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Abstract: Methods for accurately measuring biophysical parameters are a key component for
quantitative evaluation regarding to various forest applications. Conventional in situ measurements
of these parameters take time and expense, encountering difficultness at locations with heterogeneous
microtopography. To obtain precise biophysical data in such situations, we deployed an unmanned
aerial system (UAS) multirotor drone in a cypress forest in a mountainous area of Japan. The structure
from motion (SfM) method was used to construct a three-dimensional (3D) model of the forest (tree)
structures from aerial photos. Tree height was estimated from the 3D model and compared to in
situ ground data. We also analyzed the relationships between a biophysical parameter, diameter at
breast height (DBH), of individual trees with canopy width and area measured from orthorectified
images. Despite the constraints of ground exposure in a highly dense forest area, tree height was
estimated at an accuracy of root mean square error = 1.712 m for observed tree heights ranging
from 16 to 24 m. DBH was highly correlated with canopy width (R2 = 0.7786) and canopy area
(R 2 = 0.7923), where DBH ranged from 11 to 58 cm. The results of estimating forest parameters
indicate that drone-based remote-sensing methods can be utilized to accurately analyze the spatial
extent of forest structures.

Keywords: UAV; UAS; drone; structure from motion; forest inventory; biophysical parameter;
aerial survey

1. Introduction

Collecting accurate forest inventory information faster and more efficiently is one of the concerns
and challenges of forest management [1]. There is a high demand for improved measurement
methods for use in such programs as but not limited to Reducing Emissions from Deforestation and
Forest Degradation (REDD+; [2]), forests as carbon sinks for national CO2 reduction plan [3] and for
meeting the challenges of modeling future climate scenarios by integrating terrestrial biogeochemical
feedback [4]. By collecting accurate forest data, we can better estimate and interpret forest dimensions
to evaluate various forest ecosystem services, such as biodiversity [5], carbon stocks and CO2

uptake [6,7], and aboveground biomass (AGB; [8]).
Conventional methods of collecting tree biophysical data rely on equipment that measures the

sizes and heights of trees, such as measuring tapes and calipers [9]. Calipers, a device used to
measure the distance between two opposite sides, can easily measure the diameter or cross-section
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of a tree trunk [10]. With advancements in equipment, modern methods of collecting forest inventory
data include laser rangefinders [11], terrestrial light detection and ranging (LiDAR; [12,13]), and even
smartphone applications [14], which improve efficiency and data quality. Although different methods
can be used to collect forest data depending on various technologies and their suitability, the methods
must always be used on the ground. This may be more efficient than using other conventional
methods, but if the study area is located in an unpopulated or remote area, or in an extremely rugged
terrain (e.g., in the mountains), difficulties arise and worker safety becomes a matter of great concern.
We also have to be mindful of sampling designs, which depend on the available time and budget [9].
Given the difficulty of collecting detailed information using conventional methods [15], remote-sensing
methods have been studied that involve multiple platforms (aircraft, satellites) and sensors (multispectral,
radar, laser; [1,7,16–18]). Aerial methods such as airborne LiDAR [16,18] or photogrammetry [18] have
been considered to collect more data in wider regions. These methods could be alternatives to continuous
collection of forest data, which can also be used for monitoring purposes. The use of satellite images is still
a challenging task. A number of applications can be used to collect forest biophysical parameters through
spatial observations [19]; however, optical data can be limited in spatial/temporal resolution, and even
with finer resolution data cloud cover makes proper estimation difficult [20]. Although synthetic aperture
radar (SAR) is an alternative, it is still an undergoing task for the precise estimation, which is extremely site
dependent [17,21–25].

