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Abstract: A significant difficulty in urban studies is obtaining urban areas. Nighttime light (NTL) data
provide efficient approaches to map urban areas. Previous methods have utilized visual particularities
of cities with ancillary data to obtain the optimal thresholds. How cities behave differently from
rural areas should be considered. A Zipf’s law-based method is proposed to bootstrap the optimal
threshold based on the statistical properties of a Zipf’s law model on continuous thresholds at the
country scale. In our method, the Zipf’s law model is utilized to quantify fractal, self-organized,
and agglomeration behaviors of cities. The three-phase cluster dynamics are discovered and the
abrupt transition between Phase 1 and Phase 2 denotes the rural-urban demarcation point. The urban
areas are derived by the proposed method from the Suomi National Polar-Orbiting Partnership
Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) NTL data in 2013 in China. An accuracy
assessment is conducted to compare it with the GlobeLand30-2010 data and the overall accuracy
has directly confirmed the effectiveness of the method. The validation using point of interest (POI)
data verifies that the urban areas show strong responses to social interactions and production with
R2 values of 0.91 and 0.92, respectively, implying that the city areas extracted by our method can
be a proxy for human activities. Comparisons with existing methods validate the effectiveness and
high degree of automation of the proposed method in mapping urban areas at the country level.
According to our analyses, the Zipf’s law-based method shows great potential to provide a universal
criterion to map urban areas from the perspective of the behaviors of urban systems without ancillary
data, and a valuable tool for spatial and temporal urban studies.
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1. Introduction

The inexorable urbanization trend across the world presents an increasing need for a quantitative
and predictive theory of urban organization [1], termed the second quantitative revolution by
Michael Batty [2]. The availability of “new data”—big data—and “new science”—complex science—
promotes the development of the new science of cities [2]. A major difficulty in the new science of cities
is how a city can be defined properly [3]. Cities, regarded as typical self-organized systems [4], present
general macroscopic features, such as urban scaling [5] and fractal geometry [2], which are all based
on the size of the cities. Parameters in these urban models are sensitive to the units of the aggregated
data [6]. For example, the scaling of transported-related CO2 emissions with the population results in
different conclusions at different aggregation levels [7].

However, recent administrative boundaries are not good candidates for urban studies due to the
emphasis on political management and not on the city functions and human activities [8,9] and the
inconsistencies across different countries and periods [10]. The current definitions of the morphological
and functional views have not yet reached a consensus [11]. Concerning the mismatches between the
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existing urban boundaries and quantitative urban studies, we look forward to functional and strongly
interacting city definitions [12] from the view of the systems of cities consistently across the temporal
and spatial dimension.

Nighttime light (NTL) data, especially the Visible Infrared Imaging Radiometer Suite (VIIRS)
day/night band (DNB) data, can be applied to delineate accurate boundaries across the world [13–15].
The NTL data are positively correlated [16,17] with social interactions, which are regarded as the origin
of why cities exist and thrive [5]. Face-to-face interactions on the road and non-face contacts through
information systems in urban areas result in larger radiance values in the NTL data in the related
pixels than in the neighboring dark rural areas [7]. In addition, extracting urban areas from the NTL
data ensures urban research from both spatial and temporal perspectives [18]. Furthermore, the new
generation of NTL data from the VIIRS began to produce more suitable data for the accurate extraction
of urban areas [19]. In detail, the VIIRS provides a substantial number of improvements over the
Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) data, including
a higher spatial resolution [20], lower light imaging detection [21], finer quantization [21], and in-flight
calibration [19].

However, challenges still exist when utilizing VIIRS NTL data to map urban areas [22].
The blooming effect in the NTL data refers to the fact that the radiance values of NTL data outside
urban areas are still significantly above zero, which increases the difficulties of extracting urban areas
from the surrounding non-urban regions [22,23]. Recent studies have been conducted to address this
issue related to extracting urban areas, and these methods include thresholding methods [24–26], index
methods including the enhanced built-up index [27] and vegetation-adjusted NTL urban index [28],
and classification methods [18,29,30].

