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Abstract: This paper develops a new approach to band subset selection (BSS) for hyperspectral
image classification (HSIC) which selects multiple bands simultaneously as a band subset, referred
to as simultaneous multiple band selection (SMMBS), rather than one band at a time sequentially,
referred to as sequential multiple band selection (SQMBS), as most traditional band selection methods
do. In doing so, a criterion is particularly developed for BSS that can be used for HSIC. It is
a linearly constrained minimum variance (LCMV) derived from adaptive beamforming in array
signal processing which can be used to model misclassification errors as the minimum variance.
To avoid an exhaustive search for all possible band subsets, two numerical algorithms, referred to as
sequential (SQ) and successive (SC) algorithms are also developed for LCMV-based SMMBS, called
SQ LCMV-BSS and SC LCMV-BSS. Experimental results demonstrate that LCMV-based BSS has
advantages over SQMBS.

Keywords: band selection (BS); band subset selection (BSS); hyperspectral image classification; linearly
constrained minimum variance (LCMV); Otsu’s method; successive LCMV-BSS (SC LCMV-BSS);
sequential LCMV-BSS (SQ LCMV-BSS)

1. Introduction

Hyperspectral image classification has received considerable interest in recent years [1–23].
Its band selection (BS) issue has been also studied extensively [24–57]. In general, there are two
approaches to BS. One is to select bands one at a time, sequentially; this is referred to as sequential
multiple band selection (SQMBS). In this case, a criterion that can be used to select bands, according
to priorities ranked by the criterion, is usually required. Such a criterion is referred to as a band
prioritization (BP) criterion, and it can be designed according to two perspectives. One type of BP
criterion is based on data characteristics or statistics such as variance, signal-to-noise ratio (SNR),
entropy, and information divergence (ID) to calculate a priority score for each of the individual bands
in order to rank them [25]. As a result, such BP-based SQMBS is generally unsupervised and is not
adaptive to any particular application. In other words, the same selected bands are also applied to
all different applications. The other type of BP criterion is supervised and is adaptive to a particular
application, such as classification [26–57], target detection [49,50], endmember extraction [51], spectral
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unmixing [52], etc. Unfortunately, one of major problems with BP-derived BS methods is how to
deal with band correlation. Since hyperspectral imagery has very high interband correlation, the fact
that a band has a high priority to be selected implies that its adjacent bands also have high priorities
to be selected. To avoid this dilemma, band decorrelation may be required to remove redundant
bands from a group of selected bands. However, this also comes with two issues, i.e., how to select a
band correlation criterion to measure the correlation between two bands, and how to determine the
threshold for two bands that are sufficiently decorrelated.

As an alternative to BP-based SQMBS methods, another approach, referred to as simultaneous
multiple band selection (SMMBS), is to select multiple bands simultaneously as a band subset.
This approach does not have issues in prioritizing bands or decorrelating bands that are encountered
in SQMBS. However, the price paid for these advantages is how to develop an effective search
strategy to find an optimal band subset, since it generally requires an exhaustive search, which is
practically infeasible. To address this issue, several works have been recently proposed, such as band
clustering [58–60], particle swarm optimization (PSO) in [35], firefly algorithm (FA) in [36], multitask
sparsity pursuit (MTSP) [38], multigraph determinantal point process (MDPP) [43], dominant set
extraction BS (DSEBS) in [40], etc. Of particular interest is a new concept of band subset selection
(BSS) to address this issue which is quite different from the aforementioned SMMBS methods in the
sense of the search strategy to be used for finding an optimal set of multiple bands. It considers a
selected band as a desired endmember. Accordingly, finding an optimal set of endmembers from all
data sample vectors can be translated to selecting an optimal band subset simultaneously from all
bands. With this interpretation, two sequential algorithms designed to realize an N-finder algorithm
(N-FINDR) [61] numerically, called sequential N-FINDR (SQ N-FINDR) and successive N-FINDR (SC
N-FINDR) [62–65] can be redesigned to find desired band subsets, called SQ BSS and SC BSS algorithms.
These two SQ BSS and SC BSS algorithms were recently developed for SMMBS in applications of
anomaly detection [66] and spectral unmixing and classification [67,68]. This paper further extends
BSS to hyperspectral image classification and has several different aspects not found in [66–68].
First and foremost is the criterion used for BSS, which is the minimum variance resulting from a
linearly constrained finite impulse response filter arising in adaptive beamforming in array signal
processing [69–72]. This linearly constrained minimum variance (LCMV)-based BSS interprets signal
sources as class signature vectors and linearly constrains the class signature vectors, finding an optimal
band subset for classification. It is very different from constrained energy minimization (CEM)-based
BS [26], which constrains a single selected band, and also from constrained multiple band selection
(CMBS) [68], which extends CEM-BS by constraining multiple bands as band subsets, not as class
signature vectors as LCMV-BSS does. Secondly, two new SQ BSS and SC BSS algorithms are developed
for LCMV-BSS, specifically for classification, referred to as SQ LCMV-BSS and SC LCMV-BSS. Thirdly,
the classifier used to evaluate BS performance is also an LCMV classifier which is particularly designed
to best utilize the bands selected by LCMV-BSS. Fourthly, despite the fact that LCMV-BSS may not
exhaust all possible band combinations, to the authors’ best knowledge, LCMV-BSS is probably the only
BSS algorithm to search band subsets among all possible band combinations numerically compared to
other SMMBS algorithms such as PSO, FA, MTSP, MDPP, DSEBS which are indeed designed to run
only a very small selected set of band subsets. Finally, and most importantly, the proposed LVMV-BSS
is very easy to implement because there are no parameters that need to be tuned, as many BS methods
have. This is a tremendous advantage since such parameters must be adaptive to various applications.



Remote Sens. 2018, 10, 113 3 of 25

2. LCMV Criterion for BSS

Suppose that there are M classes of interest and each class is specified by a class signature vector,
denoted by d1, d2, · · · , dM. We can now form a class signature matrix, denoted by D = [d1d2 · · ·dM].
The goal is to design an FIR linear filter with L filter coefficients {w1, w2, · · · , wL}, denoted by an
L-dimensional vector w = (w1, w2, · · · , wL)

T that minimizes the filter output energy subject to the
following constraint:

DTw = c where dT
j w = ∑L

l=1 wltjl for 1 ≤ j ≤ M (1)

where c = (c1, c2, · · · , ck)
T is a constraint vector. Using (1), we derive the following linearly constrained

optimization problem:
minw

{
wTRw

}
subject toDTw = c (2)

where R = (1/N)∑N
i=1 rirT

i is the autocorrelation sample matrix of the image. The solution to (2) is
called the LCMV-based classifier and can be obtained in [69,71,72] by

δLCMV(r) =
(

wLCMV
)T

r (3)

with
wLCMV = R−1D

(
DTR−1D

)−1
c. (4)

Substituting (3) into (4) yields(
wLCMV)TR−1wLCMV

=
[
R−1D

(
DTR−1D

)−1c
]T

R−1
[
R−1D

(
DTR−1D

)−1c
]

= cT(DTR−1D
)−1DTR−1D

(
DTR−1D

)−1c = cT(DTR−1D
)−1c

. (5)

According to [70], (5) is the minimum variance weighted by R−1. As a matter of fact, (5) can be
also viewed as the minimal R−1-weighted least squares error (LSE) caused by misclassification errors
from operating δLCMV on the entire image cube. For those who would like to learn more about LCMV,
its details can be found in [69–71].

