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Abstract: Thermal data products derived from remotely sensed data play significant roles as key
parameters for biophysical phenomena. However, a trade-off between spatial and spectral resolutions
has existed in thermal infrared (TIR) remote sensing systems, with the end product being the limited
resolution of the TIR sensor. In order to treat this problem, various disaggregation methods of TIR
data, based on the indices from visible and near-infrared (VNIR), have been developed to sharpen
the coarser spatial resolution of TIR data. Although these methods were reported to exhibit sufficient
performance in each study, preservation of thermal variation in the original TIR data is still difficult,
especially in fire areas due to the distortion of the VNIR reflectance by the impact of smoke. To solve
this issue, this study proposes an efficient and improved disaggregation algorithm of TIR imagery on
wildfire areas using guided shortwave infrared (SWIR) band imagery via a guided image filter (GF).
Radiometric characteristics of SWIR wavelengths could preserve spatially high frequency temperature
components in flaming combustion, and the GF preserved thermal variation of the original TIR data
in the disaggregated result. The proposed algorithm was evaluated using Landsat-8 operational land
imager (OLI) and thermal infrared sensor (TIRS) images on wildfire areas, and compared with other
algorithms based on a vegetation index (VI) originating from VNIR. In quantitative analysis, the
proposed disaggregation method yielded the best values of root mean square error (RMSE), mean
absolute error (MAE), correlation coefficient (CC), erreur relative globale adimensionelle de synthèse
(ERGAS), and universal image quality index (UIQI). Furthermore, unlike in other methods, the
disaggregated temperature map in the proposed method reflected the thermal variation of wildfire
in visual analysis. The experimental results showed that the proposed algorithm was successfully
applied to the TIR data, especially to wildfire areas in terms of quantitative and visual assessments.
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1. Introduction

Thermal data is related to emissivity of objects on the ground, and this property can account
for biophysical phenomena [1,2]. Recently, thermal remote sensing based on satellite sensors has
made it possible to establish temperature maps over wide areas. However, a trade-off exists between
spatial and spectral resolutions in any spaceborne remote sensing system [3,4]. This limitation appears
especially in thermal infrared (TIR) sensors. For instance, TIR sensors in the Landsat-8 platform
obtain the radiation emitted by the earth in a range of 10–13 µm, but the TIR band retrieves lower
total radiation than visible-near infrared (VNIR) and shortwave infrared (SWIR) bands. Due to this
radiometric characteristic of the TIR sensor, the spatial resolution of the TIR band is coarser than that
of other bands. In addition, the limited spatial resolution of TIR sensors emphasizes the necessity for
disaggregation of TIR imagery, also called thermal sharpening or downscaling, in order to improve the
spatial resolution of the thermal data products [5]. The purpose of TIR disaggregation is to sharpen
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the coarser spatial resolution of TIR images by introducing spatial detail from a finer resolution
multispectral (MS) image, without distortion of spectral information.

To achieve this purpose, various disaggregation methods of TIR imagery have been proposed in
the last few decades. Generally, most have been focused on the relationship between low-resolution
TIR and high-resolution vegetation index (VI), especially normalized difference vegetation index
(NDVI), because densely vegetated areas tend to have relatively low surface temperature [6–15].
Disaggregation procedures for radiometric surface temperature (DisTrad) [6] and thermal sharpening
(TsHARP) [7] algorithms are viewed as the leading methods due to their effectiveness and simplicity.
Based on the TsHARP algorithm, one category of the refined disaggregation algorithms uses statistically
linear models, including a pixel block intensity modulation algorithm [8], an emissivity modulation
algorithm [9], and a high resolution urban thermal sharpener algorithm [10]. Previous work has focused
on choosing other predictors such as albedo [16], percent impervious surface area [17], temperature
vegetation dryness index [18], and normalized difference built-up index [19]. More recently, complex
non-linear statistical algorithms with additional predictor variables have been proposed to improve
performance, including least median square (LMS) regression [12], artificial neural network [20–22],
thin plate spline interpolation [23], co-kriging method [24], wavelet transformation [25], and random
forest regression [26,27]. Also, some studies have focused on spatio-temporal disaggregation that
conducts data fusion between thermal imagery with low spatial and high temporal resolution and that
with high spatial and low temporal resolution [28–31].

