNDI r2 value was determined by 

averaging the gNDI r2 values for all of the hyperspectral data sets.  

Additionally, all hyperspectral data were convolved to the nine ASTER visible, near-infrared, and 

SWIR bands and to equivalent Landsat TM 5 bands utilizing their relative spectral response  

functions [45]. Like with the hyperspectral data, Equation (4) was utilized and the data analyzed in a 

similar manner. These data were also used to calculate spectral indices using Equations (1–3). 

Pixels with green vegetation were excluded using the Normalized Difference Vegetation Index 

(NDVI) [50]: 

RedNIR

RedNIR
NDVI




  (5) 

where NDVI > 0.3 was assumed for green vegetation pixels with Red and NIR being ASTER  

bands 2 (630–690 nm) and 3 (760–860 nm), respectively [47].  

The relationships between fR and selected spectral indices were performed utilizing linear 

regression, with r2 calculated to determine goodness-of-fit. Regression line slope and intercept values 

were used to calculate remote estimates of fR, which in turn were compared with ground-truth fR 

estimates. Root-mean-square error (RMSE) values were calculated between ground-truth and remote 

estimates of fR. Additionally, 3 × 3 tillage classification accuracy parameters were assessed, including 

Z-statistic (which tests the null hypothesis that the classification accuracy is not significantly different 

from random chance) and k-hat (estimate of the kappa statistic) values [51]. The tillage classes are 

defined as intensive tillage having fR < 0.15, reduced tillage with 0.15 ≤ fR < 0.3, and conservation 

tillage (no-till, ridge-till, and mulch-till) at fR > 0.3 as defined by the USDA-NRCS and the 

Conservation Technology Information Center [52] for operational purposes. Classifications are 

considered significant at the 95% confidence level if the Z-statistic > 1.96 [51]. 

The air- and spaceborne imagery were classified to live vegetation and three fR classes utilizing the 

decision tree classifier in ENVI (ITT Visual Solutions, Boulder, CO). All classified images were then 

subjected to a 5 × 5 majority analysis to minimize noise. 

 

4. Results and Discussion 

 

4.1. Hyperspectral and ASTER Index Determination 

 

Comparison of composite r2 values for gNDIi,j against fR showed the best correlation occurring for 

the wavelength pair at 2,210 and 2,260 nm (Figure 3), with r2 = 0.759. Hence, the hyperspectral 

Shortwave Infrared Normalized Difference Residue Index (hSINDRI) is defined as:  

22602210

22602210

RR

RR
hSINDRI




  (6) 
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Figure 3. Composite coefficient of determination (r2) values for all data sets mentioned in 

Table 1 for general normalized difference indices (gNDIi,j) in comparison with line-point 

transect crop residue cover (fR) estimates. 

 

Since R2210 and R2260 correspond with ASTER bands 6 (2,185–2,225 nm)  

and 7 (2,235–2,285 nm) [47], the ASTER Shortwave Infrared Normalized Difference Residue Index 

(SINDRI) is defined as: 

76

76

ASTERASTER

ASTERASTER
SINDRI




  (7) 

where ASTER6 and ASTER7 denote ASTER SWIR bands 6 and 7, respectively. In addition to the 

hyperspectral gNDIi,j analysis, and ASTER gNDIi,j analysis was conducted to affirm the validity of 

SINDRI. Comparison of all 36 possible pairwise ASTER band combinations as normalized differences 

showed the best residue index indeed used ASTER bands 6 and 7, with a composite r2 value for all 

data sets of 0.741 (Table 2).  
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Table 2. Composite coefficient of determination (r2) values for all pairwise combinations 

of normalized difference indices (gNDIi,j) compared with ground truth crop residue cover 

(fR) estimates for the NASA Terra Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) sensor bands. The gNDIi,j band combination which correlates the 

best for all data sets in Table 1 is highlighted in bold and italicized. FWHM denotes  

full-width-half-maximum wavelength bands [47]. 

FWHM 
bandwidth 

(nm) 

520–
600 

630–
690 

760–
860 

1600–
1700 

2145–
2185 

2185–
2225 

2235–
2285 

2295–
2365 

2360–
2430 

ASTER 
band 

1 2 3 4 5 6 7 8 9 

1 -         

2 0.173 -        

3 0.101 0.104 -       

4 0.298 0.257 0.239 -      

5 0.287 0.267 0.150 0.270 -     

6 0.289 0.273 0.159 0.206 0.495 -    

7 0.284 0.267 0.149 0.362 0.557 0.741 -   

8 0.269 0.266 0.154 0.342 0.298 0.456 0.140 -  

9 0.240 0.243 0.136 0.206 0.096 0.171 0.091 0.175 - 

Composite values of r2 and RMSE from all test locations (Table 1) show SINDRI performing better 

than LCA and NDTI, but not as well as CAI. Comparison of index values from Beltsville, MD  

