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Abstract: Anomaly detection has received considerable interest for hyperspectral data exploitation
due to its high spectral resolution. Fast processing and good detection performance are practically
significant in real world problems. Aiming at these requirements, this paper develops a recursive
local summation RX anomaly detection approach by virtue of sliding windows. This paper develops
a recursive local summation RX anomaly detection approach by virtue of sliding windows. A causal
sample covariance/correlation matrix is derived for local window background. As for the real-time
sliding windows, the Woodbury identity is used in recursive update equations, which could avoid the
calculation of historical information and thus speed up the processing. Furthermore, a background
suppression algorithm is also proposed in this paper, which removes the current under test pixel
from the recursively update processing. Experiments are implemented on a real hyperspectral
image. The experiment results demonstrate that the proposed anomaly detector outperforms the
traditional real-time local background detector and has a significant speed-up effect on calculation
time compared with the traditional detectors.

Keywords: hyperspectral imagery; recursive anomaly detection; local summation RX detector
(LS-RXD); sliding window

1. Introduction

Attributed to the high spectral resolution, hyperspectral images are now capable of uncovering
many subtle signal sources that cannot be known by prior knowledge or be visually inspected by
image analysts [1,2]. Signal sources appear as anomalies in the data, such as unexpected presence,
low probability of occurrence, small sample population whose signature is spectrally distinct from
spectral signatures of its surrounding data samples. As a result, anomaly detection has received
considerable interest in hyperspectral imaging in the last twenty years [3–6].

The RX detector developed by Reed and Yu [3] is acknowledged to be the most widely used
anomaly detector. The classic RX algorithm is based on the global sample covariance matrix K, and
is referred to as K-RXD. Since then, many RX-like anomaly detectors have been proposed [7–13].
Of particular interest are RXD using global sample correlation matrix R (R-RXD) [7,8], and RXD based
on local background covariance matrix (L-RXD) [9]. The L-RXD uses not only spectral information but
also spatial information to bring benefit for detection performance [10]. However, it may fail to obtain
the best detection performance due to the penuriousness and unicity of local background distribution
in every local window. A local summation anomaly detection (LSAD) is proposed in [13] by combining
multiple local neighboring distributions of the pixel under test to get better performance. LSAD can be
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considered as a local summation RXD (LS-RXD) using subspace feature projection for the stable local
covariance estimation.

The hyperspectral remote sensing has developed rapidly in recent years, but as the satellite
relocation cycle becomes shorter, some new problems come out. For instance, the massive data has
brought some challenges to the data transmission and storage. Moreover, for the anomaly detection
problem, the anomalies such as moving targets may show up for a short time and disappear quickly.
In this case, timely detection is necessary. However, data transmission is quite time-consuming,
to achieve timely detection, developing the recursive anomaly detection algorithms is important
and necessary. Recently, several real-time anomaly detection methods [14–19] have been proposed.
Specifically, real-time causal process of K-RXD and R-RXD detector (called as RT-CK-RXD, RT-CR-RXD)
were developed in [14]. The real-time R-RXD and constrained energy minimization (CEM) are
optimized and integrated in a dual-mode parallel Field-Programmable Gate Array (FPGA) based
hardware platform in [16]. Unlike the RT-CR-RXD, in the FPGA-based implementations, each pixel
under test is located in the middle region of the background, which can improve the performance of
target detection. The computational performance of real-time causal linewise progressive anomaly
detection (RCLPAD) based on Cholesky decomposition along with linear system solving were
developed in [17]. An advanced anomaly detector using causal sliding array windows to capture local
autocorrelation matrix statistics in the sense of causality was developed (CSA-RXD) [18], by virtue of
causal sliding windows, a causal sample correlation matrix can be derived for causal anomaly detection.
Recursive update equations are also derived and thus speed up real-time processing. A real-time
L-RXD using the local casual square window is proposed in [19]. However, the method proposed in
[19] still needs to calculate the inverse of a matrix to detect each pixel. Compared with sliding array
window, setting a sliding square window usually contains much more spectral-spatial integration
information. This paper addresses this issue and further develops the recursive processing for LS-RXD
based on sliding square window. The contribution of this work is based on two points: a recursive
version of LS-RXD according to a causal relation from the Woodbury identity, which reduce the runtime;
and a background suppression algorithm integrated with the recursive procedure, which improves the
detection accuracy.