3. Band Subset Selection

A BS problem is generally described as follows. Assume that J(.) is a generic objective function of
ΩBS for the BS to be optimized where ΩBS is a band subset selected from a full band set Ω. For a given
number nBS of selected bands, a BS method is to find an optimal band subset Ω∗BS with |ΩBS|= nBS

which satisfies the following optimization problem:

Ω∗BS = arg
{

max/minΩBS⊂Ω, |ΩBS|=nBS
J(ΩBS)

}
. (6)

Depending upon how the objective function J(ΩBS) is designed, the optimization in (6) can be
performed by either maximization or minimization over all possible band subsets ΩBS contained in Ω

with |ΩBS|= nBS .
Since solving (6) requires exhausting all possible nBS-band combinations to find an optimal band

subset, Ω∗BS, it is practically impossible to do so. Accordingly, many approaches have been investigated
by designing various criteria or features to define J(ΩBS) and solve (6). One traditional approach is to
design a BP criterion to rank all bands from which BS can be carried out by selecting bands according
to their calculated priorities by a particular BP criterion. Such an approach generally results in an
SQMBS method which selects multiple bands one at a time sequentially. As noted in the introduction,
one major issue arising from this approach is how to deal with redundant bands caused by band
correlation. As an alternative, another BP-derived SQMBS method is to specify a particular application
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such as minimum estimated abundance covariance (MEAC) for classification [34], which can generate
feature vectors for BP and then takes advantage of the sequential forward floating search (SFFS) and
sequential backward floating search (SBFS) developed in [73] to derive forward and backward BS
methods. However, the band correlation issue still remains.

In contrast to SQMBS, many recent efforts have been directed to SMMBS, which selects multiple
bands simultaneously at the same time. Associated with SMMBS are also two main issues needed
to be addressed. One is determining the number nBS of bands to be selected, which is also an issue
in SQMBS. Generally, nBS can be determined by either trial-and-error or the virtual dimensionality
(VD) developed in [69,74]. The other is a more critical issue, which is to how to find appropriate nBS

bands. Suppose that nBS = p is the number of bands needed to be selected, Ωp =
{

Bl1 , Bl2 , . . . , Blp

}
is

a p-band band subset selected from a full band set Ω = {B1, B2, · · · , BL} where L is the total number
of bands, and Blj

is the selected jth band. In order to find an optimal band subset Ω∗p, we must run

through all possible

(
L
p

)
= L!

p!(L−p)! p-combinations among L bands. Practically, this is infeasible if

L is large such as in hyperspectral imagery. In this case, developing an effective search strategy for
finding an optimal set of multiple bands that does not exist in SQMBS is a great challenge to SMMBS.

A simple SMMBS approach is to group or combine bands into clusters, each of which produces a
representative band for BS using certain band measure criteria [58–60]. In particular, the concept in [58]
is similar to Fisher’s ratio, using mutual information as a band prioritization criterion for clustering.
Most interestingly, a band group-wise method was developed [38], which used band combinations
by compressive sensing and a multitask sparsity pursuit (MTSP)-based criterion to select band
combinations based on linear sparse representation via an evolution-based algorithm-derived search
strategy. Another SMMBS approach is to narrow the search range by specifying particular parameters
to limit a small number of band subsets as candidate optimal sets, then follow an optimization
algorithm such as PSO [35] or FA [36] to find an optimal band subset from the selected candidate set of
band subsets.

Most recently, two other promising approaches have been reported. One is to use graph-based
representations with each path used to specify a particular band subset. For example, Yuan et al. [43]
proposed a graph-based SMMBS method, called multigraph determinantal point process (MDPP),
which makes use of multiple graphs to discover a structure and diverse band subset from a graph where
each node represents a band and the edges are specified by similarity between bands. Accordingly,
a path represents a possible band subset. Then, a search algorithm called mixture determinantal point
process (Mix-DPP) was further developed to find a diverse subset that can be a potential optimal band
combination. The other is DSEBS, which exploits structure information via a set of local spatial–spectral
filters and uses a graph-based clustering search strategy derived from dominant set extraction to find
a potential optimal band subset [40].

In addition to the above-mentioned approaches there is also a new approach, called BSS,
which considers the problem of multiple band selection as an endmember finding problem. If a
desired selected band is interpreted as an endmember and the full band set as the entire data set, then a
band subset can be interpreted as a set of endmembers. Consequently, finding an optimal set of nBS

bands can be carried out in a similar way to finding an optimal set of nBS endmembers. This BSS-based
approach has recently proved to be very promising and has great potential in various applications
such as anomaly detection in [65], spectral unmixing in [66], and target detection in [67]. This paper
presents another new application of BSS to hyperspectral image classification with LCMV used as a
criterion particularly designed for classification.
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4. LCMV-BSS Algorithms

Now, if we replace the full band set Ω in R−1 of (5) with a selected band subset ΩBS, then (5)

MV(ΩBS) = cT
(

DT
ΩBS

R−1
ΩBS

DΩBS

)−1
c (7)

which is the minimum variance weighted by R−1
ΩBS

resulting from the LCMV filter using a partial band
subset specified by ΩBS. There is another interpretation of (7) which can be also considered as the least
R−1

ΩBS
-weighted square error. It should be noted that the constraint vector c is specifically designed to

take care of M class signatures, d1, d2, · · · , dM, not bands. Accordingly, c has nothing to do with the
selected band subset ΩBS and, thus, it remains a constant in (7) for any selected band subset ΩBS.

Using the MV(ΩBS) in (7), a criterion can be designed to find an optimal band subset Ω∗BS
which solves

Ω∗BS = arg
{

minΩBS⊂ΩMV(ΩBS)
}

. (8)

By virtue of (8), two types of algorithms from SQ N-FINDR and SC N-FINDR, called the sequential
LCMV-BSS (SQ LCMV-BSS) algorithm and the successive LCMV-BSS (SC LCMV-BSS) algorithm, can be
further developed as follows.

4.1. SQ LCMV-BSS

The idea of SQ LCMV-BSS is to use two loops to iterate band subsets ΩBS in an outer loop
and compute MV(ΩBS) in (7) in an inner loop. Depending upon how MV(ΩBS) is computed in the
inner loop, two versions can be developed. The first one is called SQ LCMV-BSS-1, and finds the
minimum variance MV(Ω

(j)
BS) currently being iterated for 1 ≤ j ≤ nBS in the inner loop compared to

the minimum variance MV(Ω
(l)
BS) obtained at the lth iteration in the outer loop. A detailed step-by-step

implementation is described below.

Algorithm 1 SQ LCMV-BSS-1

Step 1: Initial conditions
(i) nBS = p, which is the number of selected multiple bands determined by VD.

(ii) Let Ω
(0)
p =

{
B(0)

1 , B(0)
2 , · · · , B(0)

p

}
with B(0)

1 = B1, B(0)
2 = B2, · · · , B(0)

p = Bp uniformly selected from the
band set Ω.

(iii) Calculate

MV(Ω
(0)
p ) = cT

(
DT

Ω
(0)
p

R−1
Ω

(0)
p

D
Ω

(0)
p

)−1
c.

Step 2: Outer loop
For l = 1, · · · , L do

Step 3: Inner loop

Compute MV(Ω
(l)
p )

For j = 1, · · · , p do

Find an index j* by

j∗ = arg
{(

min1≤j≤pMV(Ω
(j)
p )
)
< MV(Ω

(l)
p )
}

with

MV(Ω
(j)
p ) = cT

(
DT

Ω
(j)
p

R−1
Ω

(j)
p

D
Ω

(j)
p

)−1
c

which specifies the band to be replaced by the lth band Bl. Such a band is now denoted by B(l+1)
j . A

new set of bands is then produced by letting B(l+1)
j∗ = Bl and B(l+1)

j = B(l)
j for j 6= j∗
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A second version of SQ LCMV-BSS, referred to as SQ LCMV-BSS-2, always finds the minimum
variance MV(Ω

(j)
BS) currently being iterated for 1 ≤ j ≤ nBS at each iteration in the inner loop;

its detailed step-by-step implementation is summarized as follows.

Algorithm 2 SQ LCMV-BSS-2

Step 1: Initial conditions
(i) nBS = p, which is the number of selected multiple bands determined by VD.