Previous work applied disaggregation methods to global applications such as evapotranspiration
[20,32–35], urban heat islands [9,10,15,17,36,37], surface energy balance [38], and soil moisture
estimation [39]. Practical applications of thermal data, for example, wildfires [40–42], volcanic
activity [43,44], and land cover classification [45], however, are still limited in medium resolution
sensors like Landsat-8 or advanced spaceborne thermal emission and reflection radiometer (ASTER)
products. Some previous work reported that the VI-based disaggregation method of the TIR was
limited in heterogeneous areas [12,22,46]; however, the limitations of previous VI-based disaggregation
on fire affected areas have not been reported. The disaggregation of TIR in relatively medium-high
spatial resolution, therefore, is required to expand the application of TIR products for fire incidents.
Furthermore, at high temperatures up to 1500 K, temperature estimation using the TIR sensor is limited
because of its radiometric limitation. In addition, surface reflectance at the VNIR bands, mostly used
for the input of the disaggregation process, are distorted in wildfire situations because the presence of
smoke results in low transmittance. Therefore, there is a necessity to use other indices or band imagery
in the disaggregation of TIR process.

An alternative disaggregation method is required to improve previous work. There are essentially
two issues with the disaggregation of TIR that require improvement. First, a new input index must
be chosen such that a new disaggregation of TIR will exclude the index based on VNIR wavelengths
data. After choosing a new input for the disaggregation process, there remains an issue about how
to preserve the thermal variation of the disaggregated result that is similar to that of the original TIR
image at coarser resolution. To deal with these issues, this study chose a SWIR band as the input of the
alternative disaggregation algorithm. The SWIR band imagery has a finer resolution and can be used
to estimate high temperatures in flaming combustion situations due to its radiometric feature [40].
In addition, in order to preserve spectral information in the disaggregated result, a guided image filter
(GF) [47], that is, an edge-preserving smoothing operator, may be employed.

The objective of this study was to propose an efficient and improved disaggregation algorithm of
TIR imagery at the scene of a wildfire using guided SWIR band imagery. The imagery was obtained
from Landsat-8 operational land imager (OLI) and thermal infrared sensor (TIRS). The main parts of
this paper are structured as follows. Section 2 introduces previous thermal disaggregation techniques,
and the concept of a guided image filter is presented in Section 3. The proposed thermal disaggregation
method is presented in Section 4, and Section 5 presents the experimental results, along with image
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quality assessments. Finally, a discussion of future advancements and a conclusion are provided in
Sections 6 and 7 respectively.

2. Previous Disaggregation Methods of Thermal Data

2.1. Disaggregation of Radiometric Temperature

The DisTrad method focuses on the inverse relationship between temperature and NDVI, with
a 2nd order polynomial regression [6]. The disaggregation step of the algorithm is expressed by the
following equations:

T̂LR = f (NDVILR) = a0 + a1NDVILR + a2NDVILR
2 (1)

∆T̂LR = Tobs
LR − T̂LR (2)

T̂HR = f (NDVIHR) + ∆T̂LR (3)

where T̂LR is predicted temperature at low resolution, Tobs
LR is observed temperature from satellite

platform, and T̂HR is predicted temperature at high resolution. A linear least square regression was
applied between low resolution temperature imagery (TLR) and NDVI data (NDVILR), and the residual
term (∆T̂LR) obtained by Equations (1) and (2). The low resolution regression, then, is applied to the
high resolution NDVI data to estimate disaggregated temperature imagery. Finally, to reduce thermal
sharpening error, the residual term from the regression at the low resolution case is applied to the
estimated temperature imagery at high resolution in Equation (3).

2.2. Temperature Sharpening

The TsHARP algorithm suggested by Agam, et al. [7] has a similar disaggregation step to the
DisTrad, with the difference occurring only in the sharpening basis function. In TsHARP, fractional
vegetation ( fc) cover was selected for the input of the sharpening basis function because it is more
physically correlated with temperature than NDVI. Thus, the sharpening basis function is replaced by
Equation (4),

T̂LR = f (NDVILR) = a0 + a1

(
1−

(
NDVImax −NDVILR
NDVImax −NDVImin

)0.625
)

= a0 + a1 fc (4)

where NDVImax and NDVImin are the maximum and minimum value of NDVI in the single scene of
data. The remainder of the thermal sharpening process is equal to that of DisTrad.