Within this few years, utilizing the unmanned aerial system (UAS) is an emerging trend for
collecting various spatial information [26]. Recent studies have reported the use of UAS in various
analyses, including forestry applications [27,28]. Collecting aerial photos by UAS and processing
them with the structure from motion (SfM) method is one of the major new approaches to analyzing
forest structures [29,30]. SfM is a photogrammetric method of constructing a three-dimensional
(3D) model based on multiple two-dimensional images (e.g., photos; [31]), which is receiving much
attention in the remote sensing field with the use of airborne platforms. The advantage of UAS-borne
data is that high-resolution images can be generated that clearly detect tree canopies [32]. Moreover,
this technique can be used to construct 3D models of an area through photogrammetry. This means that
there are possibilities for extracting forest inventory data from UAS-sensed information [18,29,30,32].
Digital surface models (DSMs) and ultra-fine resolution orthophotos can be directly utilized to estimate
tree heights and canopy size. Usually, these data are difficult to extract correctly because the height of
a tree depends on site conditions (higher/lower stem density; [33]), decreased interpretation of surface
area at dense forest sites [30], or even exposure to light and wind [34,35]. In addition, directly estimating
parameters in lower layers, such as DBH (Diameter at Breast Height), from DSM or orthophotos is also
difficult because of tree canopies, particularly in dense forest environments. Therefore, extracting DBH
information related to tree height remains challenging. In the various reports, utilizing airborne-based
investigation methods, including UAS observations, relationships between canopy width or canopy
area and DBH have rarely been reported. Results shown by Jucker et al. [36] present the relation
of tree height and crown diameter with the stem diameter, which is utilizing airborne LiDAR
information. From such works, we can determine that relations between the two parameters can be
considered with relation, yet direct measurement of only canopy information and DBH is unclear
with the use of photogrammetry. This is particularly true in the case of highly dense forests in Japan.
Thus, our objective was to assess the use of UAS photogrammetry for estimating forest parameters,
focusing on estimating DBH by canopy structure using both an ultra-fine resolution orthophoto and
a 3D model constructed using the SfM method. We were interested in determining whether the method
is applicable in mountainous areas with heterogeneous microtopography. We further investigated
parameter settings for constructing the best fitting 3D model for estimating tree height.
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2. Materials and Methods

2.1. Study Site

The study site was located at Otsu City, Shiga Prefecture, Japan. The Kiryu Hydrological
Experimental Watershed (KEW), located between approximately 34.963◦N, 135.9925◦E, and 34.9667◦N,
135.9955◦E, is managed by the Department of Agriculture, Kyoto University, which monitors various
environmental dynamics related to forestry and hydrology (http://www.bluemoon.kais.kyoto-u.
ac.jp/kiryu-e/contents.html). KEW is primarily covered by evergreen conifer Japanese cypress
(Chamaecyparis obtusa (Sieb. et Zucc.)) trees, most of which were planted in 1959. The forest also
contains sparsely distributed Japanese red pine (Pinus densiflora) and broadleaf trees. Japanese cypress
plantations are the second most common type of planted forests in Japan, accounting for almost
25% of the total area of planted forests and 10% of the entire forested area of Japan. The site was
an ideal area for seeking out the aforementioned cypress trees to test the method and its potential
applicability to other regions. The area has an average annual precipitation of 1654 mm and average
annual temperature of 14.0 ◦C (1994–present). The elevation ranges from 190 to 255 m above mean
sea level. A flux tower for meteorological observation was built at a southern location on the site to
observe the airflow dynamics of the forest and atmospheric interactions. Figure 1 shows the overall
area of the study site and its heterogeneous landscape.
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On 9 May 2017, a flight was conducted at KEW to collect aerial photos of the region. A DJI 
Phantom 4 Pro multicopter UAS (DJI, Shenzhen, China) was utilized to collect observational data. 
The multicopter took off from the top of the flux tower (29 m) and ascended to an altitude of 
approximately 110 m (an additional 80 m from the tower). This was to ensure that no objects were in 
the way during flight. DJI Ground Station Pro was used to perform the automatic flight and to take 
photos of the area. The camera was set to face vertically toward the surface, and the forward and side 
overlaps were both set to 85% for the photo shoots.  

Figure 1. Location of the study area, the Kiryu Experimental Watershed (KEW) (Shiga Prefecture).
The outer border indicated in the enlarged image (right) represents the watershed, whereas the inner
lines indicate sub-watersheds. The bottom images represent the general landscape of the KEW. The map
images are from Google Earth (Pro ver. 7.3.0.3832, Google Inc., Mountain View, CA, USA) [37].