The rest of the paper is organized as follows. In Section 2, several related RX anomaly detectors
are briefly covered. Section 3 provides the design of recursive sliding window detector. Section 4
demonstrates the experiments of the proposed algorithm compared with some traditional anomaly
detection algorithms. Finally, Section 5 draws our conclusions.

2. Related Anomaly Detectors

In this section, we provide a short overview of K-RXD, L-RXD and LS-RXD.
Assume that {ri}N

i=1 is a set of data sample vectors, and ri = (ri1, ri2, .., riL)
T is the ith data sample

vector, where L is the total number of spectral bands.

2.1. K-RXD

The K-RXD, denoted by δK−RXD(r), is specified as follows:

δK−RXD(r) = (r− µ)TK−1(r− µ) (1)

where µ = (1/N)∑N
i=1 ri is the global sample mean and K = (1/N)∑N

i=1(ri− µ)(ri − µ)T is the sample
data covariance. The form of δK−RXD in (1) is actually the well know Mahalanobis distance between
the data sample being detected and global sample mean. It should be pointed out that the model
assumes the data arise from two normal probability density functions with the same covariance matrix
but different means.
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2.2. L-RXD

Local anomaly detection is very important since the global RX anomaly detector fails to work
when the anomalies are relatively small or only distinct from the local surroundings, but buried in
the global background. The most widely used local anomaly detection algorithm is derived from the
commonly used RXD, named as local-RX detector (L-RXD). The L-RXD, denoted by δL−RXD(r), is
specified by:

δL−RXD(r) = (r− µW )TΣW
−1(r− µW ) (2)

where µW is the local sample mean of a square window of size ω×ω pixels, centered at pixel r and
ΣW is the background data sample covariance matrix of the local window W .

For L-RXD, a window of the selected size should be chosen firstly. The window size should not
be too large or too small to obtain considerable background estimation.

2.3. LS-RXD

The traditional L-RXD exploits only one sliding window to estimate the neighborhood background
statistic for the pixel under test. It is difficult to detect a multi-pixels anomaly target by L-RXD if the
local distributions of some windows are mostly occupied by anomaly pixels because the background
statistic will be contaminated seriously by anomaly pixels. In order to solve this problem, a local
summation RX detector is proposed in [13]. Figure 1 takes 3 × 3 size multiple local windows to
demonstrate the implementation of the local summation strategy.

Figure 1. Multiple local window filters [13] (a) Window 1. (b) Window 2 and (c) Window 9.

As illustrated in Figure 1, nine local windows will be taken for the pixel under test, represented
by a yellow pixel if the local window is chosen to be 3× 3 size. For an ω×ω size local window, the
sliding filter contains ω × ω local windows for summation. The summation detector result for the
pixel under test r is specified by

δLS−RXD(r) =
ω×ω

∑
i=1

(r− µWi )
TΣWi

−1(r− µWi ) (3)

where Wi is the local pixel samples dataset from window i, µWi and ΣWi are the mean vector and
covariance matrix of Wi, respectively.

Suppose that the pixel samples dataset in the local window is denoted as W = {rpij}, where
i = 1, 2, .., ω, j = 1, 2, .., ω and pij is the global location of rpij in the whole data set {ri}N

i=1. As a matter
of fact, the LS-RXD specified by (3) can be implemented by recursively updating the detection result of
each pixel in W as the window is sliding, that is

δt+1
LS−RXD(rpij) = δt

LS−RXD(rpij) + (rpij − µW )TΣW
−1(rpij − µW ) (4)
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where µW and ΣW are the mean vector and covariance matrix of W , δt
LS−RXD and δt+1

LS−RXD are the t,
t + 1 times updated detection result, respectively.

In doing so, the only difference between L-RXD and LS-RXD is that as the local window is sliding;
only the detection result of the centered pixel in the local window is calculated by L-RXD, while the
detection results of all ω×ω pixels in the local window are updated by LS-RXD.

It is worth noting that the local summation RX detector in [13] is called as LSAD for short.
Subspace feature projection is used in LSAD to approximately calculate the ΣWi

−1 in Equation 3 to
enable LSAD with robust background feature statistics. However, it is difficult to realize a timely
process due to the subspace feature projection in practice. Band selection onboard before data
transmission is feasible to avert the singularity of an inversed local covariance. Therefore, we only
focus on the recursive process of L-RXD and LS-RXD in the following.