2.3. Least Median Square Regression

The DisTrad and TsHARP algorithms are based on the ordinary least square (OLS) regression
method. However, the OLS regression is sensitive to outliers and lacks robustness, especially in
heterogeneous landscapes. Mukherjee, et al. [12] applied the regression to thermal sharpening with
the NDVI in heterogeneous landscapes. Median is known as a rank statistic and is less sensitive to
extreme outliers. The LMS method can be expressed as Equation (5):

MinMedSR

= Median
{
(T1 − (a + b × NDVI1))

2, (T2 − (a + b × NDVI2))
2, . . . , (Tn − (a + b × NDVIn))

2
} (5)

3. Guided Image Filter

The GF is an edge-preserving smoothing operator based on a local linear ridge model using
a guidance image Y as one of the inputs to filter the input image X. Originally, the GF was first
suggested by He et al. [47], but there are few previous studies that applied the GF to a remote sensing,
pan-sharpening process [48–50]. Here, we apply the GF to the disaggregation of TIR. Thus, the key
features of the GF are preserving major information about the input image and reflecting variation
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tendencies of the guidance image [49]. The output image Z, from the GF, is assumed to be a linear
transformation of the guidance image Y in a local window νk, at a pixel k, as shown in Equation (6):

Zi = akYi + bk ∀i ∈ νk (6)

where ak and bk are the local linear coefficients, and Yi and Zi are the ith pixel values of the guidance
image and the output. This local linear model ensures that if Y has an edge, Z also has a high spatial
frequency because of the relationship that ∇Z = a∇Y. These coefficients can be estimated by
minimizing the squared difference between Z and input image X with a local ridge regularization
parameter ω in Equation (7):

E(ak, bk) = ∑
iευk

(
(a kYi + bk −Xi)

2 + ωak
2
)

(7)

The regularization parameter ω determines what edges with high variance should be preserved.
The local linear coefficients are given by ridge solution as shown in Equations (8) and (9):

ak =

1
|υ| ∑iευk

XiYi − µkXk

σk
2 + ω

(8)

bk = Xk − akµk (9)

where σk
2 and µk are the variance and mean of Y in υk, |υ| is the number of pixels in υk, and Xk is the

mean of X in υk. The averaging strategy of overlapping windows is applied to obtain the output image
Z because a pixel i is involved in all the overlapping local windows, υk. Thus, the filtering output is
written by Equation (10):

qi =
1
|υ| ∑

k|i∈υk

(akYi + bk) = aiYi + bi (10)

where ai =
1
|υ| ∑k∈υi

ak and bi =
1
|υ| ∑k∈υi

bk are the average coefficients of all overlapping windows.
Finally, for convenient representation of GF, this study abbreviates GF as follows in Equation (11):

Z = GFν,ω(X, Y) (11)

where GFν,ω is a guided filter defined by filter size, ν, and local ridge constant, ω. The GF has
useful advantages of detail enhancement. First, the GF has edge- and gradient-preserving smoothing
properties. The main objective of the GF is smoothing, but the edge-preserving property prevents a loss
in detail during the smoothing process, primarily near the edge. Furthermore, compared to that of a
bilateral filter, also known as a smoothing operator similar to the GF, the gradient-preserving property
of the GF can block the ringing or gradient-reversal artifacts near the edge. The other advantage of the
GF is that the guidance image can transfer the structure itself to the input image. Therefore, the GF
could be applied to SWIR imagery at a finer resolution using TIR imagery at a coarser resolution as the
guidance image.

4. Proposed Thermal Disaggregation Method

There are two issues with the proposed disaggregation algorithm of the TIR data. One is the
choice of a new input index, and the other is how to apply the GF in the disaggregation process
of thermal products. In this study, the SWIR band was chosen as the input of the disaggregation
algorithm, and the GF was adopted to estimate the geometric detail (GD) of the thermal product.



Remote Sens. 2018, 10, 105 5 of 17

4.1. Characteristics of SWIR Wavelength

Planck’s equation can calculate the emitted electromagnetic radiance of a blackbody (Mλ,T) in
Equation (12):

Mλ,T =
2hc2

λ5(e hc/λkT − 1
) (12)

where h is Planck’s constant, c is the speed of light, λ is wavelength, k is Boltzmann’s constant, and T is
the temperature of a blackbody in Kelvin. The wavelength of maximum emittance (λmax) and the total
radiance for a blackbody (Mtot) depend on the temperature of a blackbody, and can be described by
Wien’s displacement law and Stefan–Boltzmann’s law as follows in Equations (13) and (14):

λmax =
T
A

(13)