The thresholding technique has drawn more attention considering its simplicity and reasonable
accuracy [24]. A number of studies have focused on empirical information; Elvidge et al. [13] estimated
the threshold for a local window based on the background information, and Sutton et al. [31] proposed
different thresholds for areas with different income levels after a comparison analysis between the
NTL and population distributions. Then, more information including urban morphology [32] and
brightness gradient [33] is considered; for example, the perimeter of an urban area polygon was applied
as the objective function to obtain the optimal threshold to determine the “sudden jump” point through
searching continuous thresholds [32]. Furthermore, ancillary data can help determine the thresholds
(e.g., socioeconomic data, remote sensing data) [23,25,34]. Using this approach, statistical information
of the urban areas of a region or city has been used to derive the optimal thresholds at different
spatial levels; for example, He et al. [34] determined the optimal threshold for 1992, 1996, and 1998 in
China using statistical information. In addition, remote sensing data at a medium- to high-resolution
can help determine the threshold. MODIS data and TM data were used by Milesi et al. [35] and
Henderson et al. [36] to search for the optimal threshold. Moreover, classified Land Use and Land
Cover (LULC) data were utilized to obtain thresholds [37]; for instance, Liu et al. [38] extracted urban
areas with the assistance of LULC data from Landsat TM images for 1995, 2000, and 2005 in China,
and Zhou et al. [25] presented a method to derive optimal dynamic thresholds to map the urban area
of each urban cluster, which was generated using a segmentation algorithm. This method was then
extended to map urban extent at the global level [39].

These thresholding methods utilize empirical information or ancillary data about land use to
determine the optimal threshold [22]. However, these methods lack a consideration of how cities
behave differently from rural areas [2]. A high population density and hence bright nightlights
make urban environments identifiable in remote sensing images [7,8]. These are obvious, visual
particularities of cities, but some of their behaviors are subtler [40]. Cities are typical examples of
complex systems; thus, city boundaries should have a meaning of “systems within systems of cities”,
as proposed by Berry [41]. In addition, cities can be the results of social interactions [5] at different
spatial and temporal scales so that urban areas refer to a consistent definition gathering human
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activities and social interactions [14]. Furthermore, geographic and economic incoherence [42] results
in obvious boundaries between urban and non-urban areas.

It has been observed that systems of cities exhibit some consistent behaviors: the distribution of
city sizes at the country or global level is well demonstrated by the Pareto distribution, which was
first put forward by Auerbach and most notably refined by Zipf [43]. Zipf’s law for cities is one of the
most distinct empirical regulations in urban science [44]. Zipf’s law states that the distribution of city
sizes not only exhibits a power-law distribution but also has the exponent equal to 1 (±0.1) [45,46].
Recent works validate this empirical regularity for cities in both empirical [45] and theoretical [44]
ways. Zipf’s law for cities also reveals that cities with geographic and economic incoherence can
be regarded as an interconnected whole [45]. Zipf’s law for cities also reflects the fractal nature of
city systems [2,47] and the self-organized behavior of a complex urban system, which are significant
characteristics of urban dynamics. Thus, Zipf’s law provides a universal measure of the “degree of
urbanness” [14], which can be utilized to determine thresholds for urban area extraction.

Zipf’s law is capable of quantifying changes in behaviors between non-urban areas and urban
areas. To extract urban areas signifying the essential features of city systems, a Zipf’s law-based
method that does not depend on ancillary data is proposed. The optimal threshold is derived based on
the three-phase cluster dynamics, termed the three-phase model. The method is performed on the NTL
data from VIIRS that was collected by the Suomi National Polar-Orbiting Partnership (Suomi NPP).
Furthermore, we validate the proposed method using an accuracy assessment, evaluating the response
to social interactions by utilizing point of interest (POI) data and comparing it with existing methods.

The remainder of this paper is structured as follows. Section 2 displays the study area and the data.
Section 3 introduces the proposed method for deriving urban areas. The results and discussions are
presented in Section 4. Finally, Section 5 presents the conclusion and provides ideas for future work.

2. Study Area and Data

2.1. Study Area: China

China is utilized as the study area because of its more rapid urban development and more complex
urbanization pattern than most other regions of the world. The complex urbanization pattern includes
heterogenous urban expansion levels across regions [24] and an inconsistent land expansion pace and
population growth. Thus, China is selected as an appropriate study area for evaluating the global
applicability of the proposed urban area delineation method. Considering an absence of relevant
statistical data, Taiwan is not included in this research.

There are five levels of administrative divisions in mainland China, namely, province, prefecture,
county, township, and village. In Sections 4.4 and 4.5, we examine the responses of the urban areas to
the variables related to social interactions and creations at the prefectural level.

2.2. NPP-VIIRS NTL Composite Data

The version 1 series of the NPP-VIIRS NTL data in 2013 are acquired from the NOAA-NCEI [48].
These NPP-VIIRS NTL data are monthly and cloud-free average radiance composite images for 2013.
These products are produced in 15 arc-second grids that span from 180◦E longitude to 180◦N and from
75◦N latitude to 65◦S [48] under the WGS84 geographical coordinate system. In this study, we set out
to obtain the monthly average data throughout the year, but data from May to August are removed
due to the lack of good quality data in the high latitudes of China. After obtaining the NPP-VIIRS
NTL data spanning months 1–4 and 8–12, the monthly NPP-VIIRS NTL data are first extracted by the
administrative boundary of China and projected utilizing an Albers equal-area conic projection. Next,
the extracted NPP-VIIRS NTL data for each month in China are corrected with data preprocessing,
which is explained in detail in Section 3.1. Finally, the average pixel brightness values from the eight
corrected images are calculated and we obtain the NPP-VIIRS NTL image for 2013 in China, as shown
in Figure 1.
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Figure 1. The corrected NPP-VIIRS NTL data of China in 2013. 
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Figure 1. The corrected NPP-VIIRS NTL data of China in 2013.