2.2. Photogrammetry 3D Model Construction

2.2.1. Collection and Processing of Aerial Photos

On 9 May 2017, a flight was conducted at KEW to collect aerial photos of the region. A DJI
Phantom 4 Pro multicopter UAS (DJI, Shenzhen, China) was utilized to collect observational data.
The multicopter took off from the top of the flux tower (29 m) and ascended to an altitude of
approximately 110 m (an additional 80 m from the tower). This was to ensure that no objects were in
the way during flight. DJI Ground Station Pro was used to perform the automatic flight and to take
photos of the area. The camera was set to face vertically toward the surface, and the forward and side
overlaps were both set to 85% for the photo shoots.

The collected photos were processed with the 3D modeling software Agisoft PhotoScan Pro version
1.3.1 (Agisoft LLC, St. Petersburg, Russia). This software performs automatic photogrammetric processing
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of images that can be used to generate 3D data such as DSMs and can also process and compute
mosaicked orthorectified imagery. The SfM method works by extracting features (points) within the
images and matching those features to pair the images; then, the camera position is estimated and
the object is reconstructed from the features and the camera position. Further details can be found in
Yi et al. [38]. Table 1 shows the overall process and parameter settings for generating point clouds and
the orthophoto of the test site. Before generating a dense point cloud, we manually deleted several
points that were interpreted as inaccurate projections. To collect information on the height of the trees,
we also generated a digital terrain model (DTM) of the area by extracting the lowest points from the
dense data point cloud and interpolating them using the inverse distance weighting (IDW) method
to generate a model representing the ground surface. Several parameter settings were used to select
ground points to generate and compare multiple DTMs, in order to determine which one best represented
the surface information. Three parameters constituted the main criteria for extracting ground points
from the point cloud information: cell size (m), maximum angle (degrees), and maximum distance (m).
Further explanations are given in the Discussion section. A total of 23 models was produced with different
parameter settings: DTMcell10 (cell:10, angle:20, distance:0.5), DTMcell20 (cell:20, angle:20, distance:0.5),
DTMcell30 (cell:30, angle:20, distance:0.5), DTMcell40 (cell:40, angle:20, distance:0.5), DTMcell50 (cell:50,
angle:20, distance:0.5), DTMcell60 (cell:60, angle:20, distance:0.5), DTMcell70 (cell:70, angle:20, distance:0.5),
DTMcell80 (cell:80, angle:20, distance:0.5), DTMcell90(cell:90, angle:20, distance:0.5) DTMcell100 (cell:100,
angle:20, distance:0.5), DTMd025 (cell:60, angle:20, distance:0.25), DTMd1(cell:60, angle:20, distance:1),
DTMd2(cell:60, angle:20, distance:2), DTMd4(cell:60, angle:20, distance:4), DTMd8(cell:60, angle:20,
distance:8), DTMd16(cell:60, angle:20, distance:16), DTMa1(cell:60, angle:1, distance:1.3), DTMa5(cell:60,
angle:5, distance:1.3), DTMa10(cell:60, angle:10, distance:1.3), DTMa15(cell:60, angle:15, distance:1.3),
DTMa20(cell:60, angle:20, distance:1.3), DTMa25(cell:60, angle:25, distance:1.3), and DTMa30(cell:60,
angle:30, distance:1.3). Unfortunately, the area was covered by a very dense quantity of trees, which made
it difficult to visualize the ground surface. Moreover, because of this dense canopy and the surrounding
terrain, it was difficult to receive accurate GPS information on the site; therefore, we did not collect
additional ground control points (GCP) for calibrating the model during the SfM procedure, and only the
tagged GPS information was used. The generated resolution of the orthophoto and terrain models varied;
therefore, the terrain model was resampled to match the orthophoto using the cubic convolution method.
Further analyses were carried out using the processed data.

Table 1. Parameter settings for the workflow for generating 3D models (PhotoScan Pro).