Mtot = σT4 (14)

where A is Wien’s constant equal to 2897.8 µm K, and σ is Stefan–Boltzmann constant equal to
5.6697 × 10−8 W/m2 K4. Based on both theorems, as the temperature of a blackbody increases, the
wavelength of peak radiance shifts to shorter wavelengths and the total emitted radiance from the
blackbody increases as shown in Figure 1, and the shorter wavelength is more sensitive to higher
temperatures. In terms of emitted radiation, Figure 1 shows that the maximum radiation at a temperature
of 1300 K appears at a wavelength of 2.2 µm, which means that it is highly efficient in detecting wildfires,
considering land surface temperatures range from 1000 K to 1500 K under flaming combustion [40], and
the SWIR-2 spectral response function of the Landsat-8 OLI includes this wavelength. However, the
detected radiance by the sensor is composed of reflected solar radiation and emitted thermal radiation.
According to Murphy et al. [51], a single SWIR band has been frequently saturated at a 30-m spatial
resolution, and this implied that the SWIR-2 band can be affected by land cover with a high spectral
reflectance in that band. Despite the solar reflective effect, the SWIR-2 band could be input into the
proposed method because the longer wavelength results in a reduction of solar reflective radiance.
Giglio et al. [52] reported that the longest wavelength in the ASTER SWIR band (2.4 µm) could be
selected as an input considering the flaming and smoldering response in the ratio of typical fire radiance
to typical land surface radiance. Therefore, the SWIR-2 band was used to obtain high spatial resolution
and high frequency temperature components in flaming combustion circumstances.
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Figure 1. Blackbody radiation curves at different blackbody temperatures, as derived from Plank’s law,
and relative spectral response functions of the Landsat-8 operational land imager (OLI) and thermal
infrared sensor (TIRS).
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4.2. Proposed Disaggregation Method

A flowchart of the proposed disaggregation method is described in Figure 2. Originally, the distributed
Level 1 TIR data was already resampled to 30 m resolution by cubic convolution resampling [2].
To obtain the original resolution TIR image at 100 m resolution, an aggregation procedure was
conducted on the Level 1 TIR data. However, the ratio between high- and low-resolution was rounded
off to 3 because of effective image processing. The National Aeronautics and Space Administration has
conducted a precise co-registration process for Landsat products [2]. Thus, the original resolution of the
TIR dataset was assumed to be 90 m instead of 100 m. Also, the TIR-1 band data were selected because
of the reported calibration issue. The main inputs of this method are only the TIR-1 band as brightness
temperature (BT), and the SWIR-2 band as top-of-atmosphere (TOA) reflectance. After radiometric
calibration, the BT imagery with 90-m resolution was upsampled at 30-m resolution, which is identical
to that of SWIR imagery by cubic convolution resampling, and the upsampled BT imagery was used
as guidance images for the GF. Histogram-matched SWIR imagery at 30-m resolution was selected for
input images of the GF. High frequency components of BT could then be estimated as a result of GF.
The difference between the TIR image and the approximation image from the GF can be considered as
the GD from the TIR image. Injection gain was applied to the GD because of an energy matching issue.
Finally, an injected GD of BT was merged with the original BT imagery.
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4.2.1. Preprocessing

To obtain at-sensor spectral radiance, TOA reflectance, or at-sensor BT, the digital number (DN)
must be converted using a radiometric calibration process [53]. First, the DN format of the image data
was converted to an at-sensor spectral radiance (Lλ) as follows:

Lλ = Grescale ×DN + Offset (15)

where Grescale = Lmax−Lmin
DNmax−DNmin

is a rescaling gain factor, Offset = Lmin − GrescaleDNmin is a rescaling
offset factor, Lmax and Lmin are spectral at-sensor radiances that are scaled to DNmax and DNmin,
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respectively, and the unit of Lλ is W/(m2 sr µm
)
. Based on the calculated at-sensor spectral radiance,

TOA reflectance (ρλ) and at-sensor BT (BT) can be obtained by employing Equations (16) and (17):

ρλ =
π·Lλ·d2

ESUNλ·cos θs
(16)

BT =
K2

ln
(

K1
Lλ

+ 1
) (17)

where d is earth-sun distance in astronomical units, ESUNλ is solar irradiance, θs is solar zenith
angle, and K1, K2 are calibration constants. In this study, the DN of VNIR and SWIR imagery were
converted to TOA reflectance by using the fast line-of-sight atmospheric analysis of spectral hypercubes
(FLAASH) model [54] which has been incorporated into the environment for visualizing images (ENVI)
software. This allows for the DN of VNIR and SWIR images to be converted to TOA reflectance and
that of TIR to be converted to BT. Converted TOA reflectance and BT were then used as an input
of both the proposed and comparative thermal sharpening algorithms. The use of TOA reflectance
reduced the effect of reflective solar radiance following the Earth-sun-satellite geometry [51].