2.3. Other Datasets

Since point of interest (POI) data, a new kind of location-based VGI (volunteered geographic
information) data [49], can be utilized as a proxy for human mobility or social interactions such
as understanding mobility based on GPS data, the POI data in China are utilized to explore the
relationship between the extracted urban areas and social interactions for validation in Section 4.4.
Due to the limits of data availability, POI data for the year 2014 are obtained and geo-coded from
the business website maintained by GeoHey [50], as shown in Figure 2a. We assume that the POI
data in two adjacent years were consistent, so the POI data from 2014 can be used in 2013. The POI
data contain 45 million POIs categorized into 23 types, among which the shopping service POI, living
service POI, and catering service POI are chosen to denote human activities. Thus, these three kinds
of POI data are extracted and spatially and statistically analyzed at the prefectural level. There are
12.3 million shopping service POIs, 4.4 million living service POIs, and 5.3 million catering service
POIs, as indicated in Figure 2b–d. These POIs are used to evaluate the response to social interactions.

For evaluating the proposed method, high spatial resolution LULC datasets, specifically
GlobeLand30-2010 data, were acquired from the National Geomatics Center of China (NGCC) [51].
GlobeLand30 data represent the land cover of Earth between latitudes 80◦N and 80◦S with a
spatial resolution of 30 m. Multispectral images [51,52] from the America Land Resources Satellite
(Landsat TM5 and ETM+), the China Environmental Disaster Alleviation Satellite (HJ-1), and auxiliary
data [51,52] are used during data production. The classification system consists of 10 land cover types,
among which artificial surfaces represent the urban areas [51] in this study. However, the GlobeLand30
data for 2013 is not yet available; thus, the GlobeLand30 data for 2010 is adopted as an alternative.

The gross domestic product (GDP) data at the prefectural level in China are gathered from the
China Statistical Yearbook to examine the responses of the urban areas to the variables related to
production. Considering the lack of data in the western provinces, 289 out of 333 prefectures in China
are evaluated.
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3. Methodology

Human activities and social interactions in urban areas result in larger radiance values in NTL
data in related pixels than the neighboring non-urban extents [53]. Previous thresholding methods
utilize these obvious, visual particularities of cities with the assistance of empirical information or
ancillary data about land use to obtain the optimal threshold [22,49]. How cities behave differently
from rural areas should be considered.

Zipf’s law reflects the consistent behaviors of cities. Thus, the proposed method, the Zipf’s
law-based method, is founded on the statistical properties of Zipf’s law model on continuous thresholds
at the country scale and allows for an automated and systematic way of finding the optimal threshold.

This method includes four major steps: correction of NTL data, estimation of Zipf’s law of NTL
clusters, estimation of Zipf’s law-based threshold, and mapping of urban areas. First, NPP-VIIRS
data are filtered by excluding the background noise and abrupt bright spots. Second, mathematical
models are built to estimate Zipf’s law model for the NTL clusters. Third, the statistical properties of
Zipf’s law model on continuous thresholds are explored and utilized for threshold estimation. Finally,
the urban areas are extracted with the optimal threshold. Each step will be discussed in more detail in
the following subsections.

3.1. Correction of the NPP-VIIRS NTL Data

In this step, we remove the background noise and temporal lights to generate the corrected NTL
data. The utilized NTL data from monthly composites are preliminary. These data have not excluded
lights from temporal lights and background noise [53], which are unrelated to human settlements and
will reduce the accuracy of urban area extraction; therefore, the original NPP-VIIRS data in 2013 before
correction cannot be used to derive the urban areas.

To correct the data for each month, we filter the original NTL data by removing the background
noise and temporal lights. There are several pixels of negative radiance values on the images from
monthly composites. These negative radiance values result from the system noise in the dark current
correction process [20]. The average northern hemisphere dark night ocean data was utilized in the
dark current correction process, but some system noise remained that made some pixels slightly
negative in no-light areas [20]. Therefore, the background noise is screened out and set as no data.
We utilize a data correction method [26] to exclude abrupt bright spots originating from temporal lights.
Following such a method, Beijing, Shanghai, Guangzhou, and Shenzhen compose the most developed
metropolitan regions, and their maximum light intensity values are selected as the maximum values
for all pixels in China. Table 1 shows the maximum values of the first-tier cities in each month. Then,
each pixel in the data is traversed, and the pixels with values greater than the maximum values are
identified and set to the maximum value of the neighboring pixels.