(ii) Let Ω
(0)
p =

{
B(0)

1 , B(0)
2 , · · · , B(0)

p

}
with B(0)

1 = B1, B(0)
2 = B2, · · · , B(0)

p = Bp uniformly selected from the

band set Ω.
(iii) Calculate

MV(Ω
(0)
p ) = cT

(
DT

Ω
(0)
p

R−1
Ω

(0)
p

D
Ω

(0)
p

)−1
c.

Step 2: Outer loop
For l = 1, · · · , L do
Step 3: Inner loop

For j = 1, · · · , p do
Find an index j* by

j∗ = arg
{

min1≤j≤pMV(Ω
(j)
p )
}

with

MV(Ω
(j)
p ) = cT

(
DT

Ω
(j)
p

R−1
Ω

(j)
p

D
Ω

(j)
p

)−1
c

which specifies the band to be replaced by the lth band Bl. Such a band is now denoted by B(l+1)
j . A

new set of bands is then produced by letting B(l+1)
j∗ = Bl and B(l+1)

j = B(l)
j for j 6= j∗

4.2. SC LCMV-BSS

A second type of LCMV-BSS algorithm is SC LCMV-BSS, which reverses the two loops
implemented in SQ LCMV-BSS by iterating the computation of MV(ΩBS) in (7) in an outer loop,
while iterating band subsets nBS in an inner loop. Its detailed step-step implementation is provided in
the following.

Algorithm 3 SC LCMV-BSS

Step 1: Initial conditions
(i) nBS = p, which is the number of selected multiple bands determined by VD.

(ii) Let Ω
(0)
p =

{
B(0)

1 , B(0)
2 , · · · , B(0)

p

}
with B(0)

1 = B1, B(0)
2 = B2, · · · , B(0)

p = Bp uniformly selected from the

band set Ω.
(iii) Calculate

MV(Ω
(0)
p ) = cT

(
DT

Ω
(0)
p

R−1
Ω

(0)
p

D
Ω

(0)
p

)−1
c

Step 2: Outer loop
For j = 1, · · · , p do

Step 3: Inner loop
For l = 1, · · · , L do

Find

B(∗)
j = arg

{
minBl∈Ω̄MV(Ω̃l

p)
}

where Ω̄ = Ω−
{

B(∗)
1 , · · · , B(∗)

j−1, B(p)
j+1, · · · , B(p)

p

}
, Ω̃l

p =
{

B(∗)
1 , · · · , B(∗)

j−1, Bl , B(p)
j+1, · · · , B(p)

p

}
.

Step 4: Output the final band subset,
{

B(∗)
1 , B(∗)

2 , · · · , B(∗)
p

}
.
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5. Real Image Experiments

Three popular real hyperspectral images, Purdue University’s Indiana Indian Pines, Salinas,
and University of Pavia, available at http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_
Remote_Sensing_Scenes, were used in experiments. The detailed data descriptions and matlab data
files can be also found on this website.

5.1. Purdue Indiana Indian Pines Scene

The first image scene used for experiments is an airborne visible/infrared imaging spectrometer
(AVIRIS) hyperspectral data set from the Purdue Indiana Indian Pines test site shown in Figure 1a,
with its ground truth of 17 class maps in Figure 1b. It has a size of 145× 145 pixel vectors, taken from
an area of mixed agriculture and forestry in Northwestern Indiana, USA with details of band and
wavelength given in the caption. The data set is available at website https://purr.purdue.edu/
publications/1947/serve/1?el=1. It was recorded in June 1992 with 220 bands which include water
absorption bands (bands 104–108 and 150–163, 220).
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which was captured by the AVIRIS sensor over Salinas Valley, California, with a spatial resolution 
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(c) class labels. 

5.3. ROSIS Data 

The last hyperspectral image data used for experiments was the University of Pavia image 
shown in Figure 3, which is an urban area surrounding the University of Pavia, Italy. It was 
recorded using the ROSIS-03 satellite sensor. It is of size 115340610 ××  with a spatial resolution of 
1.3 m per pixel and spectral coverage ranging from 0.43 to 0.86 μm with spectral resolution of 4 nm 
(the 12 most noisy channels were removed before experiments). Nine classes of interest, plus a 
background (BKG) class (class 0), were considered for this image.  

Figure 1. Purdue’s Indiana Indian Pines scene with 16 classes. (a) Band 186, (b) ground truth map,
(c) ground truth class labels.

5.2. Salinas

A second set of AVIRIS data used for experiments was the Salinas scene shown in Figure 2a,
which was captured by the AVIRIS sensor over Salinas Valley, California, with a spatial resolution of
3.7 m per pixel and spectral resolution of 10 nm. It has a size of 512× 217× 224. Figure 2b,c show the
color composite of the Salinas image along with the corresponding ground truth class labels.
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5.3. ROSIS Data

The last hyperspectral image data used for experiments was the University of Pavia image shown
in Figure 3, which is an urban area surrounding the University of Pavia, Italy. It was recorded using
the ROSIS-03 satellite sensor. It is of size 610× 340× 115 with a spatial resolution of 1.3 m per pixel
and spectral coverage ranging from 0.43 to 0.86 µm with spectral resolution of 4 nm (the 12 most noisy
channels were removed before experiments). Nine classes of interest, plus a background (BKG) class
(class 0), were considered for this image.Remote Sens. 2018, 10, 113  9 of 26 
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Figure 3. Ground truth of University of Pavia scene with nine classes. (a) Band 95, (b) color ground 
truth image, (c) class labels. 
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knowledge or BS criterion. It is the simplest BS method. 

2. MEAC: This uses the minimum covariance derived from the estimated abundance matrix, 
which is similar to the minimum variance in (5). In addition, it can also represent the category 
of SQMBS methods. 

3. MDPP and DSEBS: Both represent the category of SMMBS methods. They make use of graph 
representations to specify band groups. Most importantly, these two methods were compared 
with CEM/LCMV-based methods in [26] and both are also based on the LCMV formulation 
specified by (2). 
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LCMV formulation in (2).  
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Table 1 tabulates the number nBS of selected bands estimated for three scenes using 
Harsanyi-Farrand-Chang (HFC) method/noise whitened HFC (NWHFC method developed for VD 
in [69,74,75] where nBS was determined to be nBS = 18 for Purdue’s data, 21 for Salinas and 14 for 
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Table 1. nBS estimated by HySime and HFC/NWHFC. 

PF = 10−1 PF = 10−2 PF = 10−3 PF = 10−4 PF = 10−5 
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In the following experiments, four types of BS methods were tested for a comparative study
and analysis.

1. Uniform band selection (UBS): According to our extensive experiments, UBS is a reasonably good
BS method which is also reported in the literature. It does not require any prior knowledge or BS
criterion. It is the simplest BS method.

2. MEAC: This uses the minimum covariance derived from the estimated abundance matrix,
which is similar to the minimum variance in (5). In addition, it can also represent the category of
SQMBS methods.

3. MDPP and DSEBS: Both represent the category of SMMBS methods. They make use of graph
representations to specify band groups. Most importantly, these two methods were compared
with CEM/LCMV-based methods in [26] and both are also based on the LCMV formulation
specified by (2).

4. LCMV-BSS developed in this paper: This represents the category of BSS methods using the LCMV
formulation in (2).

As noted in the introduction and in Section 3, although PSO, FA, and MTSP are also SMMBS
methods, they are not compared in this paper for the following reasons. One is that their design
rationale is completely different from that of LCMV-BSS. Secondly, the initial candidate sets from
which their search algorithms find an optimal band subset are random and are also too small. So,
their results are not representative and also are not reproducible. Thirdly, the details of their used
parameters were not specified and provided in their papers. Therefore, it is very difficult to implement
their algorithms for fair comparisons.