3. Recursive LS-RXD

In the aforementioned local summation detection algorithms, a new local covariance matrix
inversion is repeatedly calculated as the local window slides. The key issue of the recursive process
of L-RXD and LS-RXD is how to perform a recursive computation for every independent covariance
matrix inversion.

In what follows, we describe how to calculate the covariance matrix inversion of a casual sliding
array window recursively.

3.1. The Covariance Matrix Inversion of Causal Sliding Array Window

Figure 2 shows the causal sliding array window at rn−1 depicted by dotted lines and the causal
sliding array window at rn depicted by dashed lines, where a is the array window size. The farthest
pixel rn−a from rn in the causal sliding array window at rn is removed from the causal sliding array
window at rn, while the most recent data sample vector rn is added to the causal sliding array
window at rn+1.

1
r 2

r
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r /2 1n a

r
1n

r
n
r
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N
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r
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r

Figure 2. Casual sliding array window at rn with width specified by a.

Defining Ra(n) = (1/a)∑ri∈W rirT
i , where W = {ri}n

i=n−a+1. Ra(n) is called the "causal" sample
auto correction matrix correlation matrix, and is formed by data sample vectors in the causal sliding
array window. Then Ra(n) can further be expressed as

Ra(n) = [(Ra(n− 1)−
rn−arT

n−a

a
) +

rnrT
n

a
] (5)

By repeatedly use of the following Woodbury matrix identity [20] twice:

[A + uvT ]−1 = A−1 − [A−1u][vT A−1]

1 + vT A−1u
(6)

the inverse of Ra(n) can be updated recursively via R−1
a (n) by virtue of (7) and (8) [18]

R−1
a (n) = (Ra(n− 1)− rn−arT

n−a
a

)−1 −
[(Ra(n− 1)− rn−arT

n−a
a )

−1
rn√

a ][
rT
n√
a (Ra(n− 1)− rn−arT

n−a
a )

−1
]

1 + rT
n√
a (Ra(n− 1)− rn−arT

n−a
a )

−1
rn√

a

(7)

(Ra(n− 1)−
rn−arT

n−a
a

)−1 = Ra
−1(n− 1) +

[Ra
−1(n− 1) rn−a√

a ][
rT

n−a√
a Ra

−1(n− 1)]

1− rT
n−a√

a Ra
−1(n− 1) rn−a√

a

(8)
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The “causal” covariance matrix formed by all the data sample vectors in the sliding array window
can be specified by

Ka(n) = Ra(n)− µa(n)µT
a (n) (9)

where

µa(n) = µa(n− 1) + (1/a)(rn − rn−a) (10)

is the “causal” sample mean of sliding array window. Using Woodbury matrix identity again, by letting
A = Ra(n), u = −µa(n), v = µa(n), then K−1

a (n) can be further expressed as

K−1
a (n) = R−1

a (n) +
[R−1

a (n)µa(n)][µT
a (n)R−1

a (n)]
1− µT

a (n)R−1
a (n)µa(n)

(11)

By virtue of (7), (8), (10) and (11), K−1
a (n) can be updated recursively by R−1

a (n− 1) and µa(n− 1),
via deleting the pixel rn−a and adding the current pixel rn.

3.2. Recursive Processing of the Covariance Matrix Inversion of Sliding Window

Figure 3 illustrates two continually sliding windows with size of ω×ω depicted by black dashed
lines and orange dashed lines, respectively, where rpωω+1 denotes the most recent received data sample
vector. The sample data vectors update process in sliding windows can be implemented in ω steps
by removing one pixel and adding one pixel each step. Suppose that pωω = n− 1, the inverses of
correlation matrices of the local window at rpωω and rpωω+1 are denoted as R−1

ω2 (n− 1) and R−1
ω2 (n)

respectively, and inverses of the covariance matrices of the local window at rpωω and rpωω+1 are
denoted as K−1

ω2 (n− 1) and K−1
ω2 (n), respectively. In analogy with (7), (8), (10), and (11), K−1

ω2 (n) can be
updated recursively as follows.
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Figure 3. Sliding window with size of ω×ω.
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For i = 1 to ω, do

(Rω2(n− 1)−
rpi1 rT

pi1

ω2 )−1 = R−1
ω2 (n− 1) +

[R−1
ω2 (n− 1)

rpi1
ω ][

rT
pi1
ω R−1

ω2 (n− 1)]

1− rT
pi1
ω R−1

ω2 (n− 1)
rpi1
ω

(12)