Table 1. The maximum values for data correction of NPP-VIIRS NTL data in 2013.

Month January February March April September October November December

Maximum value 337.589 309.868 341.728 253.113 300.827 299.849 607.028 426.462

Thus, the NPP-VIIRS NTL image of 2013 in China is generated by averaging the pixel brightness
values from eight corrected images, as shown in Figure 1.

3.2. Estimating Zipf’s Law of NTL Clusters from NPP-VIIRS Data

Zipf’s law can be utilized to assess urban behaviors for different low light thresholds in NPP-VIIRS
data. In this step, a Zipf’s law model for NTL clusters is built mathematically after the NTL clusters in
the NPP-VIIRS data are first extracted using the potential threshold. Second, the method of estimating
the parameters of the Zipf’s law model for NTL clusters is described.
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3.2.1. Zipf’s Law Model for NTL Clusters

Because Zipf’s law highlights the universal regularities of urban systems [14], the next step is to
build the Zipf’s law model for the NTL clusters at a potential threshold. First, if we have a potential
threshold DNP, the pixels with radiance values greater than the potential threshold will be set as
NTL clusters {ni, i = 1, 2, . . . , n}, and four near neighbor pixels are required to have brighter DN
values than the DNP. Then, the Zipf’s law model for the NTL clusters is founded to search for the
optimal threshold.

Zipf’s Law is widely considered as a ubiquitous rank-size regularity for complex systems [42].
Observations in different countries and across the world from various time periods provide empirical
evidence supporting Zipf’s law for cities. It has already been observed that the distribution of natural
city sizes obeys Zipf’s Law in DMSP-OLS data [45]. Researchers have proposed theoretical explanations
using mainly probabilistic models based on multiplicative stochastic processes, including Simon’s
Model, Gabaix’s Model [44], Cordoba’s Model, and Krugman’s Model, to validate the universality of
Zipf’s law for cities.

Zipf’s law is often formulated as a function of the distribution of city sizes. All cities are ranked
in descending order according to size; for instance, the first refers to the largest city, the second
to the second largest, and so on [44]. Then, the size of a city s(r) decreases with its rank r as a
power-law formation,

s(r) = Ar−α, (1)

where A is a constant and α is a constant parameter known as the Zipf’s exponent. The Zipf’s exponent
for city sizes is equal to 1 (±0.1), which is validated by empirical [45] and theoretical [44] studies.
Therefore, the Zipf’s law model for the NTL clusters {ni, i = 1, 2 . . . n} can be written as:

a(r) = Ar−α, (2)

where a(r) denotes the area of a nightlight cluster ni with rank r. Mathematically, we usually utilize
the probability distribution function (PDF) p(x) of areas for nightlight clusters to describe Zipf’s law,

p(x) = Cx−β, (3)

where C and β are the normalization constant and exponent, respectively.
Aiming at computing β, we utilize the cumulative density function (CDF) to establish the relation

between Zipf’s law and the probability distribution function. Since the inverse relation r(x) for a(r) is:

r(x) = a(r)−1 =
x−

1
α

A
, (4)

which is a rank/frequency plot equivalent to the CDF [54], Zipf’s law model a(r) has a mathematical
relationship with the PDF as:

P(x) = Pr(a(r) > x) =
r(x)

R
∝ r(x) ∝ x−

1
α , (5)

where R is the maximum rank. The relationship between the CDF and the PDF can be described as:

P(x) =
∫ +∞

x
p(x′)dx′ ∝ x1−β. (6)

Thus, we can obtain β as:

β = 1 +
1
α

. (7)
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3.2.2. Estimating the Parameters in the Zipf’s Law Model

In this step, the central question that we will consider is as follows: given a set of NTL clusters
from one potential threshold DNP, how can you determine if those NTL cluster areas are well
described by Zipf’s Law? And if so, what is the best way to estimate the exponent? Extensive
discussions by Newman [54] and Clauset [55] stated that these questions can be surprisingly subtle
and misunderstood.

There are some challenges in estimating the probability distribution function, such as that in
Equation (3). The first problem originates from the bin width setting. When forming a histogram,
you should choose a suitable bin width to make the numbers of points within each bin equal.
However, for this power-law distribution, when small numbers compose the highest portion of
the distribution, normal bin width methods do not work. Logarithmic binning was proposed for
power-law distribution [54]. The second problem results from the large fluctuations in the tail [55],
which represents large but rare events. The cumulative density function is utilized to solve this
problem. It can be verified that the cumulative density function is statistically stable with great
robustness compared to the probability distribution function [54]. This cumulative density function
enables us to smooth the large fluctuations in the tail [54,55]. The third problem centers on the
least-squares fitting method (LS), the most common method. It has been suggested that the LS method
will introduce systematic bias [56]. Some methods based on maximum-likelihood fitting methods and
goodness-of-fit tests based on the Kolmogorov-Smirnov statistic and likelihood ratios can solve this
problem [54–56].