Table 1 tabulates the number nBS of selected bands estimated for three scenes using
Harsanyi-Farrand-Chang (HFC) method/noise whitened HFC (NWHFC method developed for VD
in [69,74,75] where nBS was determined to be nBS = 18 for Purdue’s data, 21 for Salinas and 14 for
University of Pavia with a false alarm probability of 10−4.
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Table 1. nBS estimated by HySime and HFC/NWHFC.

PF = 10−1 PF = 10−2 PF = 10−3 PF = 10−4 PF = 10−5

Purdue 73/21 49/19 35/18 27/18 25/17
Salinas 32/33 28/24 25/21 21/21 20/20

Univ. of Pavia 25/34 21/27 16/17 14/14 13/12

Table 2 lists the bands selected by seven BS methods—uniform BS (UBS), minimum estimated
abundance covariance (MEAC), multigraph determinantal point process (MDPP), dominant set
extraction BS (DSEBS), SQ LCMV-BSS-1, SQ LCMV-BSS-2, and SC LCMV-BSS—for the three scenes;
nBS = 18 for Purdue’s Indian Pines, nBS = 21 for Salinas, and nBS = 14 for University of Pavia.

Table 2. Bands selected by UBS, SQ LCMV-BSS-1, SQ LCMV-BSS-2, SC LCMV-BSS.

Data Methods Selected Bands

Purdue Indian
Pines (18 bands)

UBS 1, 14, 27, 40, 53, 66, 79, 92, 105, 118, 131, 144, 157, 170, 183, 196, 209, 220
MEAC 159, 3, 92, 96, 82, 36, 39, 55, 41, 1, 2, 33, 206, 38, 163, 17, 204, 9
MDPP 10, 39, 59, 75, 79, 85, 92, 130, 140, 146, 147, 149, 150, 152, 160, 164, 175, 193
DSEBS 42, 129, 97, 131, 174, 16, 176, 177, 172, 43, 192, 193, 98, 171, 99, 132, 40, 33

SQ LCMV-BSS-1 39, 164, 29, 155, 108, 66, 79, 8, 105, 42, 44, 17, 156, 150, 3, 43, 213, 41
SQ LCMV-BSS-2 38, 109, 29, 52, 163, 66, 158, 8, 164, 219, 43, 78, 157, 220, 3, 49, 218, 2
SC LCMV-BSS 54, 156, 42, 159, 53, 41, 79, 91, 105, 57, 51, 43, 157, 48, 107, 160, 115, 163

Salinas
(21 bands)

UBS 1, 12, 23, 34, 45, 56, 67, 78, 89, 100, 111, 122, 133, 144, 155, 166, 177, 188, 199, 210, 224
MEAC 107, 148, 203, 149, 5, 8, 105, 3, 28, 12, 18, 10, 44, 36, 25, 17, 51, 32, 110, 68, 58
MDPP 1, 8, 11, 22, 27, 28, 50, 57, 58, 65, 90, 99, 105, 119, 123, 134, 142, 157, 175, 191, 204
DSEBS 99, 101, 16, 119, 177, 112, 44, 46, 120, 47, 131, 175, 196, 121, 17, 102, 174, 180, 187, 135, 42

SQ LCMV-BSS-1 7, 50, 23, 48, 45, 73, 65, 15, 40, 19, 80, 122, 38, 41, 42, 46, 78, 47, 200, 37, 2
SQ LCMV-BSS-2 7, 42, 56, 28, 45, 58, 67, 15, 41, 19, 50, 122, 38, 34, 36, 47, 224, 46, 183, 37, 172
SC LCMV-BSS 18, 39, 41, 31, 45, 44, 67, 78, 90, 101, 40, 91, 42, 141, 46, 48, 102, 185, 47, 86, 50

Univ. of Pavia
(14 bands)

UBS 1, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 103
MEAC 1, 23, 24, 40, 42, 58, 56, 59, 48, 31, 47, 83, 25, 54
MDPP 2, 23, 44, 46, 50, 62, 66, 73, 89, 91, 92, 93, 96, 102
DSEBS 86, 102, 64, 20, 21, 63, 65, 6, 19, 22, 7, 66, 95, 67

SQ LCMV-BSS-1 1, 4, 55, 16, 95, 83, 84, 93, 39, 77, 91, 102, 92, 103
SQ LCMV-BSS-2 1, 4, 38, 76, 85, 55, 84, 102, 16, 83, 93, 89, 92, 103
SC LCMV-BSS 1, 4, 84, 16, 38, 102, 85, 92, 83, 72, 95, 91, 96, 103

In order to perform HSIC, choosing an appropriate classifier is crucial. Recently, Yu et al. [76]
developed a new classifier, called the iterative multiclass constrained background suppression classifier
(IMCBSC), and further demonstrated that IMCBSC performed well in both overal accuarcy rate (POA)
and precision rate (PR) Since IMCBSC was also derived from LCMV and implemented by LCMV in
an iterative manner, the iterative linearly constrained minimum variance (ILCMV) is used in this
paper instead of IMCBSC to reflect its idea arising from LCMV and its iterative nature in algorithm
implementation. Most importantly, ILCMV was adopted for two main reasons. One is because of the
work in [76], which showed that ILCMV could perform at least comparably in POA but significantly
better than the work in [12]. The other is that ILCMV is indeed derived from the LCMV criterion
specified by (2). So, it is natural to use ILCMV to perform classification.

Two remarks on the implementation of ILCMV are noteworthy.

1. Unlike most supervised classifiers used for HSIC which require training samples, ILCMV only
needs the knowledge of the class signatures D, which can be obtained by either prior knowledge
or class sample means. Specifically, the class signatures in D are not necessarily real data samples.

2. Also, unlike most supervised classifiers used for HSIC which require test and training data
samples from the same class, the test samples for ILCMV can be selected from any arbitrary
class including the BKG class, and are not necessarily limited to the same class trained by the
training samples. This is a crucial difference between ILCMV and existing hyperspectral image
classification algorithms reported in the literature. For more details, we refer to [23,76].
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Figure 4c–i, Figures 5c–i and 6c–i show classification maps produced by ILCMV, using
bands selected in Table 2 by seven BS methods—UBS, MEAC, MDPP, DSEBS, SQ LCMV-BSS-1,
SQ LCMV-BSS-2, and SC LCMV-BSS, respectively—where the ground truth map and classification
map produced by the full bands are also included in (a) and (b), respectively, for comparison.
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Apparently, it is difficult to see any appreciable difference among all the classification results
in Figures 4–6 by visual inspection. In this case, to better evaluate each BS method, conducting a
quantitative analysis is necessary. It has been shown in [23,76] that using overall accuracy (OA),
POA may not be sufficient to evaluate the effectiveness of classification performance. To address
this issue, two additional measures, called precision rate, PR, and detection rate, PD (also known as
recall rate), developed in [23,76] were introduced for HSIC where PR and PD have been widely used
in pattern recognition such as medical imaging, handwritten character recognition, and biometric
recognition. The definitions and details of POA, PR, and PD can be found in [23,76].

Tables 3–5 show PD, POA, and PR calculated by the ILCMV classification results in Figures 4–6
using the bands selected in Table 2 for Purdue’s data, Salinas, and University of Pavia, respectively,
where the best results with highest rates are shown in boldface. Here, we would like to point out a
crucial fact used in the experiments, as noted in the second remark described above, where the PD,
POA, and PR were calculated by including the background (BKG) for classification because LCMV is
particularly designed to take care of the BKG issue in classification, as shown in [76]. This is quite
different from many reports which calculate POA excluding BKG from classification, such as [12].