Workflow Parameter Settings

Align Photos Accuracy High
Preselection Reference

Key Point Limit 160,000
Tie Point Limit 0

Adaptive Camera Model Fitting Yes
Build Dense Cloud Quality High

Depth Filtering Aggressive
Build Mesh Surface Type Height Field

Source Data Dense Cloud
Face Count High

Interpolation Enabled
Calculate Vertex Colors Yes

Build Digital Elevation Model (DEM) Projection WGS84 Latlong
Source Data Dense Cloud
Interpolation Enabled

Resolution 0.057 m
Build Orthomosaic Surface DEM

Enable Color Correction Yes
Enable Hole Filling Yes

Resolution 0.0285 m
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2.2.2. Forest Inventory Ground Survey

A ground survey was carried out at KEW to collect actual ground information on the biophysical
parameters of individual trees. A measuring tape was used to collect the DBH information of the
sampled trees, and a laser rangefinder (Impulse 200, Laser Technology, Inc., Centennial, CO, USA) was
used to measure tree height. A total of 51 individual samples were collected from the cypress trees in
the vicinity of the flux tower so that they could be clearly recognized from the aerial images; however,
the trees were randomly chosen to collect various sizes and heights. The distances and the direction
from the tower were recorded for each of the sampled trees, and their locations were later matched to
the aerial images. This was done because the density of the forest environment made it difficult to
receive sufficient GPS signal to identify the locations from geographical coordinates.

2.2.3. Estimating and Analyzing Tree Parameters

Using the processed data and images, which were generated through the SfM method,
we compared the tree parameters that could be extracted from the processed data with the actual
ground data collected from the ground survey. The following equation was used to generate a canopy
height model (CHM; [18]) to represent potential tree height:

CHM = DSM − DTM. (1)

Then, we compared the height from the CHM to the actual ground data to assess the accuracy of
the estimate. As previously mentioned, we generated multiple DTMs based on different parameters.
We analyzed and computed different CHMs computed with different DTMs by assessing the root
mean square error (RMSE) of the estimated tree heights.

As for the DBH information, we performed regression analyses for two parameters and the
observed DBH data. The first parameter was the canopy width, which was easily measured using
Quantum GIS (using a measuring tool) (ver. 2.18.13. QGIS Development Team, Open Source Geospatial
Foundation) on the generated ultra-fine orthophoto. The width was measured twice per tree in both
horizontal and vertical length, and the average was computed. We computed the second parameter,
the canopy area of the individual trees, by constructing individual polygons covering the canopy
area and calculating the area covered by each polygon. The investigation was conducted to see
how well the canopy structure could predict the DBH. For quantifying the statistical significance of
the relationships, Pearson’s correlation analysis was performed to compute the level of significance
between the two variables (p-value).

2.3. Automatic Canopy Extraction

In reality, to obtain a full visual of the whole forested area, it is not a smart way to construct each
polygon manually for individual trees. We have tested to see if automated extraction of canopy area is
possible using the set of UAS data. Here, we implemented the watershed segmentation method found
in the SAGA (System for Automated Geoscientific Analysis) GIS platform ver. 5.0.0 [39]. The method
works as if the canopy shape tends to form like watersheds in the DSM/CHM data with the z-axis
reversed. We have used the DSM for the test. First, for the original image results with small artifacts
such as within the border of the canopy area, in order to smooth the data, a Gaussian filter was
performed with a standard deviation 95%, circle kernel type and radius of 20. On the filtered DSM,
a classical watershed algorithm was implemented and the segmented areas were computed. In SAGA,
there are two parameters that need to be set. One is the method option, to either choose local minima
or maxima. This determines the starting point of the flooding (filling) from the bottom of the valley
like the normal watersheds (in our case, the lowest point of the canopy) or from the top of the slope
(in our case, the top of the canopy) for local minima and maxima, respectively. We chose the local
maxima option. The second is the merging option for the segments; however, we have left this option
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for “do not join”. Other options are left as default. The result is checked through visual interpretation
on the ortho image.