Thus, to detect Zipf’s distribution and obtain the component, we follow the technical method
proposed by Clauset et al. [55]. Here, we provide a brief introduction to this method.

According to the maximum-likelihood fitting method, given a set of NTL cluster areas
x = {ai, i = 1, 2, . . . , n}, we maximize the likelihood function L as:

L= p(x|β) = p(a1|β)p(a2|β) . . . p(an|β) . (8)

Then, we can obtain the estimating exponent β for the probability distribution function p(x) for
continuous x,

β = 1 + n(
n

∑
i=1

ln
ai

xmin
)
−1

, (9)

where xmin is the lower bound of where the power-law behaviors hold. According to Equation (7),
the estimating exponent α for Zipf’s law is:

α =
1
n
(

n

∑
i=1

ln
ai

xmin
). (10)

Next, we explain how to identify the power-law region, that is, we estimate the value of xmin.
Aiming to ensure a good balance between discarding fewer data and obtaining better power-law
behavior, for each xmin, we calculate the estimating exponent β and then select the xmin that leads to a
model that minimizes the distance between the data and p(x). For distance, Kolmogorov-Smirnoff
(KS) distances are utilized.

Furthermore, we will demonstrate how we test the goodness-of-fit. First, synthetic data are
generated by sampling from p(x) with β and xmin; then, the estimating exponent and xmin are
calculated to determine the model for synthetic data and the distance di between the synthetic data
and the model pi(x) is calculated. Thus, we can obtain the goodness-of-fit index (GFI) p-value using:

p-value =
{number o f di ≥ d}

total number
, (11)
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where d is the distance between the given data and the model p(x) with β and xmin. The larger
the p-value, the better the fit. Generally, in the statistical field, if the p-value is greater than
0.05, or more strictly, than 0.1, Zipf’s law and the estimating exponents are accepted. In practice,
the particular conditions and priori knowledge should be considered to decide the adopted rule [55].
For geographical features like the NTL clusters, the exponents with a more lenient rule are meaningful
for Zipf’s law [45], but the p-value can reflect the goodness-of-fit of Zipf’s law for geographical features.

3.3. Zipf’s Law-Based Threshold Estimation Method

The Zipf’s-based model provides a continuous measure of changes in behaviors between
non-urban areas and urban areas. Aiming at optimal threshold estimation, Zipf’s law will be
systematically investigated for NTL clusters by varying the potential threshold. Then, the optimal
thresholds will be obtained by utilizing the statistical properties of the Zipf’s law model on continuous
thresholds. The statistical properties of the Zipf’s law model on continuous thresholds demonstrate the
three-phase cluster dynamics, termed the three phases model, and the optimal threshold corresponds
to the potential threshold where there is an abrupt transition of the parameters of Zipf’s Law between
Phase 1 and Phase 2.

3.3.1. Estimating the Three-Phase Model Based on the Statistical Properties of the Zipf’s Law Model on
Continuous Thresholds

This section is concerned with whether there are apparent differences in the power-law
distributions outside or within the urban areas. Thus, we examine the transformations of the power-law
exponent β results from the change in the threshold value from low to high values.

In this step, various DN values are traversed as potential thresholds using certain step sizes in
certain intervals, and then we computed two parameters for each set of clusters at different thresholds:
the power-law exponent β according to Eqution (9) and the GFI p-value according to Equation (11).
Both the statistical properties of the exponents with a lenient rule and the exponent with a strict rule,
p-value ≥ 0.05, will be explored. In detail, we change the threshold from dark to light, and consistently
examine the power-law size distributions—the mathematical model of Zipf’s law in Section 3.2—of the
NTL clusters on the NPP-VIIRS data in China in 2013 with the step size set to 1 within the interval [1,70].