Since PD varies with each class, it is difficult to evaluate the overall classification performance.
So, our analysis is conducted based on POA and PR. As we can see from the tables, SQ LCMV-BSS-2
and SC LCMV-BSS outperformed all the other five BS methods in terms of POA and PR for Salinas and
University of Pavia scenes, but were slightly worse than MDPP in POA and DSEBS in PR. Interestingly,
both MDPP and DSEBS produced the best results in terms of POA and PR respectively for the Purdue
data. As also noted in Tables 3–5, the POA and PR using full bands were generally not as good as those
produced by most of the test BS methods, but also worse than that produced by UBS. These experiments
showed that hyperspectral image classification can benefit greatly from the judicious selection of bands
with appropriately determined nBS.
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Table 3. PD, POA, and PR calculated from the classification results in Figure 4 for Purdue’s data.

Class Full Bands UBS MEAC MDPP DSEBS SQ
LCMV-BSS-1

SQ
LCMV-BSS-2

SC
LCMV-BSS

PD PR PD PR PD PR PD PR PD PR PD PR PD PR PD PR
1 95.65 100 95.65 100 93.48 100 95.65 100 95.65 100 95.65 100 97.83 100 100 100
2 96.01 100 97.13 99.57 93.07 99.63 96.08 100 96.99 100 95.59 99.71 93.78 99.85 94.89 99.85
3 96.99 99.88 96.51 100 96.27 100 97.35 100 97.23 99.88 96.39 100 95.67 100 94.10 100
4 98.73 100 98.73 100 98.31 100 99.58 100 98.31 100 97.89 100 98.31 100 98.31 100
5 89.44 100 90.68 100 91.51 100 92.34 100 93.58 100 91.93 100 92.34 100 92.96 100
6 97.12 100 97.67 100 97.40 99.58 96.71 100 97.12 100 96.44 100 97.95 100 95.75 100
7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
8 98.78 100 98.54 100 99.16 100 97.49 100 97.91 100 97.91 100 99.16 100 98.95 100
9 100 100 100 100 90.00 100 100 100 100 100 100 90.91 100 95.24 100 100
10 93.93 99.78 91.98 100 93.31 100 94.65 99.78 93.00 100 94.24 100 91.98 99.58 91.98 100
11 94.70 99.87 96.13 99.96 94.55 98.22 95.48 99.87 95.85 100 95.48 99.96 96.17 100 95.93 99.49
12 95.45 100 94.94 100 96.29 100 96.80 100 97.30 100 95.95 100 95.11 100 96.63 100
13 98.54 100 98.54 100 99.02 100 97.56 100 96.59 100 97.56 100 98.54 100 98.54 100
14 93.52 100 94.15 100 94.78 100 94.70 100 94.55 100 95.89 100 96.05 100 96.13 100
15 90.67 100 95.60 100 92.49 100 96.89 100 93.52 100 94.82 100 94.56 100 96.11 100
16 98.92 98.92 98.92 98.92 98.92 100 98.92 98.92 98.92 100 98.92 100 97.85 100 95.70 97.80

POA 95.09 95.69 94.91 95.89 95.88 95.67 95.48 95.46
PR 97.61 97.90 97.52 98.00 97.99 97.89 97.80 97.79

Table 4. PD, POA, and PR calculated from the classification results in Figure 5 for Salinas.

Class Full Bands UBS MEAC MDPP DSEBS SQ
LCMV-BSS-1

SQ
LCMV-BSS-2

SC
LCMV-BSS

PD PR PD PR PD PR PD PR PD PR PD PR PD PR PD PR
1 95.52 100 97.16 100 97.71 100 97.76 100 97.16 100 96.37 100 97.01 100 96.91 100
2 98.42 100 98.85 100 98.44 100 97.99 100 99.17 100 98.79 100 98.36 100 98.71 100
3 93.78 99.70 95.50 100 94.03 100 93.98 100 95.65 100 90.44 100 95.14 100 95.95 100
4 95.62 100 94.69 98.80 94.33 97.84 97.49 98.76 94.74 99.62 96.56 98.39 95.91 99.11 92.04 94.83
5 96.90 100 96.45 100 95.19 99.88 95.22 100 96.90 99.85 95.87 100 95.94 100 90.78 99.79
6 98.79 100 98.59 100 98.56 100 98.79 100 98.56 100 97.95 100 98.91 100 97.75 100
7 98.63 100 98.21 100 98.18 100 97.99 100 97.65 100 98.35 100 98.44 100 98.32 100
8 96.69 98.26 95.81 99.39 97.40 99.84 95.23 99.74 96.11 99.38 95.84 99.06 97.47 100 96.61 99.42
9 95.87 100 95.60 100 94.74 100 95.29 100 95.73 100 94.79 100 94.89 100 95.44 100
10 96.67 100 96.37 100 96.34 100 96.46 100 97.25 100 95.73 100 96.58 100 96.77 100
11 97.75 100 97.85 100 91.10 100 97.75 100 98.31 100 95.79 100 97.38 100 97.66 100
12 97.15 100 96.16 100 95.54 100 97.46 100 97.66 100 96.32 100 95.39 100 95.43 100
13 96.51 100 96.94 99.44 93.35 99.88 96.40 100 95.63 100 87.77 100 97.38 99.78 94.00 98.97
14 95.89 100 98.14 100 97.66 99.90 97.01 100 98.04 100 97.76 99.05 97.20 100 96.93 99.81
15 94.00 98.66 95.27 98.09 96.52 100 95.42 96.70 95.25 98.84 95.42 97.73 96.27 99.86 95.84 98.60
16 93.30 100 96.07 100 93.86 100 95.07 100 95.02 100 95.68 100 95.13 100 95.41 100

POA 96.37 96.49 96.45 96.25 96.63 95.93 96.81 96.21
PR 98.23 98.29 98.27 98.17 98.36 98.02 98.45 98.15

Table 5. PD, POA, and PR calculated from the classification results in Figure 6 for University of Pavia.

Class Full Bands UBS MEAC MDPP DSEBS SQ
LCMV-BSS-1

SQ
LCMV-BSS-2

SC
LCMV-BSS

PD PR PD PR PD PR PD PR PD PR PD PR PD PR PD PR
1 86.42 99.90 87.67 99.45 86.44 99.76 87.97 99.68 87.71 99.74 84.44 99.63 88.05 99.44 88.67 99.77
2 73.34 99.99 84.38 99.95 83.33 99.89 82.14 99.96 84.63 99.92 84.14 99.89 85.21 99.98 86.76 99.95
3 79.85 96.30 78.90 100 76.66 100 76.17 99.02 79.22 100 76.49 100 74.71 100 78.56 99.95
4 98.81 96.65 97.84 95.16 98.88 87.91 96.95 91.85 97.99 88.71 98.14 88.96 97.77 95.30 97.70 93.11
5 91.49 100 89.93 100 91.33 100 93.32 100 87.11 100 93.50 100 90.57 100 90.77 100
6 89.10 99.98 91.35 100 82.78 100 87.53 100 87.44 100 86.19 100 90.00 100 91.13 100
7 81.10 100 83.32 100 76.26 100 75.64 100 76.34 100 82.84 100 82.92 100 82.46 100
8 78.46 85.20 79.09 97.37 79.51 97.20 79.83 95.71 79.30 97.44 77.09 97.16 77.09 98.45 79.30 98.96
9 77.24 99.87 75.86 99.47 76.32 100 74.01 98.44 76.17 100 80.21 99.46 78.22 99.86 77.08 99.87

POA 84.32 85.19 83.85 84.33 84.25 84.45 85.41 85.92
PR 96.76 96.93 96.64 96.76 96.75 96.78 96.96 96.95

Table 6 tabulates the computing times in seconds for each of six BS methods in a computer
environment with a 1.6 GHz Intel Core i5 with OS X EI Capitan and 4 GB 1600 MHz DDR3; the software
used to run experiments was Matlab_R2014b. Obviously, the best time was achieved by DSEBS,
followed by SC LCMV-BSS and SQ LCMV-BSS. The worst time was achieved by MDPP for the Purdue
data and MEAC for Salinas and University of Pavia.
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Table 6. Computing time in seconds required by six test BS methods: MEAC, MDPP, DSEBS,
SQ LCMV-BSS-1, SQ LCMV-BSS-2, SC LCMV-BSS.