3. Results

3.1. Orthophoto, DSM, DTM and CHM

The orthophoto was generated from the 696 photos collected in the aerial survey. The resolutions
of the orthophoto and the DSM (DTM) were approximately 2.85 and 5.7 cm, respectively, and we
resampled the terrain models to 2.85 cm using the cubic convolution method. The coverage of the area
was 26.8 ha, and the total error was 5.56 m (x error: 3.07 m, y error: 0.53 m, z error: 4.61 m, xy error:
3.12 m). Although a large area was generated (covering the whole KEW), our individually sampled
trees were from a relatively smaller area (0.72 ha); therefore, we extracted the areas of interest for
further analysis. By comparing the analysis of multiple CHM data with the ground data, we found
that the parameters that best described the ground surface information, the DTM generated from the
classified point clouds, were a cell size of 60 m, a maximum angle of 25◦ and a maximum distance of
1.3 m (DTMa25). In Figure 2, the trends in RMSE when we compared the different parameter settings
for generating DTMs by extracting the ground points are shown for each parameter. We used these
DTM data in further analyses computing CHM. Graphical images of the orthophoto, DSM, DTM,
and CHM are shown in Figure 3.
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3.2. Tree Height, DBH Analysis

Using the CHM data, we extracted the maximum heights of the individual trees (from constructed
polygon data) and compared them with the actual ground data. Figure 4 shows the relationship
between the estimated height and the reference height. Given the highly dense forested area,
shorter trees were not considered because they were impossible to detect from the aerial view.
Therefore, mostly taller trees were measured and used as samples, with a resultant height range
of 16 to 24 m. The RMSE of the estimate was 1.712 m (R2 = 0.2076).
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Figure 5a,b show the relationship between canopy width and canopy area and DBH. There was
an obvious strong linear relationship between canopy width and DBH (R2 = 0.7786). As mentioned
previously, the relationship between height and DBH can be difficult to observe because height
can vary depending on various environmental conditions, in particular the heterogeneity of the
microtopography; therefore, we estimated DBH from canopy information instead. In the case of the
Japanese cypress trees, canopy width was highly correlated with DBH; moreover, the canopy area also
showed a strong relationship with DBH (R2 = 0.7923). For the DBH–canopy size relationship, the best
fitting trend line was a second-order polynomial function. Along with the comparison, we found that
extracting DBH from canopy information gave better results than using tree height (Figure 6), as we
observed some outliers.

Remote Sens. 2017, 10, 13  8 of 14 

 

Figure 5a,b show the relationship between canopy width and canopy area and DBH. There was 
an obvious strong linear relationship between canopy width and DBH (R2 = 0.7786). As mentioned 
previously, the relationship between height and DBH can be difficult to observe because height can 
vary depending on various environmental conditions, in particular the heterogeneity of the 
microtopography; therefore, we estimated DBH from canopy information instead. In the case of the 
Japanese cypress trees, canopy width was highly correlated with DBH; moreover, the canopy area 
also showed a strong relationship with DBH (R2 = 0.7923). For the DBH–canopy size relationship, the 
best fitting trend line was a second-order polynomial function. Along with the comparison, we found 
that extracting DBH from canopy information gave better results than using tree height (Figure 6), as 
we observed some outliers. 

 
(a)

 
(b)

Figure 5. Analysis of the relationships between observed Diameter at Breast Height (DBH) and (a) 
canopy width (m) and (b) canopy area (m2). The former shows a linear relationship of R2 = 0.7786, and 
the latter shows a second-order polynomial regression line as the reference (R2 = 0.7923). Pearson’s 
correlation analysis indicates the probability value (p-value) of less than 0.01. 

Figure 5. Analysis of the relationships between observed Diameter at Breast Height (DBH) and
(a) canopy width (m) and (b) canopy area (m2). The former shows a linear relationship of R2 = 0.7786,
and the latter shows a second-order polynomial regression line as the reference (R2 = 0.7923).
Pearson’s correlation analysis indicates the probability value (p-value) of less than 0.01.
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3.3. Canopy Segmentation

Automated method for canopy area extraction was tested. Figure 7 shows the visual imagery of
the segment borders (yellow lines) generated from the watershed method and it is overlaid on the
ortho image. As an overall of the interpretation, small canopy and large canopy both can be extracted
using such methods. Although we can see slight over segmentation (segment borders slightly larger)
or under segmentation (segments not merged within one canopy) within the scene, it can be said that it
is able to extract the canopy area even in such a highly dense forested area. To improve the automated
method, developing a better 3D model of the area could enhance the result. Here, the result of the
possibilities of automated extraction is shown; however, we will not go into detail, since our primary
objective is not to seek methods for obtaining best results in the segmentation process. This should
become our next task for collecting wide area inventory data.
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4. Discussion