R−1
ω2 (n) = (Rω2 (n− 1)−

rpi1 rT
pi1

ω2 )−1 −
[(Rω2 (n− 1)−

rpi1 rT
pi1

ω2 )
−1

rpiω
ω ][

rT
piω
ω (Rω2 (n− 1)−

rpi1 rT
pi1

ω2 )
−1

]

1 +
rT

piω
ω (Rω2 (n− 1)− rpi1 rT

pi1
ω2 )

−1 rpiω
ω

(13)

Meanwhile, update R−1
ω2 (n− 1) = R−1

ω2 (n) after each iteration.
Then

µ−1
ω2 (n) = µ−1

ω2 (n− 1) + (1/ω2)(∑ω

i=1 (rpiω − rpi1)) (14)

K−1
ω2 (n) = R−1

ω2 (n) +
[R−1

ω2 (n)µω2(n)][µT
ω2(n)R−1

ω2 (n)]

1− µT
ω2(n)R−1

ω2 (n)µω2(n)
(15)

3.3. Recursive Processing of LS-RXD

Except for the recursive processing of the covariance matrix inversion of the sliding window,
some other issues should also be considered.

The first issue is the edge expansion. To ensure that there is no absence of detection on the edge
of an image, the edge expansion is usually operated as a preprocessing for a local window detector.
Due to the low probability of anomaly targets appearance in hyperspectral images, enplaned layers
can be randomly chosen from the whole image [13]. With this consideration in mind, take the window
with size of 3× 3 as an example. We design the sliding window strategy, depicted in Figure 4, where
the yellow, blue and purple grids, respectively, denote the latest pixel received, the processed data
and the pixels to be processed. As Figure 4 shows, when the sliding window meets the right board
of the hyperspectral image, the next several sliding windows are across the border by moving down
one line and adding new data one by one. The last sliding window moves to the right-bottom until
the last sample data rRow×Col is received. This design enables the recursive processing of LS-RXD
more conveniently.

...

...

...

(a)

...

...

...

(b)

...

...

...

(c)

...

...

...

(d)

Figure 4. Sliding window strategy for recursive local summation RXD (R-LS-RXD): (a) No.(Col − 2)
window; (b) No.(Col − 1) window; (c) No.Col window; (d) No.(Col + 1) window.

The second issue is how to keep track of which data sample vector should be removed and which
data sample vector should be added as a matrix window moves on. Let W = {rpij}ω

i,j=1 denote the
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local sliding window in an image with size Row× Col, where pij is the global location of rpij in the
whole data set {ri}N

i=1. For the first local window, pij can be expressed as pij = x(i−1)×Col+j . Using the
strategy of Figure 4, it is very easy to update the global location of pixels in the follow-up window as
pij = pij+1 successively.

After the aforementioned issues are solved, the recursive LS-RXD, called as R-LS-RXD can be
obtained by

δR−LS−RXD(rpij) = δR−LS−RXD(rpij) + (rpij − µω2(n))TK−1
ω2 (n)(rpij − µω2(n)) (16)

Three comments are worthwhile:

1. It is important to note that, using the strategy of Figure 4, the updating counts of the detection
value for the pixel located in several top and bottom lines of the image are less than ω. This will
result in the whole detection result being inconsistent. To solve this problem, the updating number
of each pixel is counted, which is denoted as Npij , and finally the detection result is obtained as
δR−LS−RXD(rpij)/Npij

2. To avoid the singularity problem of calculating the inverse of the sample correlation and
covariance matrix used by anomaly detectors, ω × ω must at least equal to or greater than
the total number of spectral bands [13,18].

3. The whole design procedure is also suitable for recursive L-RXD which is not included here.

3.4. Background Suppression of Sliding Windows

This section mainly discusses the background suppression sliding window furthermore. It is not
convenient to set the current under test pixel to conclude in the local window background with other
data samples, because it will reduce the separation between background information and anomaly
information separation while the current under test pixel is anomaly [21]. In order to suppress the
background information and improve the detection performance, we need to remove the current under
test pixel (rk) from the recursive update processing.