4.2.2. Disaggregated Geometric Detail Using GF

After the radiometric calibration, the SWIR reflectance image (ρSWIR) at 30-m resolution was
histogram aligned with BT data (BT) from the TIR sensor at 90-m resolution to match the mean
and standard deviation of the BT. Because of the inherent features of SWIR wavelengths, especially
the SWIR-2 band in the Landsat-8 OLI sensor, the matched SWIR reflectance (ρBT

SWIR) was used to
obtain high spatial resolution and a high frequency temperature component in flaming combustion
circumstances instead of NDVI. In order to estimate the disaggregated GD (GD) of the BT image, the
matched SWIR reflectance was selected as an input image of the GF, and the upsampled BT imagery was
used as a guidance image of the GF. Therefore, the disaggregated GD of the BT was estimated by the GF
because the guided SWIR (GFν,ω(ρ

BT
SWIR, BT

)
) can preserve high frequency temperature components,

as in flaming combustion conditions, with the variance tendency of the BT. The disaggregated GD
of the BT was obtained by the difference of the histogram-matched SWIR and the guided SWIR in
Equation (18):

GD = ρBT
SWIR −GFν,ω(ρ

BT
SWIR, B̃T

)
(18)

where ρBT
SWIR is histogram-matched SWIR reflectance imagery by the BT data, and B̃T is the upsampled

BT. Thus, high frequency temperature components from SWIR images and structures of TIR images
were preserved in the guided image, and the guided image could be used to obtain the disaggregated
GD. Although the method of the disaggregation of thermal products influences the result of that
method, the excessive or deficient window size also results in redundant information and produces
artifacts in the resultant image [49]. In this study, the regularization parameter ω was set to 1, and
performance with different window size υk was evaluated for the proposed method with quantitative
image quality indices.

4.2.3. Injection Gain-Based on Data Statistics

The appropriate injection gain is an important factor for addition of GD information to the
TIR image. The extraction of high frequency components and their effective injection are, generally,
recognized as a single algorithm in an image fusion field [55]. If the injected spatial detail is not
enough or is excessive, the spatial quality of the disaggregation image is not sufficient, or redundant
information can lead to spectral distortion. In other words, in this study, the injection gain was
considered as a process to reduce solar-reflected radiance in the SWIR-2 because the GD was obtained
from the input of that band. Thus, this study strived to have the injection gain properly reflect the GD.
Although the GD had a temperature component because the input of the GD was histogram-matched
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with the BT imagery, the distribution of the GD is highly skewed relative to the original BT imagery
due to a high sensitivity of SWIR at the temperature of combustion. In order to achieve the proper
energy matching between the GD and the BT imagery, injection gain was utilized in this study. The
proposed injection gain is based on the ratio of the multiplication of the range and the skewness
between the disaggregated GD and the original BT data as follows:

Ω =
rangeBT · skewnessBT

rangeGD · skewnessGD
(19)

where Ω is the injection gain proposed in this study, rangeBT and rangeGD are the range of the BT and the
disaggregated GD, and skewnessBT and skewnessGD are the skewness of the BT and the disaggregated
GD. Finally, considering the proposed injection gain, the disaggregation of the BT imagery can be
described by Equation (20):

B̂T = B̃T + Ω � GD (20)

where B̂T is the disaggregated BT imagery at a 30 m resolution, and � denotes a pixelwise
multiplication operator.

4.3. Image Quality Assessment

To evaluate the quantitative image quality, five widely used quality indices were selected in
this study. First, the root mean square error (RMSE) and the mean absolute error (MAE) are used to
fundamentally evaluate the result of the image fusion process. The RMSE and MAE represent the
difference and the bias between the fused image F and the reference image R. Both can be expressed
by the following Equations (21) and (22):

RMSE =

√√√√ 1
M·N

M

∑
m=1

N

∑
n=1

(F(m, n) − R(m, n))2 (21)

MAE =
1

M·N
M

∑
m=1

N

∑
n=1

(F(m, n) − R(m, n)) (22)

where F(m,n) and R(m,n) represent the pixel values of the fused image, F, and the reference image R,
at the mth column and nth row, and M × N is the size of the reference image. Lower values for RMSE
and MAE indicate a lower error for the fused image. Second, the correlation coefficient (CC) is also
used to assess the fused images. The CC of a fused image and its reference image reflects the similarity
of spectral information. The formulation is Equation (23) as follows:

CC =
∑M

m=1 ∑N
n=1(F(m, n) − µF)(R(m, n) − µR )√

∑M
m=1 ∑N

n=1(F(m, n) − µF)
2 ∑M

m=1 ∑N
n=1(R(m, n) − µR)