4.1. DTM Generation

A critical point when estimating tree height from 3D models constructed with the SfM method
is to generate DTM data of reliable quality. By subtracting the pure terrain information from the
DSM, we obtained information on the height of surface objects. We found several other studies that
used similar methods to estimate tree heights (extracting DSM by DTM). Ota et al. [18] modeled the
aboveground biomass (AGB) by estimating tree heights from aerial photos compared to LiDAR in
tropical forests in Cambodia. They computed the DTM by extracting the ground points using local
minima of 10 m ×10 m. This was compared for both SfM-derived and LiDAR-derived points, and both
methods resulted in a good final AGB when the CHM was computed using the DTM from LiDAR
points. A large variation in AGB resulted when the terrain data were extracted from SfM point cloud
data, and it is expected that 10 m × 10 m local minima cannot delineate the ground information
but instead collect false points from nonground areas. Wallace et al. [29] used the Lasground tool
in Lastools to compute DTM data; this tool uses a similar procedure to that provided in Photoscan,
in which initial points are selected to generate a triangular irregular network (TIN) surface, and then
adjustments are made for additional points with set parameters. Their estimated tree heights were
approximately RMSE (R2) 0.92 m (0.84) and 1.30 m (0.68) for LiDAR-based and SfM-based methods,
respectively. Their study area was a sclerophyll eucalyptus forest in Australia that seemed to have had
a relatively open canopy; therefore, it could be easily estimated even using the SfM method.

PhotoScan provides an automated procedure for extracting the lowest elevation point from the
point cloud data generated, and interpolation is performed to develop a spatial distribution of the
terrain data. We proceeded to generate DTM using this option. The difficulty of this method is setting
the parameters to determine which points to extract as the ground points. Three parameters are
provided: cell size, maximum angle, and maximum distance. Although some other studies have
used the same options to generate DTMs [32], the optimal parameters for extraction are usually not
described. Here, we further discuss the parameter settings for generating the best fitting models.

The cell size parameter operates within the range of a given cell size (in meters), selecting the
lowest points determined as ground points, and then triangulates the selected points to generate
an initial approximation of the terrain model [40]. Through multiple iterations, together with other
parameter settings, this generates more points and eventually classifies all of the points. The optimal
size for this parameter in our study was 60 m. This parameter may change based on the nature of
the environment (depending on the site). When the cell size decreased or increased from this value,
it resulted in a higher RMSE for tree height estimates (Figure 3). Decreasing the cell size led to selecting
the lowest points from the canopy area, whereas increasing the cell size led to errors in selecting the
lowest points within that cell area. It would be inappropriate in a region expected to have highly
variable topography (it excludes the true ground points of certain areas). This was evident when the
DSM–DTM difference was 0 m when the cell size was small, and the difference between the estimated
tree height and observed tree height was larger when the cell size was increased (overestimation).

The maximum distance and the maximum angle help determine how to add the next selected
ground points to the initial DTM. In our case, for the maximum distance parameter, lower RMSE was
observed at distance settings of around 1–2 m, and RMSE increased dramatically when the distance
settings were increased. Increasing the distance parameter gave falsely selected points that were similar
in position to the DSM (on tree canopy), leading to an estimated tree height of 0 m (the difference
between DSM and DTM becomes null). This was particularly notable when the distance value was set
to 8 m. In contrast, when the value was set too low, it did not delineate the terrain characteristics of
KEW, resulting in a rougher estimation of tree height. If the area of interest is rather flat in terms of
topography and does not require consideration of a variety of elevations and slopes, lower distance
and angle values may be preferred [41]. However, in the case of areas with rugged terrain, such as
our study site (shown in Figure 1), adjusting parameters to higher distance and angle values may be
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key to generating precise DTMs. In such heterogeneous topographies, LiDAR may be one option for
collecting ground information. LiDAR can penetrate canopy layers, reaching the ground layer even in
dense forests [42]; thus, the LiDAR system may be a viable alternative to help enhance the quality of
the model.