Assume that Rk is the correlation matrix removed rk, and Rk is specified by

Rk =
1

n−1 ∑n
i=1,i 6=k rirT

i = 1
n−1 (∑

n
i=1 rirT

i − rkrT
k )

= n
n−1

1
n ∑n

i=1 rirT
i −

1
n−1 rkrT

k = n
n−1 Rn − 1

n−1 rkrT
k

(17)

Once using Woodbury matrix identity, letting A = n
n−1 Rn, u = −1

n−1 rk, v = rk, then

R−1
k = ( n

n−1 Rn − 1
n−1 rkrT

k )
−1

= n−1
n R−1

n +
[ n−1

n R−1
n

1
n−1 rk ][rT

k
n−1

n R−1
n ]

1−rT
k

n−1
n R−1

n
1

n−1 rk

(18)

Assume that µk is the mean vector of background sample data removed rk, the inverse of
covariance matrix could be specified by

K−1
BS (n) = R−1

k (n) +
[R−1

k (n)µk(n)][µT
k (n)R−1

k (n)]

1− µT
k (n)R−1

k (n)µk(n)
(19)

As a result, the background suppression recursive R-BS-LS-RXD can be specified by

δR−BS−LS−RXD(rk) = (rk − µk(n))TK−1
BS (n)(rk − µk(n)) (20)

3.5. Computational Complexity Analysis

This section provides a detailed analysis on the computational complexity of calculating recursive
update Equations (12)–(15).
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The advantage of using causal sliding windows over local windows is the use of recursive
Equations (12) and (13), where the Woodbury identity is implemented twice, instead of recalculating
each time as long as a new data sample vector comes in. Table 1 shows the computation complexity of
matrix algebra. Based on the information in Table 1, the matrix inversion computation complexity is
higher than the matrix multiplication computation.

Table 1. Computation Complexity of Matrix Algebra.

Operation Input Output Algorithm Complexity

Matrix multiplication
Matrix a size m× n;

Matrix b size n× p;
Matrix size m× p Schoolbook matrix multiplication O(mnp)

Matrix inversion Matrix size m×m Matrix size m×m

Gauss-Jordan elimination

Strassen algorithm

Coppersmith-Winograd algorithm

Williams algorithm

O(n3)

O(n2.807)

O(n2.376)

O(n2.373)

The usage frequency of the Woodbury matrix identity is determined by the size of the sliding
window. Local background information is updated by calculating ω times of Equations (12) and (13),
regardless of the number of pixels in the local background. Such a significant benefit arises from the
recursive specialty in (12) and (13). Hence, the computational complexity of processing a single local
window specified by its window size ω × ω requires ω times calculations of matrix multiplication.
In addition, it only needs to calculate the inverse of the covariance matrix once.

Table 2 tabulates the number of floating operations (flops) required for LS-RXD and R-LS-RXD,
which update K−1

a (n) in different method, where the bands number is specified by L, local window size
is specified by a = ω×ω, and the pixels number to be processed is specified by N. These parameters
determine the number of flops in the algorithm. Figure 5 plots the number of floating operations
required for every algorithm versus L, a and N. The configurations of parameters are shown in Table 3.

Table 2. Computational Complexity for local summation RXD (LS-RXD) and recursive local summation
RXD (R-LS-RXD).

Algorithm LS-RXD R-LS-RXD

Operator Initialization
Input rn Input rn

µa K K−1 µa Equation(7) Equation(8) K−1

flops L3 + 2a(L2 + L) (a + 1)L 2a(L2 + L) L3 3L ω(6L2 + 5L) ω(6L2 + 5L) 6L2 + L

sum NL3 + 2aNL2 + 3a(N + 1)L L3 + (2a + 12Nω + 6N)L2 + (2a + 4N + 10Nω)L

Table 3. Configuration of The Parameters.

Figure 5 Parameters

L ω N

(a) 10:5:200 15 10,000
(b) 10 15:2:99 10,000
(c) 10 15 1000:1000:10,000
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As shown in Figure 5, the comparison of different anomaly detectors depends on the specific
configuration of the parameters. Generally speaking, R-LS-RXD is faster than LS-RXD.
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Figure 5. Numbers of floating operations in various of (a) bands; (b) ω size; (c) processed pixels.

4. Results and Discussion

To demonstrate the performance of anomaly detection using recursive local summation RXD,
two real hyperspectral image scenes were conducted for experiments. The first image data set is the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) image scene of Sandiego airport area which
is located in California. A sub-image with size 100× 100 along with its ground truth are shown in
Figure 6a,b, respectively. It was acquired through 224 spectral bands with a spectral coverage from
0.4 to 2.5 µm where the spatial resolution is 3 m and spectral resolution is 20 nm. After removing low
signal-to-noise ratio (SNR) and water absorption bands, a total of 126 spectral bands were used for
experiments.