2
(23)

where µF and µR are the mean of the fused image and the reference image, respectively. If the two
images are correlated, the CC is close to 1, which implies that the spectral features of the original image
were preserved well during the disaggregation process. Also, the image quality Q index, also known as
the universal image quality index (UIQI), reflects the structural distortion degree [56]. UIQI is defined
in Equation (24) as follows:

UIQI =
σFR

σFσR
· 2|µF||µR|
|µF|2 + |µR|2

· 2σFσR

σF2 + σR
2 (24)

where σFR is the covariance matrix between the fused image and the reference image, and σF and σR
are the standard deviations of the fused image and the reference image. The UIQI was applied to
the disaggregated results with an 8 × 8 distinct window. If its value is close to 1, the quality of the
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fused image is adequate. Finally, erreur relative globale adimensionelle de synthèse (ERGAS) is useful
to evaluate the overall quality of the disaggregated image [3]. It represents the degree to which the
disaggregated image and the reference image are different. The ERGAS is defined in Equation (25)
as follows:

ERGAS =
100
β

√√√√ 1
N

N

∑
i=1

(
RMSEi

µi

)2
(25)

where β is the scale ratio between the pixel sizes of the SWIR image and the BT image, RMSEi is the
RMSE between the ith fused band and the reference band, and µi is the mean of the ith reference band.
Thus, a small value of ERGAS means a small spectral distortion is present in the disaggregated image.

There are two validation methods that are commonly used to assess the quality of the fused
image. The first is the synthesis property, and the other is the consistency property as shown in
Figure 3. First, the synthesis property considers that the disaggregated image should be as close to
identical to the acquired input image as possible. However, at the full-resolution scale, assessment
of the synthesis property is not possible, thus the fusion images, SWIR and TIR, were degraded
by the scale ratio between the pixel sizes of the SWIR image and the BT image. The degraded
images were used as an input of the disaggregation method, and the degraded fused image was
compared to the original observed BT image as a reference. Second, the consistency property reflects
the degree to which the spatially degraded fused image is identical to the original observed BT image.
Cubic convolution interpolation was applied for image degradation of the synthesis and consistency
properties. To validate the evaluation process, both synthesis and the consistency properties were
applied to our experimental assessments.
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5. Experimental Results

5.1. Study Area

On 6 May 2017, a series of wildfires that destroyed more than thirty homes and caused the
evacuation of 2500 residents occurred simultaneously in Samcheok, Gangneung and Sangju, cities
in South Korea. Together, these fires burned nearly 150 ha. Especially dry climate conditions in
spring promoted the rapid growth of the wildfires. The study area is located in Samcheok city,
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Gangwon province, one of the areas affected by the spring 2017 fires (Figure 4). For the proposed
thermal disaggregation and comparative processes, freely accessible Landsat-8 Level-1 OLI and TIRS
datasets, with a spatial resolution of 30 m in the VNIR and SWIR bands and 30 m in the TIR bands
(originally, 100 m), were acquired from the USGS Earth Explorer website [57]. The datasets were
acquired at 01:58:02 GMT (10:58:02 local time), May 8th, 2017 from the 114 path and 34 row in the
world reference system-2 (WRS-2). The acquisition datasets were clipped including the wildfires
and marginal cloud-free areas, and the size of the TIR images was 267 × 543 pixels, and that of the
MS images was 801 × 1629 pixels. Considering the two-day gap between the initiated wildfire and
the image acquisition date, the datasets are expected to include a variety of wildfire components,
for example, flaming combustion, smoldering combustion, and burned areas. In particular, flaming
combustion, a core of wildfires, is remarkably shown in the acquired imagery (refer to Figure 4).
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5.2. Analysis of the Disaggregation Methods

Experiments were conducted to evaluate the performance of the proposed disaggregation of
TIR imagery using Landsat-8 datasets. The proposed algorithm was compared with DisTrad [6],
TsHARP [7], and the LMS method [12]. Evaluation of the disaggregation methods focused on the
synthesis and consistency properties [55]. The reflectance of the SWIR-2 band from the Landsat-8 OLI
sensor was selected as the input of the proposed algorithm, and the GF filter constrained the input
imagery by using the guidance image, and original TIR data at a coarser resolution. The results of the
proposed disaggregation algorithm and the comparison disaggregation methods were considered,
and the disaggregated image quality assessment was then conducted with parameter configuration
(window size) of the GF.