4.2. Forest Parameter Extraction Using UAS

In this study, we took on the challenge of investigating DBH from information that could be
observed and collected purely from UAS surveys: canopy information. This was based on several
discussions that DBH growth may rely on different factors that might affect estimation from tree height
information alone, and it was also borne out by our observations (Figure 6). The literature indicates
that DBH height trajectory may differ depending on leaf amounts [43]. Light availability and wind
play roles in tree architecture [34,35,44], as does water availability [45]. Therefore, instead of estimating
DBH from tree heights, we focused on estimating it from the canopy structure. The relationship
between canopy width and DBH showed an increasing linear trend, and the relationship between
crown area and DBH showed an increasing polynomial-like relationship (Figure 5). Our analysis
showed that canopy information is highly correlated with individual tree DBH, and this can shed
light on ways to achieve better quality forest inventories even at larger spatial dimensions using UASs.
Observing tree width manually for each individual tree may be difficult in large areas (particularly
when stem density is high); however, using the canopy area information and computing the area
with an automated method, such as watershed segmentation [46], creates possibilities for collecting
inventory data through UAS remote sensing and automated extraction, as we have shown here in
our work.

Looking at the canopy by area rather than width can result in better interpretations of the
total structure, as tree formations may not always be circular but may be elliptical or even more
complex in shape (Figure 3a). If this is the case, then more precise interpretations of forest status
can be visualized spatially, leading to better estimation of parameters such as AGB. This method
could shed light on relationship analyses made with satellite data (e.g., SAR data), in which it is
usually mentioned that collecting actual ground data for relationship analysis with forest parameters
is better at larger sample sizes (e.g., 1 ha) to avoid bias; however, collecting such data in large areas at
multiple locations is a very time-consuming and difficult task [47]. For example, Němec [11] showed
that forest inventory field work, covering a 200 ha area with plot dimensions of 2000 m × 1000 m,
required 14 people working for 25 days using calipers and laser rangefinders to measure DBH and tree
height, respectively. In our study, we spent less than 1 h collecting aerial photos of an approximately
27 ha area and took 23 h to process the whole procedure (Table 1), although this time depends on
machine processing power. Where conducting flights and processing can be done alone, the potential
efficiency and possibilities of utilizing UASs for surveys can be seen. Thus, if the spatial distribution
of forest parameters can be produced using a UAS-based method in a continuous landscape instead
of conventional ground surveys, the necessary actual ground data can be easily obtained and better
matched with such resources as satellite information (because they are already in the form of grid cells).
Therefore, we believe that spatial information collected from drones can become a bridge for linking
point information from the ground to larger spatial expanses observed from space. For tree height
information, because of the characteristics of the environment, taller trees were the primary samples.
Shorter trees cannot be distinguished or interpreted in densely forested areas (because taller trees
cover them); therefore, future studies should try to find areas in which shorter trees can be detected
and examine whether there are differences in modeling taller and shorter trees using SfM.

5. Conclusions

In this study, we estimated tree parameters by constructing an ultra-fine orthophoto and a 3D
model from a large number of photos taken with a multicopter UAS and processed them using the
SfM method. The computed 3D model of the forest structure and the terrain information led to the
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development of a satisfactory CHM of the area indicating tree height information. This was shown to be
a good estimate even in extremely dense forests in the rugged mountainous areas, and it was accurate
enough to provide a rough estimate of tree heights. Individual tree canopies were easy to extract
from the orthophoto because of the ultra-fine resolution of the image (2.85 cm/pixel). The canopy
width and area were examined with in situ data collected in a ground survey, and a strong relationship
was found between both canopy width and canopy area and DBH. These findings can enhance the
collection of forest inventory observations utilizing multicopter UAS to cover a larger spatial area.
Tree height and DBH information are crucial when evaluating forest status, and the drone-based
method utilizing multicopter UAS aided not only in collecting forest parameters but also in performing
continuous operational monitoring. We will further investigate the extraction of forest parameters
in different environmental systems and examine the use of these parameters for making accurate
estimates. We will also attempt relationship analysis with existing satellite information and explore
the influence of the local environment (temperature, water availability, etc.) on the structural growth
of trees, a potential method of estimating local site productivities.
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