As the potential threshold increases from the dimmest to the brightest, the parameters describing
Zipf’s law for each set of clusters change due to the cluster dynamics [57]. Four change patterns in
the visual view can be summarized as: (1) Shrinkage outside: the size of each spatially contiguous
cluster shrinks around the perimeter; (2) Shrinkage inside: the size of each spatially contiguous
cluster shrinks inside and results in holes; (3) Separation: large clusters break up internally since the
connecting dim lights are exceeded by the threshold [14]; and (4) Vanish: small clusters disappear.
In the mechanism view, the parameters change for two reasons when the threshold value increases
from low to high: (1) the fractal behavior and self-organized behavior—“far more small things than
large ones” proposed by Jiang [8]—vary; and (2) different thresholds generate areas with different
degrees of connectivity [14]. These visible and invisible cluster dynamics are the performances of
different urban-nonurban patterns with varying thresholds. The cluster dynamics can be categorized
into three phases according to the urban-nonurban patterns, termed the three-phase model: (1) Phase 1:
the NTL clusters are the combination of the urban areas and non-urban areas; (2) Phase 2: the NTL
clusters consist of the urban areas, and the urban areas can be regarded as a whole made up of several
interconnected sub-areas; and (3) Phase 3: the NTL clusters are the combination of several isolated and
broken sub-areas. The cluster dynamics in three phrases result in the transformation of the β value
of the NTL clusters on continuous thresholds. The first sudden point between Phase 1 and Phase 2
corresponds to the rural-urban demarcation point. The second sudden point between Phase 2 and
Phase 3 corresponds to the urban violation point. Therefore, the optimal thresholds can be obtained
by utilizing the three-phase model based on the statistical properties of the Zipf’s law model on
continuous thresholds.
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3.3.2. Threshold Estimation

The abrupt transition of the exponent β emerges for the NTL clusters on continuous thresholds,
which reflects the diverse fractal, self-organized, and agglomeration behaviors of cities that are
different from rural areas. The optimal threshold corresponds to the potential threshold where an
abrupt transition of the parameters of Zipf’s Law appears.

The proposed threshold estimation method is described by the following recursive function,
Algorithm 1. Given the corrected NPP-VIIRS NTL data and step size i, the power-law exponent β and
the GFI p-value are computed on the continuous potential threshold DNP. The three-phase model
is developed. The optimal threshold equals the potential threshold DNP when there is an abrupt
transition of the parameters of Zipf’s Law between Phase 1 and Phase 2 in the three-phase model.

The three-phase model and the abrupt transition between Phase 1 and Phase 2 can be described
quantitatively in detail. When the potential threshold DNP increases in Phase 1, the non-urban areas
with low DN values shrink. Since the non-urban areas are fragmented and inconsistent, the fractal
behaviors and scale-free behaviors of the NTL cluster systems fluctuate greatly. Thus, the power-law
exponent β fluctuates in Phase 1 and the GFI p-value fluctuates with a low value. When the potential
threshold DNP varies in Phase 2, the urban areas reduce. Since the urban areas can be regarded as
a whole with the geographic and economic coherences, the behaviors of the NTL cluster systems
are stable and continuous. The power-law exponent β holds steadily and continuously around the
theoretical value, that is β = 2, corresponding to α = 1 in Zipf’s law according to empirical [45] and
theoretical [44] studies, in Phase 2, and the GFI p-value is relatively high. When the potential threshold
DNP increases in Phase 3, the whole urban area separates into several isolated sub-areas. The fractal,
self-organized, and agglomeration behaviors are violated, and the power-law exponent β begins to
increase to a very large value greater than the theoretical value and fluctuates greatly. These conditions
provide criteria to estimate the abrupt change between Phase 1 and Phase 2.

Algorithm 1 Algorithm for optimizing the threshold

Inputs:
The corrected NTL data on the NPP-VIIRS data.
The step size i.
Outputs:
1. Set the step size i as the potential threshold DNP.
2. While DNP ≤ 70 do
3. Set the pixels—values less than the threshold DNP—to zero.
4. Segment the data into extracted extents and non-urban extents.
5. Calculate the power-law exponent β and the GFI p-value of the size distribution of the extracted area.
6. DNP + i as the new potential threshold DNP
7. End while
8. Develop the three-phase model.
9. Obtain the optimized threshold DNT = DNP

3.4. Urban Areas Mapping

With the optimal threshold DNT , the pixels with radiance values greater than DNT will be set as
urban areas, and all other areas will be set as non-urban areas. The final urban map products in China
are then generated.

4. Results and Discussion

4.1. Threshold Estimation from the Statistical Properties of Zipf’s Law Model on Continuous Thresholds

The power-law distributions of the NTL cluster sizes with varying DN values from the NPP-VIIRS
data in China in 2013 are demonstrated in Figure 3. Following Algorithm 1 in Section 3.3.2,
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we transverse the various DN values as the potential threshold with step size i = 1. Both the
results of exponents on continuous thresholds and the results of exponents with a p-value greater than
0.05 are shown in Figure 3 with the red line and the blue line. As shown in Figure 3, there are three
phases according to the statistical properties of Zipf’s law model on continuous thresholds, which has
been marked in the figure.
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Figure 3. The transition of the power-law distribution exponent β on continuous thresholds. The blue
line with circle symbols and the red line with square symbols, respectively, show the curve of the
exponent β on continuous thresholds with and without a p-value limit.