5.2.1. Visual Analysis

The proposed disaggregation method was compared with the DisTrad, TsHARP, and the LMS
methods. Figure 5 shows the result of the disaggregated BT image obtained using the proposed SWIR
and the GF-based algorithm with the color composite image, the original BT image at a resolution of
90 m, and the distributed BT image from Earth Explorer at a 30 m resolution. To qualitatively evaluate
the results, three subsets of the disaggregated images, A, B, and C in Figure 5 were obtained, and
comparison with VI-based methods including DisTrad, TsHARP, and LMS was conducted directly
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in the selected subset areas as shown in Figures 6–8. There were two notable features of the results
from the proposed method in terms of qualitative analysis. First, the proposed algorithm performed
well on wildfire areas, spatially preserving high frequency temperature components (Figures 6 and 7).
The comparison algorithms had lower BT values in the disaggregated image on burning areas, but
the proposed algorithm produced higher BT values on the same burning areas. Also, removal of
ringing artifacts was demonstrated in the disaggregated image of our proposed algorithm. Figure 8
shows the subset of the disaggregated images near the lake. The ringing artefacts near the lake edge
were eliminated by the proposed algorithm but appear in the results of other algorithms (Figure 8).
As shown in the visual evaluation, this experiment confirmed that the proposed algorithm can provide
visually satisfactory results with regard to the original BT image.
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5.2.2. Quantitative Analysis

Table 1 presents the results of quantitative analyses depending on different window size.
As shown in Table 1, the best performance of the proposed method was obtained from window size
5 × 5 of the GF. The units of RMSE and MAE are Kelvin in this study. The results of the disaggregated
image quality assessment based on the synthesis property are presented in Table 2.

Table 1. Quantitative evaluation of the proposed method depending on different window size.
The optimal values in terms of quality index are highlighted in bold.

Window Size

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15 17 × 17 19 × 19

RMSE 0.073 0.072 0.073 0.074 0.074 0.075 0.076 0.076 0.077
CC 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9995 0.9995 0.9995

MAE 0.051 0.049 0.049 0.049 0.049 0.050 0.050 0.051 0.051
UIQI 0.9984 0.9985 0.9985 0.9985 0.9984 0.9984 0.9984 0.9983 0.9983

ERGAS 0.025 0.025 0.025 0.025 0.025 0.026 0.026 0.026 0.026

The disaggregated image obtained by the DisTrad algorithm indicates that all quality indices
had poor results, but the TsHARP algorithm, a refined version of the DisTrad, shows better results in
comparison with the DisTrad. The disaggregation result of the LMS algorithm was similar to that of
the TsHARP algorithm. Finally, the results of the proposed algorithm, indicated by GF, have the best
values of RMSE, MAE, CC, UIQI and ERGAS compared to other algorithms. The thermal variance of
the original BT data was therefore preserved in the disaggregated result for the proposed GF algorithm.
For the consistency property, the results of quantitative analysis also show similar trends compared to
the synthesis property, and here the proposed GF algorithm provides the best quality indices results
for all consistency properties (Table 2).

Table 2. Results of quantitative image quality assessment corresponding to each disaggregation
algorithm. The optimal values in terms of quality index are highlighted in bold.

Synthesis Property Consistency Property

RMSE MAE CC UIQI ERGAS RMSE MAE CC UIQI ERGAS

DisTrad 0.796 0.513 0.9515 0.8414 0.271 0.175 0.100 0.9979 0.9940 0.060
TsHARP 0.609 0.463 0.9700 0.8261 0.208 0.100 0.077 0.9992 0.9953 0.034

LMS 0.607 0.460 0.9703 0.8282 0.208 0.099 0.075 0.9992 0.9955 0.034
GF 0.472 0.331 0.9822 0.9294 0.161 0.072 0.049 0.9996 0.9985 0.025