(a) (b)

Figure 6. Sandiego hyperspectral image (a) 30th band scene; (b) ground truth.

The second image data set is the Hyperspectral Digital Imagery Collection Experiment (HYDICE)
image scene shown in Figure 7a which was collected in August 1995 from a flight altitude of 10,000 ft
with the ground sampling distance approximately 1.56 m. This scene has been studied extensively
by many reports such as [2,14]. It has a total of 169 bands which were used for the experiments
with low signal/high noise bands: bands 1–3 and bands 202–210; and water vapor absorption bands:
bands 101–112 and bands 137–153, removed. There are 15 panels with three different sizes of 3 m× 3 m,
2 m× 2 m and 1 m× 1 m. Figure 7b shows the precise spatial locations of these 15 panels, where red
pixels (R pixels) are the panel center pixels and the pixels in yellow (Y pixels) are panel boundary pixels
mixed with the background (BKG) . As a result, there are a total of 19 R panel pixels. In particular,
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R panel pixels are denoted by pij with rows indexed by i = 1, · · · , 5 and columns indexed by j = 1, 2, 3
except that the panels in the 1st column with the 2nd , 3rd , 4th, 5th rows which are two-pixel panels,
denoted by p211, p221, p311, p312, p411, p412, p511, p521. The 1.56 m-spatial resolution of the image scene
suggests that most of the 15 panels are one pixel in size.

(a) (b)

Figure 7. (a) A Hyperspectral Digital Imagery Collection Experiment (HYDICE) panel scene which
contains 15 panels; (b) Ground truth map of spatial locations of the 15 panels.

In order to quantitatively evaluate detection performance, receiver operating characteristic (ROC)
curves are used to compare the different algorithms. Based on the provided ground truth, we can
perform an analysis via ROC curves of the false alarm ratio (P f ) versus the detection ratio (Pd) by
taking all the possible thresholds (τ). We can further calculate the area under the ROC curve (AUC)
for a quantitative performance analysis. The algorithm with a larger AUC value is regarded as a
better performance.

Traditional ROC curves is a 2D plot represented by values of P f and Pd. Furthermore, we can plot
another 2D ROC curve of P f and τ, which provides crucial information of progressive background
suppression as the threshold τ varies. when it comes to the interpretation of anomaly detection by
visual inspection with no availability of ground truth or AUC values with similar performance.

Three experiments are conducted with the purpose of: (1) evaluating the influence of window
size on the detection performance of R-LS-RXD; (2) comparing the detection performance of different
algorithms; and (3) comparing computing times of different algorithms, respectively.

4.1. Optimum Size of Sliding Window

Band selection is very practical in anomaly detection [22,23]; nine bands are selected by
signal-to-noise ratio estimation and maximal information (SNRE-MI) [23] in the experiment to obtain
better result. To investigate the influence of window size on detection performance of R-LS-RXD,
two hyperspectral images of different sensors (AVIRIS and HYDICE, respectively) in the previous
section are used for experiments, the size of sliding window varies from 5× 5 up to 17× 17 with
steps of two pixels side width. Figure 8a–g and Figure 9a–g show their detection abundance fractional
maps with their detected abundance fractions in gray scale of AVIRIS and HYDICE hyperspectral
image, respectively. According to the experiment, the detection result is poor with a window size of
5× 5, where the background and anomaly are difficult to separate for both sensors. Additionally, the
performance begins to improve as the window size increases. When the window size is greater than or
equal to 11× 11, detection performances are similar by visual inspection as shown in Figures 8 and 9.
Figures 8h and 9h show the results of global background K-RXD detector for comparison.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Detection abundance fractional maps of AVIRIS by recursive local summation RXD
(R-LS-RXD) with different sliding window size: (a) ω =5; (b) ω =7; (c) ω =9; (d) ω =11; (e) ω =13;
(f) ω =15; (g) ω =17; (h) global.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Detection abundance fractional maps of HYDICE by R-LS-RXD with different sliding window
size: (a) ω =5; (b) ω =7; (c) ω =9; (d) ω =11; (e) ω =13; (f) ω =15; (g) ω =17; (h) global.