MEAC MDPP DSEBS SQ LCMV-BSS-1 SQ LCMV-BSS-2 SC LCMV-BSS

Purdue 13.70 41.14 0.58 7.00 7.10 6.93
Salinas 83.64 44.66 5.27 43.43 46.63 43.55

University of Pavia 44.53 29.22 4.62 16.67 17.52 16.84

As noted above, a classifier can also have a significant impact on BS, especially when BKG is
included for consideration. A recent work [12] developed four edge preserving filtering (EPF)-based
techniques—EPF-B-c, EPF-G-c, EPF-B-g, and EPF-G-g for HSIC—and also conducted a comprehensive
comparative analysis to show that their methods indeed performed better than most recently developed
spectral–spatial techniques. Therefore, in what follows, we conducted experiments to evaluate the
performance of ILCMV in comparison with these four EPF-based techniques with BKG particularly
included for classification. To see this, we also implemented these four EPF-based techniques with “B”
and “G” used to specify bilateral filter and guided filter, respectively, and “g” and “c” indicate that the
first principal component and color composite of the three principal components are used as reference
images [12].

Tables 7–15 tabulate the results in terms of POA and PR rates produced by the four EFP-based
methods and ILCMV, all of which included BKG for classification and also used the bands selected
in Table 2 to implement the three image scenes. Data for the Purdue image is shown in Tables 7–9
using bands selected by SQ LCMV-BSS-1, SQ LCMV-BSS-2, and SC LCMV-BSS; data for Salinas is
shown in Tables 10–12 using bands selected by SQ LCMV-BSS-1, SQ LCMV-BSS-2, and SC LCMV-BSS;
and data for University of Pavia is shown in Tables 13–15 using bands selected by SQ LCMV-BSS-1,
SQ LCMV-BSS-2, and SC LCMV-BSS. In addition, their computing times in seconds are included in the
tables for comparison.

Table 7. POA and PR calculated by the classification results using the bands selected by SQ LCMV-BSS-1
for the Purdue data.

Class
EPF-B-g

with Full
Bands

EPF-B-c
with Full

Bands

EPF-G-g
with Full

Bands

EPF-G-c
with Full

Bands

ILCMV
with Full

Bands

EPF-B-g
-BS

EPF-B-c
-BS

EPF-G-g
-BS

EPF-G-c
-BS

ILCMV
-BS

1 100 100 97.83 100 95.65 100 100 100 100 95.65
2 76.47 87.82 80.60 82.98 96.01 74.79 90.76 71.99 79.90 95.59
3 93.49 83.98 79.64 65.42 96.99 63.37 75.66 84.10 72.77 96.39
4 99.16 100 100 96.20 98.73 100 100 100 97.89 97.89
5 93.79 94.00 97.10 94.82 89.44 89.86 97.52 96.07 94.41 91.93
6 100 99.59 99.59 99.45 97.12 98.22 99.86 99.73 99.32 96.44
7 92.86 92.86 96.43 96.43 100 92.86 64.29 92.86 89.29 100
8 100 100 100 100 98.78 100 100 100 100 97.91
9 80.00 65.00 100 100 100 65.00 95.00 65.00 10.00 100
10 90.53 91.46 87.14 93.00 93.93 75.31 73.97 84.88 76.54 94.24
11 90.67 92.67 86.27 88.88 94.70 78.98 70.79 64.73 80.94 95.48
12 98.31 96.46 93.93 92.07 95.45 47.55 42.50 79.76 57.67 95.95
13 99.02 99.51 99.51 99.51 98.54 100 100 100 100 97.56
14 97.71 97.00 97.87 98.26 93.52 94.86 94.86 87.67 92.57 95.89
15 100 100 99.74 82.90 90.67 95.85 96.37 95.85 97.41 94.82
16 97.85 100 100 100 98.92 98.92 100 98.92 97.85 98.92

POA 92.27 93.45 90.32 89.79 95.09 81.62 82.94 81.17 84.15 95.67
PR 44.98 44.56 44.03 43.77 97.61 39.79 40.43 39.86 41.02 97.89

Time(s) 196.58 200.84 194.09 200.87 25.37 31.27 36.77 31.14 36.16 37.25
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Table 8. POA and PR calculated by the classification results using full bands and the bands selected by SQ LCMV-BSS-2 for the Purdue data.

Class EPF-B-g with
Full Bands

EPF-B-c with
Full Bands

EPF-G-g with
Full Bands

EPF-G-c with
Full Bands

ILCMV with
Full Bands EPF-B-g-BS EPF-B-c-BS EPF-G-g-BS EPF-G-c-BS ILCMV-BS

1 100 100 100 100 95.65 100 100 100 100 97.83
2 86.83 82.49 86.62 84.52 96.01 85.78 81.86 64.22 66.60 93.78
3 90.84 85.90 82.53 80.72 96.99 81.93 74.58 63.98 64.82 95.67
4 99.16 99.16 100 99.58 98.73 99.16 100 99.58 100 98.31
5 95.03 92.96 97.72 92.34 89.44 93.17 95.03 91.72 92.13 92.34
6 100 99.86 99.59 99.73 97.12 99.73 97.81 100 99.59 97.95
7 89.29 89.29 96.43 96.43 100 92.86 78.57 96.43 92.86 100
8 100 100 100 100 98.78 100 100 100 100 99.16
9 60.00 75.00 70.00 50.00 100 100 95.00 65.00 35.00 100
10 92.59 90.33 90.74 92.49 93.93 70.27 66.26 64.71 54.42 91.98
11 89.12 89.33 88.51 86.44 94.70 64.89 70.26 82.12 82.24 96.17
12 96.46 98.31 98.15 98.99 95.45 67.45 52.78 51.10 34.74 95.11
13 99.02 99.02 99.51 99.51 98.54 99.51 99.51 99.51 99.51 98.54
14 98.81 98.18 96.36 95.02 93.52 90.59 97.79 92.81 89.41 96.05
15 99.74 100 94.04 95.34 90.67 90.41 90.41 93.26 83.42 94.56
16 100 100 100 100 98.92 95.70 98.92 100 100 97.85

POA 93.37 92.17 92.10 90.96 95.09 81.49 81.28 80.01 77.66 95.48
PR 45.52 44.93 44.89 44.34 97.61 39.72 39.61 39.00 37.85 97.80

Time(s) 194.14 199.37 194.13 200.36 25.37 31.16 37.93 32.56 36.51 41.58
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Table 9. POA and PR calculated by the classification results using full bands and the bands selected by SC LCMV-BSS for the Purdue data.