(Figure 4), Fulton, IN (Figure 5), Ames, IA (Figure 6), and Pesotum, IL and Centreville, MD  

(Figure 7) show that CAI and SINDRI values are relatively close to the regression line. LCA values 

show larger relative deviations of values from the regression line than do CAI or SINDRI. The largest 

deviations occurred with NDTI. The slope and deviation of index values were dependent also on 

location, sensor, and acquisition date. Data from Beltsville, MD (Figure 4) show that NDTI was the 

most affected by acquisition date, with the data set from 10 June 2003 having a regression line slope 

that is almost perpendicular to the other dates; SINDRI on the other hand shows the least deviation in 

the slope line from the other dates and usually had parallel regression lines. Similar behavior with 

NDTI can be seen for both the Indiana (Figure 5) and Iowa (Figure 6) data sets, whereby the latest 

growing season dates have the lowest regression line slopes. This change in slope is likely attributable 

to two factors. Firstly, the increased presence of green vegetation in the field (Figure 8) greatly affects 

NDTI [17]. Secondly, there were the radiometric differences between the aircraft hyperspectral and 

ASTER sensors, including atmospheric effects (including the sensor altitude above the target area). 

Convolved ASTER NDTI was compared with convolved equivalent Landsat TM NDTI for the 27 May 2007 

Ames, IA data set in Figure 9, where the two sets of values lined up and were close to the 1:1 line. 

Aircraft and ASTER derived SINDRI values showed distinct offsets in values between the two sensor 

types, with the aircraft-derived data (27 May 2007 in Figure 6) showing higher index values than the 

two ASTER-derived data sets, which had overlapping values.  

 



Remote Sens. 2009, 1              

 

 

981

Figure 4. Comparison of crop residue cover (fR) and fR index values with regression lines 

for the Beltsville, MD data sets [30]. Index acronyms: CAI–Cellulose Absorption Index; 

SINDRI–Shortwave Infrared Normalized Difference Residue Index; LCA–Lignin-Cellulose 

Absorption Index; and NDTI–Normalized Difference Tillage Index. Straight lines denote 

regression lines. Dotted lines denote tillage class boundaries. Data were acquired with an 

ASD Inc. Fieldspec Pro FR spectroradiometer (Boulder, CO). 
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Figure 5. Comparison of crop residue cover (fR) and fR index values with regression lines 

for Fulton, IN, 29 May 2006. Index acronyms: CAI – Cellulose Absorption Index; 

SINDRI–Shortwave Infrared Normalized Difference Residue Index; LCA–Lignin-Cellulose 

Absorption Index; and NDTI–Normalized Difference Tillage Index. Straight lines denote 

regression lines. Dotted lines denote tillage class boundaries. Data were acquired from 

aircraft by SpecTIR LLC (Sparks, NV). 
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Figure 6. Comparison of crop residue cover (fR) and fR index values with regression lines 

for the Ames, IA area. Index acronyms: CAI–Cellulose Absorption Index; SINDRI–Shortwave 

Infrared Normalized Difference Residue Index; LCA–Lignin-Cellulose Absorption Index; 

and NDTI–Normalized Difference Tillage Index. Straight lines denote regression lines. 

Dotted lines denote tillage class boundaries. 22 May 2005 and 19 May 2007 multispectral 

data were acquired by the ASTER sensor. 27 May 2007 hyperspectral data were acquired 

from aircraft by SpecTIR LLC (Sparks, NV). CAI is only available for 27 May 2007 imagery. 
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When assessing the classification accuracy [51] with the three tillage classes, composite SINDRI 

values fared similarly to CAI, and much better than LCA and NDTI (Table 1). Classifications using 

the four indices from the 2006 Fulton, IN show the best visual agreement for CAI and SINDRI with 

ground-truth; LCA and NDTI did not fare as well (Figure 10). For all data sets in Table 1 SINDRI 

classifications were significantly better than random at a 95% confidence level; CAI and LCA yielded 

significant classifications except for the Beltsville, MD data set on 1 June 2004, and NDTI 

classifications failed significance tests for six of the thirteen data sets. 
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Figure 7. Comparison of crop residue cover (fR) and fR index values with regression lines 

for the Pesotum, IL (PIL) and Centreville, MD (CMD) areas. Index acronyms: CAI–

Cellulose Absorption Index; SINDRI–Shortwave Infrared Normalized Difference Residue 

Index; LCA–Lignin-Cellulose Absorption Index; and NDTI–Normalized Difference 

Tillage Index. Straight lines denote regression lines. Dotted lines denote tillage class 

boundaries. Data were acquired from aircraft by SpecTIR LLC (Sparks, NV). 
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Figure 8. Range of ASTER derived NDVI values for each data set. BMD, CMD, AIA, 