In order for a further quantitative evaluation of detection performance with different window
sizes, the ROC curves are implemented. To simplify our study, ROC curves for HYDICE data are
not given, since the results are similar for both data sources. Figure 10 shows the ROC curves for
AVIRIS data with different window sizes, with a traditional (Pd, P f ) ROC in (a) and a (P f , τ) curve
analysis in (b), respectively. Additionally, the AUC values, denoted by Az, are calculated for each
(Pd, P f ) curves and (P f , τ) curves. In general, the higher the value of Az(Pd, P f ) and the lower the
value of Az(P f , τ), the better the detection performance is. Results are tableted in Table 4, with the
best results highlighted.
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(a) (b)

Figure 10. Receiver operating characteristic (ROC) curves analysis for AVIRIS data with different
window size: (a) curve of (Pd, P f ); (b) curve of (P f , τ)

Based on the result of Figure 10 and Table 4, as the window size goes up, the values of Az

(Pd, P f ) are increased while the values of Az (P f , τ) are decreased. The detector reaches the best
detection power in size 13× 13, and the best background suppression performs the best with size
17× 17. However, the trend of Az (P f , τ) decreasing obviously slows down when the window size
increases from 13× 13 to 15× 15. When it comes to the global size background, the value of Az

(Pd, P f ) decreases to an untrustworthy value and is difficult to be distinguished by visual inspection
in Figures 8h and 9h.

The conclusions for the experiment are as follows. As with the size of window increases, the
sliding window RXD window RXD detector obtains better detection performances. However, 13× 13
is the optimum size for a Sandiego hyperspectral image. As an alternative interpretation, although a
larger window size results in better background suppression, the detection performance is much more
important in the detector evaluation.

Table 4. Area under the ROC curve (AUC) values of (Pd, P f ) and (P f , τ) with different window sizes

Sensor Window-Size 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15 17 × 17 Global

AVIRIS Az(Pd, P f )
Az(P f , τ)

0.7679
0.3461

0.8813
0.2059

0.9141
0.1389

0.9206
0.1086

0.9286
0.0873

0.9281
0.0752

0.9275
0.0648

0.6548
0.0080

HYDICE Az(Pd, P f )
Az (P f , τ)

0.9895
0.2636

0.9973
0.1576

0.9985
0.1178

0.9988
0.0902

0.9988
0.0713

0.9986
0.0575

0.9982
0.0468

0.9878
0.0121

4.2. Performance Evaluation for Different Algorithms

In this section, we compare the detection performance of the LS-RXD, causal sliding array
window (CSA-RXD) [18], proposed R-LS-RXD and R-BS-LS-RXD. In order to obtain the best detection
results, the sliding window is implemented with size of 13 × 13 for both AVIRIS and HYDICE
hyperspectral images.

Detection results of the four detectors using AVIRIS and HYDICE data are shown in
Figures 11 and 12, respectively. The first line shows the gray scale results with detected abundance
fractions, and the second line demonstrates the binary detection maps separated in an appropriate
threshold, which was calculated by Otsu algorithm[24].



Remote Sens. 2018, 10, 103 13 of 17

(a) (b) (c) (d)

Figure 11. Detection results of AVIRIS data for different algorithms: (a) LS-RXD; (b) R-LS-RXD;
(c) Recursive background Suppression local summation RXD (R-BS-LS-RXD); (d) Causal sliding array
window (CSA-RXD).

(a) (b) (c) (d)

Figure 12. Detection results of HYDICE data for different algorithms: (a) LS-RXD; (b) R-LS-RXD;
(c) R-BS-LS-RXD; (d) CSA-RXD.

Both hyperspectral images of different sensors came to the same conclusions as follows, showing
the adaptation of proposed algorithms for different sensors. It can be found obviously from the
detection results that CSA-RXD, which merely take partial advantage of spectral–spatial integration
information, omit number targets by visual inspection as shown in Figures 11d and 12d. On the
contrary, other anomaly detectors, which are implemented with spectral–spatial integrated information
can acquire excellent detection performance. The maximum detection of ground target shows in
Figures 6b and 7b can be detected by LS-RXD, R-LS-RXD and R-BS-LS-RXD by visual inspection in
Figures 11a–c and 12a–c. As also shown in the figure, R-BS-LS-RXD gets better background suppression
compared with R-LS-RXD and LS-RXD. This indicates that R-BS-LS-RXD can not only correctly detect
anomaly target pixels as R-LS-RXD performs, but also acquires excellent background suppression as
CSA-RXD performs.
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Similarly, to simplify our study, a quantitative evaluation with traditional ROC curves, (P f , τ)
curves, is demonstrated in Figure 13. AUC values are listed in Table 5, only for AVIRIS Sandiego data,
since the results are similar for both data sources.
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Figure 13. ROC analysis with different detectors: (a) curve of (Pd, P f ); (b) curve of (P f , τ).