6. Discussion

In this study, disaggregation of BT imagery of Landsat-8 from 90-m resolution to 30-m resolution
on wildfire areas was conducted by using the guided SWIR-2 band of Landsat-8 OLI. The experimental
results showed that the comparison methods were limited on wildfire areas, but the proposed
algorithm yielded better disaggregated BT images in terms of qualitative and quantitative analysis.
In particular, the qualitative evaluation of the experimental results demonstrated that the high
temperature component from SWIR was preserved in the guided filtering process on the burning areas,
and the SWIR band as the input of disaggregation process supplemented the limitation of TIR sensor
of restricted detection of high temperature in active fires. Also, most previous disaggregation studies
improved spatial detail from the MS band products, but did not consider the thermal variation of the
TIR data. This occurrence of spectral distortion in the disaggregation process results because of an
injection effect of redundant detail. In contrast, the thermal variation of the original BT image was
preserved simultaneously with improved spatial resolution of the BT by the GF, using the original BT
data as a guidance image as described in the quantitative analysis discussion (Section 5.2.2).
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In the study area, there are two main wildfire components, flaming and smoldering. Despite the
mixed-pixel problem within the wildfire component and unburned fuel component, Yu et al. [58] reported
that the critical fraction of recognition was 1/500 of the 30-m resolution cell on an experimental hotspot
target (955 K) in the Landsat SWIR band, and Giglio et al. [52] suggested that the TIR band (8.3 µm) of the
ASTER data would be the best choice for detecting smoldering considering the solar reflective effect. As a
result, for a flaming combustion region, the disaggregated BT was relatively higher in the margin area in
the proposed disaggregation method due to the input of the SWIR-2 band, and the smoldering effect was
also reflected by the tendency of the TIR band. However, temperature of the combustion region is not
equal to the disaggregated BT due to a land surface temperature range from 1000 K to 1500 K in flaming
combustion conditions [40]. Also, conversion the BT into land surface temperature was not conducted in
this work. Although these limitations existed in this study, the application of the proposed disaggregation
algorithm was proved valuable for middle-high spatial resolution imagery using Landsat-8 products,
considering the limited Landsat-8 data availability on the active fire areas.

Despite applications of the TOA reflectance as an input and injection gain, the disaggregation
results could hardly be free from reflective solar radiation for daytime analysis. Manmade land cover
(e.g., concrete, rooftops, and highly reflective paint) and arid soil area especially have high reflectance
in the SWIR-2 band. The proposed algorithm additionally used the TIR imagery, which is insensitive
to reflected solar radiation [59], during the process of GF filtering. In this case, the TIR imagery
was used as a guidance image and compensated for the high frequency components from the high
solar reflectance. Also, the effect of reflective solar radiation depends on the characteristics of the
experimental area. The study area is a typically rural and mountainous area with a low population
density. In terms of disaggregation, manmade land cover could be a high frequency temperature
component during the daytime because the temperature of manmade structures is higher than that
of vegetation, and the high solar reflectance reflected the tendency of the BT in the experimental
areas. Only for a high solar reflectance near the flaming case could the high temperature term be
extended near the flaming area. However, the thermally emitted radiation must be distinct from
the solar-reflected radiation in the case of an arid or urban area. To avoid a saturation problem, an
alternative daytime hot spot detection algorithm was suggested using separate wavebands including
NIR, SWIR-1, and SWIR-2 of the Landsat datasets [51]. Therefore, additive band datasets, the NIR and
the shorter SWIR band, will be considered in a future work to reduce the effect of solar reflectance and
potential saturation in the SWIR-2 band.

This study expected to apply the proposed algorithm to improve the spatial resolution without
spectral distortion in the production of Landsat thermal images Application of the proposed method
can be extended to geostationary products that have low spatial and high temporal resolutions,
for example, moderate resolution imaging spectroradiometer (MODIS) and visual infrared imaging
radiometer suite (VIIRS) which cover the SWIR and TIR bands with diurnal temporal resolution.
Consequently, data fusion with the advantages of high temporal geostationary products and high
spatial resolution, termed spatial-temporal disaggregation, can be conducted using the proposed
method based on the GF. Future work will be focused on the application of the proposed disaggregation
algorithm to improve the spatial-temporal resolution of the TIR data.

7. Conclusions

In this study, the efficient and improved disaggregation algorithm of TIR imagery using guided
SWIR imagery was proposed for wildfire conditions. The SWIR imagery radiometrically satisfied
the preservation of a high temperature component in flaming combustion, and the GF prevented
the spectral distortion of the original TIR data and simultaneously preserved the high frequency
component of SWIR image in the disaggregated result. Landsat-8 OLI and TIRS images, captured at
the wildfire site, were used to evaluate the proposed algorithm with the existing disaggregation
algorithms based on VI originated from VNIR. The experimental results demonstrated that the
proposed algorithm disaggregated the BT data from 90-m resolution to 30-m resolution and satisfied
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image quality assessments in terms of visual and quantitative evaluation. In the quantitative evaluation,
RMSE, MAE, CC, ERGAS, and UIQI had better results (Table 2) in the proposed algorithm than those of
the other comparison methods. Also, visual analysis (Figures 6 and 7) demonstrated that the proposed
algorithm conducted the disaggregation of the TIR imagery reflecting the temperature of wildfire areas.
The experimental results show that the proposed algorithm was successfully applied to Landsat-8
OLI and TIRS datasets from wildfire areas. In future work, the proposed method will be developed
considering the effect of SWIR saturation, and also applied to spatio-temporal disaggregation with a
geostationary image and Landsat datasets.
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