Class EPF-B-g with
Full Bands

EPF-B-c with
Full Bands

EPF-G-g with
Full Bands

EPF-G-c with
Full Bands

ILCMV with
Full Bands EPF-B-g-BS EPF-B-c-BS EPF-G-g-BS EPF-G-c-BS ILCMV-BS

1 100 100 100 97.83 95.65 100 97.83 97.83 100 100
2 83.26 83.26 83.05 78.92 96.01 48.25 42.09 48.74 39.92 94.89
3 79.16 69.64 80.48 66.87 96.99 62.05 55.18 60.36 44.10 94.10
4 100 98.31 100 99.58 98.73 100 100 100 99.58 98.31
5 93.79 93.17 95.86 93.79 89.44 91.93 94.00 93.58 93.79 92.96
6 99.73 99.73 98.08 99.32 97.12 99.32 99.45 94.93 99.45 95.75
7 96.43 92.86 96.43 89.29 100 85.71 71.43 92.86 64.29 100
8 100 99.79 100 100 98.78 100 100 99.79 100 98.95
9 20.00 75.00 75.00 65.00 100 20.00 45.00 35.00 0 100

10 75.31 84.16 84.47 89.61 93.93 59.05 48.97 47.22 49.90 91.98
11 91.65 91.00 87.98 91.73 94.70 76.25 78.09 70.22 72.87 95.93
12 96.29 92.07 96.12 97.47 95.45 70.83 60.20 44.86 58.85 96.63
13 99.51 99.51 99.51 99.51 98.54 100 100 100 100 98.54
14 92.89 98.34 96.36 96.68 93.52 98.34 93.04 97.23 97.39 96.13
15 100 100 98.19 99.48 90.67 93.26 89.12 79.27 67.36 96.11
16 100 100 100 100 98.92 100 100 93.55 95.70 95.70

POA 90.06 90.42 90.56 90.37 95.09 77.37 74.12 72.31 71.25 95.46
PR 43.90 44.08 44.15 44.05 97.61 37.72 36.13 35.25 34.73 97.79

Time(s) 187.76 203.60 195.20 201.21 25.37 32.01 38.78 31.92 38.07 42.73



Remote Sens. 2018, 10, 113 16 of 25

Table 10. POA and PR calculated by the classification results using full bands and the bands selected by SQ LCMV-BSS-1 in Table 2 for Salinas.

Class EPF-B-g with
Full Bands.

EPF-B-c with
Full Bands

EPF-G-g with
Full Bands

EPF-G-c with
Full Bands

ILCMV with
Full Bands EPF-B-g-BS EPF-B-c-BS EPF-G-g-BS EPF-G-c-BS ILCMV-BS

1 100 100 100 100 95.52 100 99.75 100 100 96.37
2 100 100 100 100 98.42 99.97 100 99.97 100 98.79
3 100 100 100 100 93.78 100 100 100 100 90.44
4 100 100 100 99.93 95.62 99.93 99.86 99.93 100 96.56
5 99.37 99.25 98.69 99.25 96.90 98.92 98.95 98.92 98.95 95.87
6 100 100 100 100 98.79 99.97 99.97 99.97 99.97 97.95
7 100 99.92 100 100 98.63 99.66 99.72 99.66 99.83 98.35
8 90.92 90.40 89.26 90.61 96.69 87.11 91.94 87.11 91.70 95.84
9 99.98 100 99.97 99.97 95.87 99.58 100 99.58 99.97 94.79
10 96.95 98.08 98.60 98.51 96.67 96.19 98.57 96.19 98.60 95.73
11 99.91 99.91 99.91 100 97.75 99.91 99.91 99.91 99.81 95.79
12 100 100 100 100 97.15 100 100 100 100 96.32
13 99.89 99.56 99.02 99.89 96.51 98.47 99.13 98.47 99.56 87.77
14 99.91 99.25 99.63 100 95.89 98.97 99.35 98.97 98.04 97.76
15 89.01 85.65 85.65 87.08 94.00 90.66 82.21 90.66 85.99 95.42
16 99.83 100 99.45 99.83 93.30 99.67 100 99.67 100 95.68

POA 96.40 95.89 95.64 96.17 96.37 95.64 95.73 95.64 96.19 95.93
PR 46.97 46.26 46.95 46.85 98.23 46.60 46.64 46.60 46.86 98.02

Time(s) 1060.77 741.84 1082.51 1134.06 167.80 75.17 78.73 75.17 104.31 134.96
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Table 11. POA and PR calculated by the classification results using full bands and the bands selected by SQ LCMV-BSS-2 in Table 2 for Salinas.

Class EPF-B-g with
Full Bands

EPF-B-c with
Full Bands

EPF-G-g with
Full Bands

EPF-G-c with
Full Bands

ILCMV with
Full Bands EPF-B-g-BS EPF-B-c-BS EPF-G-g-BS EPF-G-c-BS ILCMV-BS

1 100 100 100 100 95.52 100 100 100 100 97.01
2 100 100 100 100 98.42 100 100 100 99.97 98.36
3 100 100 100 100 93.78 100 100 99.95 100 95.14
4 100 100 100 99.78 95.62 100 99.93 100 100 95.91
5 99.48 98.95 98.58 99.14 96.90 98.66 98.73 99.14 98.84 95.94
6 100 100 100 100 98.79 99.95 100 100 100 98.91
7 100 99.89 100 99.89 98.63 99.92 99.97 99.89 99.80 98.44
8 88.63 91.98 87.90 90.86 96.69 87.84 89.50 90.61 91.86 97.47
9 99.90 99.98 99.95 100 95.87 99.97 99.94 99.60 100 94.89
10 97.56 98.90 97.04 97.50 96.67 99.33 99.51 99.21 98.29 96.58
11 100 99.91 99.91 99.72 97.75 100 99.91 99.72 100 97.38
12 100 100 100 100 97.15 100 100 100 100 95.39
13 99.24 99.89 98.80 99.13 96.51 99.02 100 98.36 99.13 97.38
14 99.91 99.91 99.91 99.25 95.89 100 100 99.91 99.35 97.20
15 88.66 85.43 94.25 91.43 94.00 79.35 93.04 83.94 86.13 96.27
16 99.94 100 99.61 99.50 93.30 100 100 100 100 95.13

POA 95.91 96.24 96.42 96.69 96.37 94.56 96.77 95.71 96.24 96.81
PR 46.73 46.89 46.97 47.11 98.23 46.07 47.15 46.63 46.89 98.45

Time(s) 1128.55 755.52 1050.34 722.76 167.80 73.49 101.80 71.57 98.16 159.26
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Table 12. POA and PR calculated by the classification results using full bands and the bands selected by SC LCMV-BSS in Table 2 for Salinas.

Class EPF-B-g with
Full Bands

EPF-B-c with
Full Bands

EPF-G-g with
Full Bands

EPF-G-c with
Full Bands

ILCMV with
Full Bands EPF-B-g-BS EPF-B-c-BS EPF-G-g-BS EPF-G-c-BS ILCMV-BS

1 100 100 100 100 95.52 100 100 100 100 96.91
2 100 100 100 100 98.42 99.95 99.84 99.92 99.97 98.71
3 100 100 100 100 93.78 99.90 100 100 99.90 95.95
4 100 100 100 100 95.62 100 99.57 100 99.86 92.04
5 99.07 99.22 99.10 98.92 96.90 98.88 99.55 99.33 98.99 90.78
6 100 100 100 100 98.79 100 100 100 99.90 97.75
7 100 99.97 100 99.97 98.63 99.61 99.89 100 99.94 98.32
8 90.18 89.51 89.40 91.38 96.69 90.88 89.02 90.68 90.30 96.61
9 100 99.98 99.81 99.94 95.87 99.95 99.95 99.97 100 95.44
10 97.47 97.71 97.41 99.48 96.67 98.90 99.24 98.11 98.29 96.77
11 100 100 100 100 97.75 100 99.72 99.34 99.72 97.66
12 100 100 100 100 97.15 100 100 100 100 95.43
13 100 99.89 98.91 99.89 96.51 99.34 99.89 99.24 99.13 94.00
14 100 100 100 99.81 95.89 99.35 99.63 98.79 98.32 96.93
15 88.99 84.26 88.08 86.90 94.00 89.74 93.35 78.92 88.92 95.84
16 99.28 99.89 100 99.94 93.30 100 100 100 99.94 95.41

POA 96.25 95.52 95.95 96.34 96.37 96.50 96.70 95.02 96.26 96.21
PR 46.89 46.53 46.75 46.94 98.23 47.02 47.11 46.29 46.90 98.15

Time(s) 1139.99 1106.95 1154.78 1089.61 167.80 73.06 94.17 69.92 91.50 147.30
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Table 13. POA and PR calculated by the classification results using full bands and the bands selected by SQ LCMV-BSS-1 in Table 2 for University of Pavia.