Table 5. AUC values with different detectors.

Algorithm LS-RXD R-LS-RXD R-BS-LS-RXD CSA-RXD

Az (Pd, P f ) 0.9286 0.9286 0.9270 0.7401
Az (P f , τ) 0.0873 0.0873 0.0364 0.0597

It is interesting to note that the ROC curves of LS-RXD, R-LS-RXD and R-BS-LS-RXD are
overlapped completely. This indicates that these algorithms get similar detection power from the
traditional ROC curve analysis. Meanwhile, R-BS-LS-RXD gets a better performance in background
suppression as the (P f , τ) curve shows. It is clearly shown that anomaly detectors with spectral–spatial
integration have better performance, where the ROC curves of LS-RXD, R-LS-RXD and R-BS-LS-RXD
are much closer to the upper left corner than CSA-RXD.

AUC values tablet in Table 5 prove that the proposed R-LS-RXD and R-BS-LS-RXD get a similar
detection performance with LS-RXD. In addition, Az(Pd, P f ) of LS-RXD, R-LS-RXD and R-BS-LS-RXD
is greater than CSA-RXD. By contrast, R-BS-LS-RXD produced lowest value of Az(P f , τ). In general,
R-BS-LS-RXD can suppress the background information and improve the detection performance.

4.3. Computing Time Comparison for Different Algorithms

In order to verify the computing effectiveness of recursive LS-RXD, we design a comprehensive
comparative analysis on the computer processing time (CPT) of R-LS-RXD and LS-RXD. The computer
environments used for the experiments are 64-bit operating systems with Intel i5-4590, a central
processing unit (CPU) of 3.3 GHz, and 8 GB of random access memory (RAM). In order to remove
the pulse error caused by the computer itself, the following data on complexity analyses are averaged
after five experiments. Table 6 tablets the computing time of algorithms with different window sizes in
San Diego hyperspectral image.

Table 6. Computing Time (seconds).

Windowsize 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15 17 × 17

R-LS-RXD 1.366 1.648 1.951 2.247 2.504 2.764
LS-RXD 4.248 4.327 4.407 4.542 4.925 5.618
Speedup 3.110 2.627 2.259 2.022 1.967 2.033
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Based on the results in Table 6, the computing time of R-LS-RXD is significantly less than LS-RXD
in every window size. In addition, the acceleration is particularly noticeable when the window is in a
small-scale. In the experiment, the speedup ratio is up to three when the window size is chosen as
7× 7. As the window size grows up, the speedup ratio remains, at least, two.

To further evaluate computational complexity, Figure 14 plots the computing time versus the
number of processed pixels for both R-LS-RXD and LS-RXD on the Sandiego hyperspectral image.
Each algorithm was run and executed five times to produce an average computing time. As we can
see, R-LS-RXD requires less time than LS-RXD does due to the fact that the former implements a
recursive process, while the latter implements a nonrecursive process. As also shown in the figure, the
computing time increases linearly as new pixels are added.
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Figure 14. Plots of computing time versus number of processed pixels. (a) ω =7; (b) ω =9; (c) ω =11;
(d) ω =13; (e) ω =15; (f) ω =17.

5. Conclusions

This paper proposes a recursive local summation RX algorithm for hyperspectral anomaly
detection based on sliding window processing. In order for a fast implementation of a sliding window
detector, a recursive update equation for the inversion of local background covariance matrices is
developed. In addition, a background suppression R-BS-LS-RXD detector is also proposed in this
paper, which removes the current under test pixel from the recursively update processing. This method
exploits a local summation strategy in a sliding window, which could sum multiple correlated local
background statistics to suppress the major background. The real hyperspectral image experiments
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have proven that the R-LS-RXD and LS-RXD obtain similar detection performances, which can be
competitive with that of CSA-RXD based on sliding array window background. To investigate
the computational complexity issue, a comprehensive comparative analysis on the CPT of running
recursive updating sliding window detector and un-recursive updating method is conducted in theory
and experiments. The result shows R-LS-RXD has a significant acceleration effect for calculation.
Our future work mainly focuses on deriving real-time progressive processing of anomaly detection for
hyperspectral imagery that was acquired by other data formats.
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