In Phase 1, power-law exponent β without a p-value limit fluctuates considerably between 1.75
and 2.01 within the interval [1,24], suggesting a Zipf’s exponent between 1.33 to 0.99. Both the local
maximum and the local minimum fluctuate violently in this interval. The goodness-of-fit test is not
accepted for quantities of power-law distribution models at DN values within the interval [1,24].
For the 24 points within the interval, only six points are accepted with a p-value ≥ 0.05 and are
illustrated in the blue line. Thus, most of the red lines are below the blue lines within the interval.
The statistical variation of the exponent and p-value is consistent with the cluster dynamics in Phase 1,
and reflects the violent fluctuation of the behaviors of the NTL clusters in Phase 1 in Section 3.3.1.

There is a rather sharp transition that begins at the value of 24. In Phase 2, the exponent β without
a p-value limit remains markedly stable in the range from 1.88 to 2.02 within the interval [24,39],
suggesting a Zipf’s exponent between 1.14 to 0.98. As a result, β is approximately 2.00 within this
interval. The goodness-of-fit test is accepted for quantities of power-law distribution models at DN
values within the interval [24,39]. For the 16 points within the interval, 15 points are accepted with
a p-value ≥ 0.05 and are illustrated in the blue line. Thus, most of the red lines coincide with the
blue lines within the interval, as shown in Figure 3. The statistical characteristics of the exponent and
p-value are consistent with the cluster dynamics in Phase 2, and illustrate the stable behaviors of the
NTL clusters in Phase 2. This result suggests that Zipf’s exponent α equals approximately 1.00 and
there are fractal and self-similar behaviors when the DN value is between 24 and 39.

There is another transition that begins at the value of 39. In Phase 3, the power-law exponent β

increases and becomes greater than 2, and this suggests that α is less than 1.00 beyond the sudden
point, which is inconsistent with Zipf’s law. Large fluctuations between 1.99 and 3.06 occur within
this interval, indicating a Zipf’s exponent between 1.01 to 0.49. Both the local maximum and the local
minimum fluctuate violently in this interval. The goodness-of-fit test is not accepted for quantities of
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power-law distribution models at DN values beyond 39, and most of the red lines are below the blue
lines within the interval, as shown in Figure 3. The abrupt transition indicates the disappearance of
the fractal and self-organized behavior for cities as a whole compared to the power-law distribution
within the interval [24,39]. This reflects the violent fluctuation of the behaviors and the violation of the
urban behaviors for the clusters in Phase 3, which is comparable to the violation of the self-similarity
in Jiang [8] and the transition observed in the percolation models with census tracts [57] and road
network data [6].

Thus, we can obtain the urban areas using the definition of DN set to 24; that is DNT = 24. Three
different threshold intervals can be discovered according to the statistical properties of Zipf’s law
model on continuous thresholds, including DNP < DNT , DNT ≤ DNP < DNS (DNS is the second
demarcation point between Phase 2 and Phase 3), and DNP ≥ DNS, and these different threshold
intervals correspond to the three phases in Section 3.3.1.

4.2. The Cluster Dynamics in Three Phases

The visual influences of the thresholds on the NTL clusters are illustrated to validate that the
cluster dynamics vary at the DN values in three different phases.

The NTL clusters maps at the varying thresholds from NPP-VIIRS data at the DN values of
the three categories—DNP < DNT (DNP = 2 and DNP = 15), DNT ≤ DNP < DNS (DNP = 24
and DNP = 30), and DNP ≥ DNS (DNP = 52)—are illustrated in Figure 4. Four change patterns,
including shrinkage inside, shrinkage outside, separation, and vanish, all take place in three phases
but with different probability distributions, which is related to the urban-nonurban patterns. For Phase
1, when DNP < DNT , large clusters separate since the connecting non-urban areas are exceeded by the
threshold. Some clusters shrink outside due to the surrounding non-urban areas, and some clusters,
made up of non-urban areas, vanish. For Phase 2, when DNT ≤ DNP < DNS, the NTL clusters capture
the whole urban areas made up of several interconnected sub-areas, and the sizes of each spatially
contiguous urban area shrink around the perimeter. For Phase 3, when DNP ≥ DNS, the whole urban
clusters break up internally, and separate into several isolated sub areas. The NTL clusters cannot
capture the core of the urban areas, for example, Beijing divided into several broken parts.