Class EPF-B-g with
Full Bands

EPF-B-c with
Full Bands

EPF-G-g with
Full Bands

EPF-G-c with
Full Bands

ILCMV with
Full Bands EPF-B-g-BS EPF-B-c-BS EPF-G-g-BS EPF-G-c-BS ILCMV-BS

1 98.04 98.04 98.08 97.81 77.24 96.15 92.47 96.34 97.29 80.21
2 98.66 99.39 97.79 98.28 86.42 94.31 94.84 97.39 98.06 84.44
3 91.09 93.52 95.00 94.33 73.34 92.62 94.81 95.57 95.33 84.14
4 93.47 95.27 92.92 98.01 79.85 97.52 97.45 97.00 96.87 76.49
5 100 100 100 99.85 98.81 100 100 100 100 98.14
6 99.98 100 100 100 91.49 99.64 98.15 99.64 100 93.50
7 100 99.32 99.92 99.77 89.10 99.92 99.32 99.40 100 86.19
8 99.02 99.00 97.80 99.78 81.10 95.60 96.22 96.41 96.28 82.84
9 100 100 100 100 78.46 100 99.89 100 100 77.09

POA 98.12 98.67 97.80 98.46 84.32 95.96 97.49 97.49 98.01 84.45
PR 20.24 20.35 20.17 20.31 96.76 19.79 19.71 20.11 20.21 96.82

Time(s) 225.93 265.79 232.05 252.50 401.08 51.16 83.46 52.90 78.32 1387.01

Table 14. POA and PR calculated by the classification results using full bands and the bands selected by SQ LCMV-BSS-2 in Table 2 for University of Pavia.

Class EPF-B-g with
Full Bands

EPF-B-c with
Full Bands

EPF-G-g with
Full Bands

EPF-G-c with
Full Bands

ILCMV with
Full Bands EPF-B-g-BS EPF-B-c-BS EPF-G-g-BS EPF-G-c-BS ILCMV-BS

1 94.89 97.80 97.84 98.21 77.24 95.43 95.96 88.76 92.01 78.22
2 98.58 97.63 99.25 98.01 86.42 96.43 94.88 92.59 93.13 88.05
3 94.90 93.57 92.57 95.19 73.34 92.19 92.47 95.52 93.62 85.21
4 95.63 94.97 93.02 98.83 79.85 98.69 96.02 98.37 98.47 74.71
5 100 100 100 99.85 98.81 100 100 100 100 97.77
6 100 100 100 100 91.49 100 99.52 99.72 99.94 90.57
7 100 100 99.40 99.77 89.10 100 99.92 100 100 90.00
8 96.93 98.89 98.94 98.48 81.10 93.97 94.70 95.22 93.56 82.92
9 100 100 100 100 78.46 100 100 100 100 77.09

POA 97.76 97.85 98.36 98.39 84.32 96.74 95.97 94.25 94.78 85.41
PR 20.16 20.18 20.29 20.29 96.76 19.95 19.79 19.44 19.55 96.94

Time(s) 219.10 249.76 226.85 238.81 401.08 48.52 82.95 53.53 79.05 971.56
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Table 15. POA and PR calculated by the classification results using full bands and the bands selected by SC LCMV-BSS in Table 2 for University of Pavia.

Class EPF-B-g with
Full Bands

EPF-B-c with
Full Bands

EPF-G-g with
Full Bands

EPF-G-c with
Full Bands

ILCMV with
Full Bands EPF-B-g-BS EPF-B-c-BS EPF-G-g-BS EPF-G-c-BS ILCMV-BS

1 99.43 97.16 97.95 97.98 77.24 95.93 92.73 98.27 97.99 77.08
2 98.19 99.15 98.80 98.79 86.42 95.44 94.31 97.00 96.23 88.67
3 99.24 95.09 94.85 93.57 73.34 93.52 91.04 92.38 94.14 86.76
4 93.93 94.65 94.61 98.27 79.85 97.52 96.74 98.27 96.96 78.56
5 100 99.85 100 99.93 98.81 100 100 100 100 97.70
6 99.96 99.34 99.68 100 91.49 99.70 98.11 99.05 100 90.77
7 100 100 99.70 99.77 89.10 99.62 99.47 99.92 99.55 91.13
8 96.85 98.13 97.77 99.51 81.10 92.88 92.61 92.99 92.97 82.46
9 100 100 100 100 78.46 100 100 100 100 79.30

POA 98.37 98.32 98.28 98.67 84.32 96.22 94.85 97.21 96.92 85.92
PR 20.29 20.28 20.27 20.35 96.76 19.85 19.56 20.05 19.99 97.09

Time(s) 238.01 270.24 234.01 259.33 401.08 51.13 83.41 49.37 76.48 998.17
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Several interesting findings can be derived from the results in Tables 7–15.

1. It is very obvious to note that BSS did improve ILCMV classification results. Such an improvement
cannot be found in the four EPF-based methods, where the classification results of the four
EPF-based methods using band subsets could only get worse compared with the results using full
bands. This may be due to the fact that the four EPF-based methods used principal component
analysis (PCA) to compress the original data in preprocessing which retains some crucial
information provided by full bands.

2. The precision rates produced by the four EPF-based methods were very low as also noted
in [23,76]. However, ILCMV using bands selected by LCMV-BSS consistently performed very
well in both POA and PR.

3. According to Tables 7–9, ILCMV performed slightly better than the four EPF-based methods in
POA but significantly better in PR for Purdue’s data and Salinas. The scene of the University of
Pavia is interesting, as shown in Tables 13–15. The four EPF-based methods performed very well
in POA but did very poorly in PR with about only 20%. Furthermore, POA produced by ILCMV
may not be as good as those produced by the four EPF-based methods (about 10% less) but the
PR produced by ILCMV were around 96% which is nearly 4.8 times better than the 20% produced
by the four EPF-based methods. These experiments demonstrated that the BKG issue is critical in
data analysis of the University of Pavia and cannot be ignored or discarded in data processing.
Unfortunately, this BKG issue has never been investigated in the past.

4. Unlike the four EPF-based methods, which performed well in POA but very poorly in PR, ILCMV
consistently performs well in both POA and PR, and even better when it is implemented in
conjunction with BSS—a case that the EPF-based methods actually failed, as shown in Tables 7–15.

5. Last but not least, BS is heavily determined by three factors: the data to be processed, the BS
method selected, and the classifier used. Unfortunately, most works on BS for hyperspectral
image classification have been focused on the design and development of BS methods but very
little has been reported on performance evaluation of different classifiers which use the same
set of bands selected by a BS method. For example, as shown in Tables 7–15, if the four EPF
methods were implemented by BS, their classification results could not be improved, but those of
ILCMV could.

6. It should be noted that PD results are not included in Tables 7–15 due to two reasons. One is that
the results of PD using full bands are already available in [23,76]. The other is that EPF-based
methods using partial bands did not perform better than their counterparts using full bands. So,
it does not make sense to include their results in tables. Besides this, due to limited space, there is
no need to include their results.

6. Conclusions

This paper developed an SMMBS method, called LCMV-BSS, which selects multiple bands
as a band subset using LCMV to linearly constrain class signature vectors as a criterion to select
an optimal band subset. It is completely different from existing BS methods, with the following
contributions: (i) It is a BSS method particularly developed for HSIC; (ii) It is quite different from single
band-constrained methods in [26] and multiple-band constrained methods in [68], by constraining
multiple class signature vectors instead of multiple bands; (iii) It develops three numerical search
algorithms to find optimal band subsets which are different from the graph-based approaches [40,43]
used by other SMMBS methods; (iv) It is very simple to implement via (7) with no parameters needing
to be tuned; (v) Most importantly, it shows that HSIC can be improved by BS provided that the number
nBS of selected bands and the set of nBS bands are properly selected.
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