FIN, and PIL denote data from the Beltsville, MD, Centreville, MD, Ames, IA, Fulton, IN, 

and Pesotum, IL sites, respectively. Black dots denote outlier values above the 10th and 

below and the 90th percentile values (whiskers), the box denotes values between the 25th 

and 75th percentiles, with the median values being the bars in the middle of the boxes. 
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Figure 9. Comparison of ASTER and Landsat TM NDTI values for the Ames, IA area  

on 27 May 2007. 
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Figure 10. Comparison of crop residue indices and classification results for Fulton, IN, 29 

May 2006. The false-color NIR image utilized narrow spectral bands (red–860.7 nm, 

green–648.2 nm, and blue–548.2 nm) and is shown to help the reader differentiate between 

green vegetation pixels and non-vegetated fields that were undergoing tillage and planting 

operations. CAI is calculated from hyperspectral data, and the other indices via 

hyperspectral data that were convolved to equivalent ASTER (SINDRI and LCA) and 

Landsat TM (NDTI) bands. Classification results were post processed using a 5 × 5 

majority analysis to minimize noise. Circles denote ground-truth locations. Color-coded 

circles in the false-color NIR image denote ground truth tillage classes. Data were acquired 

from aircraft by SpecTIR LLC (Sparks, NV). 
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NDTI seemed to be the most affected by soil spectral properties, specifically soil carbon, as denoted 

by dark areas in the false color-NIR image in Figure 10. In the Fulton, IN area soil carbon was found 

to range between 0.5%–44.9% on a mass basis, with higher SOC soils being darker than low-SOC 

soils [17,34]. SINDRI was found to be sensitive to green vegetation, whereby pixels with high 

normalized difference vegetation index (NDVI) also had high values of SINDRI, unlike CAI for which 

green vegetation had values around zero [17,43]. However, pixels with NDVI above a specific value 

(for this study 0.3) can be masked out during image processing. NDTI also appeared to work the best 

when calculated from ASTER bands. However, ASTER NDTI values were only calculated for Iowa, 

and this may be a function of date within the season as seen with the regression line slopes in  

Figures 4–6. Iowa May 2007 NDTI statistical parameters decreased greatly between the ASTER 

acquisition on May 19 and the airborne hyperspectral acquisition in May 27 (Tables 1 and 3, and 

Figure 11), with only the 19 May 2007 NDTI classification being significantly different from random 

(Table 1). SINDRI showed comparable results to CAI, except in green vegetation pixels, but these 

were excluded from the analysis by the use of NDVI. Figure 11 shows classification maps for the 

imagery acquired southwest of Ames, IA. In this area the range of SOC values was less than for the 

Indiana site and ranged between 0.5% and 6.5%. Spectral indices for ASTER imagery acquired on 19 

May 2007 show that most non-vegetated field pixels are classified as either reduced or conservation 

tillage (Table 3), with statistical parameters being similar for all indices, albeit that for this data set 

ASTER NDTI performed the best. For the 27 May 2007 data set shown in Figure 11 and Table 3, CAI 

classified most fields as being reduced-till, and airborne SINDRI as intensive till. Airborne LCA 

visually agreed the best with CAI. Airborne NDTI did not produce a significant classification  

(Table 1) due to the nearly flat regression line for the data in Figure 6. However, for the 27 May 2007 

data SINDRI performed the best with respect to classification accuracy, although CAI had a higher r2 

and lower RMSE when comparing ground-truth and remote estimates of fR. It should be noted  

that 2007 ground-truth acquisition activities in Iowa occurred on May 21–23, so there was a distinct 

possibility that changes in tillage occurred between the ASTER image acquisition on May 19 and the 

airborne hyperspectral image acquisition on May 27. This is further evidenced in Figure 11 and  

Table 3, where both SINDRI and LCA show shifts toward lower- fR classes between the  

two dates. Additionally, a heavy rain event of 8.46 cm (3.33 inches) was reported on May 24  

with 0.66 cm (0.26 inches) more rain being reported on May 26 by the National Weather Service for 

Ames, IA [53]. This rain could have hampered any ongoing tillage and planting operations. The rain 

could also have encouraged plant canopy growth, and coupled with the previous day’s the rain 

increased total scene water, adversely affecting TM bands 5 and 7 [54], and thus, NDTI, while 

minimally impacting the other indices. Unfortunately, no water content measurements of crop residue 

or surface soil were acquired on the days of acquisition; however, the maximum NDVI values did 

increase between those two dates (Figure 8). 
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Table 3. Tillage class areas and percents as determined by spectral index classifications 

and following a 5 × 5 majority analysis for the images southwest of Ames, IA in 2007 as 

displayed in Figure 11. 19 May 2007 imagery included an average non-vegetated field area 

of 10928.6 ha southwest of Ames, IA, and 27 May 2007 imagery averaged 7792.8 ha. Green 

vegetation pixels were excluded from the analysis. Conserv. denotes conservation tillage. 

 19 May 2007 27 May 2007 

Tillage class SINDRI LCA NDTI CAI SINDRI LCA NDTI 

 
Area 

(ha) 
% 

Area 

(ha) 
% 

Area 

(ha) 
% 

Area 

(ha) 
% 

Area 

(ha) 
% 

Area 

(ha) 
% 

Area 

(ha) 
% 

Intensive 843.8 7.9 443.9 4.1 1681.7 14.9 577.9 7.5 4285.6 55.3 660.6 8.5 0.0 0.0 

Reduced 5941.5 55.5 4610.0 42.6 5280.1 46.8 6064.3 78.2 2819.9 36.4 4643.3 59.8 133.9 1.7 

Conserv. 3918.2 36.6 5755.8 53.2 4310.8 38.2 1110.4 14.3 638.0 8.2 2461.8 31.7 7735.2 98.3 

Figure 11. Comparison of crop residue indices and classification results for the area 

southwest of Ames, IA. The top three images were calculated from 19 May 2007 

multispectral ASTER imagery; the bottom five are derived from airborne hyperspectral 

imagery acquired by SpecTIR LLC (Sparks, NV) on 27 May 2007. 27 May SINDRI, LCA, 

and NDTI were calculated from convolved equivalent ASTER and Landsat TM bands. 

Circles denote ground-truth locations. Color-coded circles in the 27 May 2007 false-color 

NIR image denote ground truth tillage classes. 
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It should be noted, however, that care needs to be taken when assessing the quality of indices and 

classifications based upon regression, RMSE, and classification accuracy analyses [51]. This is 

particularly the case, as the fR-based tillage classification scheme utilized by the USDA-NRCS and the 

CTIC [52], utilizes relatively narrow fR classes for intensive-(0%–15%) and reduced- 

tillage (15%–30%), and a much wider third cover class, conservation tillage (30%–100%). This, in 

conjunction with inherent difficulties in the line-point transect and digital photographic methods that 

were used for ground-truth acquisition [10,55] and changes in fR over very small distances (i.e., within 

the sampling area), can easily create a situation where remote and ground truth fR r2 and RMSE values 

may be slightly inconsistent with classification accuracy parameters in comparison with another data 

set, particularly when data points occur near class boundaries. 

 

4.2. Effect of Water Content on Index Value 

 

High soil water content values reported for the Beltsville, MD samples by Daughtry and Hunt [30] 

decreased r2 and increased RMSE values (Table 1) for SINDRI, suggesting this index may be 

problematic soon after irrigation or precipitation. 3 × 3 accuracy assessments were similarly negatively 

affected by increase in water content, but consistently produced significant classifications even in the 

one case where CAI and LCA did not on 1 June 2004 (Table 1). Furthermore, SINDRI did performed 

well in Iowa in the days after a heavy rain event, with another occurring the day prior to acquisition. 

Thus, SINDRI appears to be robust even in somewhat wet conditions. However, we feel that additional 

research is needed to fully assess the effects of water content on SINDRI. 

 

Conclusions 

 

SINDRI effectively estimated fR at multiple locations on several dates. SINDRI also tracked 

changes in tillage for the same location in two images that were acquired eight days apart. While CAI 

still performed the best, SINDRI performed better than both LCA and NDTI. NDTI was the most 

inconsistent index in terms of accuracy and produced insignificant classifications for six of the thirteen 

data sets analyzed. SINDRI offers a viable option for fR mapping at less cost compared to CAI. 

SINDRI also allows for reanalysis of existing ASTER imagery for crop residue and other non-

photosynthetic vegetation cover. These data, in turn, can be used as input parameters for agricultural 

carbon and erosion models that are dependent upon tillage and fR data. As such, this index would also 

be useful for monitoring carbon sequestration to reduce the rate of increase in atmospheric  

CO2 concentrations.  

SINDRI was found to be somewhat sensitive to green vegetation and soil and crop residue water 

content, but still produced robust results in wet conditions. However, accurate results can still be 

acquired even with these present. Green vegetation pixels should be masked out utilizing a vegetation 

index such as NDVI prior to analysis with SINDRI.  

Further research is needed to assess (a) SINDRI’s applicability over a wider range of geographic 

areas, (b) the sensitivity of SINDRI to water content, and (c) to assess its usefulness for other 

applications where detection of non-photosynthetic vegetation is of interest, e.g., rangeland health or 

brush fire hazards.  
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