Furthermore, the generation (or definition) of fractals proposed by Jiang [8], and applied in
many fields, including urban planning [58], transportation [59], and biodiversity [60]—a feature is
thought to be fractal if the scaling pattern of “far more small things than large ones” can be observed
multiple times—is adopted in this research. Since both the first generation fractals like Koch curve and
Sierpinski carpet, and the second generation fractals in a statistical sense—a power-law relationship
can be found between the measurement scale—are strict [61], and both definitions cannot directly work
for complex geographical features. The fractal indexes have been computed for the NTL clusters in the
previous paragraph. When DNP < DNT , the fractal indexes at the DN values of 2 and 15 are 6 and 5,
respectively. When DNT ≤ DNP < DNS, both the fractal indexes at the DN values of 24 and 30 are 7.
When DNP ≥ DNS, the fractal index at the DN value of 52 is 4. Thus, the fractal index changes in the
three phases.

The influences of the thresholds on the rank-size distributions of the NTL clusters are evaluated
to validate that the clusters at the DN values on the opposite side of the optimal threshold DNT have
different system behaviors and urban-rural behaviors.
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Figure 4. NTL clusters at varying thresholds from NPP-VIIRS data. The first map in the top row shows the NTL clusters at the optimal threshold in China, and the
remaining five maps show the enlargement of the Beijing-Tianjin-Hebei metropolitan region when the potential threshold DNP is set to thresholds in different
categories, DNP < DNT (DNP = 2 and DNP = 15), the optimal threshold (DNP = DNT = 24), DNT ≤ DNP < DNS (DNP = 30), and DNP ≥ DNS (DNP = 52).
The NTL clusters with different sizes are illustrated in a different color with 0–10 km2 (green), 10–100 km2 (peridot green), 100–1000 km2 (orange), and >1000 km2 (red).
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The log-log plots of the power-law distributions of the NTL cluster sizes at the DN values in three
phases—DNP < DNT (DNP = 2 and DNP = 15), DNT ≤ DNP < DNS (DNP = 24 and DNP = 30),
and DNP ≥ DNS (DNP = 52)—are illustrated in Figure 5. When DNP < DNT , the power-law
distributions are dominated by the large segments, and the large segments at the DN values of 2 and
15 differ greatly due to the change patterns in Phase 1. Therefore, the exponents and the goodness of fit
at the DN values of 2 and 15 differ greatly, indicating the fluctuations of the system behaviors. When
DNT ≤ DNP < DNS, the exponents at the DN values of 24 and 30 are similar, approximately 2, with a
p-value greater than 0.05, which implies Zipf’s law and the self-organized behavior of urban systems.
When DNP ≥ DNS, larger agglomerations connected by dimmer regions break up internally so that
the preferential attachment is violated, and the power-law distributions are dominated by medium
segments. The slopes increase abruptly when DNP ≥ DNS with violent fluctuations, which deviates
from Zipf’s law and indicates that the violation of the scale-free, self-organized, and agglomeration
behaviors of cities shrinks.
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Figure 5. The log-log plot of the power-law distributions of the NTL cluster sizes at varying thresholds.
When the potential threshold DNP is set to 2 (red), 15 (blue), 24 (green), 30 (black), and 52 (magenta),
the cumulative density distribution of the cluster sizes at each threshold is shown in the corresponding
color, and its statistical power-law distribution function is displayed as the dotted line in the same color.

Most importantly, the Zipf’s-based model is capable of quantifying changes in fractal behavior,
self-organized behavior, and agglomeration behavior between non-urban and urban areas, so that it
can be utilized to map urban extents and study the underlying structures and dynamics.

4.3. Comparison with the Head/Tail Breaks Method [8]

To assess the performance of the Zipf’s law-based method, the head/tail breaks method
established by Jiang [8] is conducted to obtain the universal optimal threshold, and this value is
compared with the results of our method. Jiang [8] found that the NTL data followed a heavy-tailed
distribution, where large values above the average were the minority, termed the head, and small
values were the majority, termed the tail. This head/tail breaks method [62] iteratively divides the NTL
data around the average into the head and tail parts until the head no longer represents a long-tailed
distribution. This method has been verified as a universal and powerful method to delineate urban
areas, namely, natural cities by Jiang [8].

We utilize the same NPP-VIIRS data in China in 2013 to determine a threshold using head/tail
breaks methods, as shown in Table 2. The value of 33.14 is the optimal threshold with the head/tail
breaks method. The optimal threshold from the head/tail breaks method is greater than that from
the Zipf’s law method. In detail, the value of 33.14 is greater than 24 (DNT in the Zipf’s law method)
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and less than 39 (DNS in the Zipf’s law method). Thus, the optimal threshold from the head/tail
breaks method locates in Phase 2 (DNT ≤ DNP < DNS), where the NTL clusters capture the whole
urban areas made up of several interconnected sub-areas, and the size of each spatially contiguous
urban areas shrinks around the perimeter. For the urban areas derived from the head/tail breaks
method, since the optimal threshold is in Phase 2, the power-law exponent is around 2 with a high
goodness-of-fit, indicating the Zipf’s law behavior. However, the value of 33.14 is between the two
endpoints of the interval in Phase 2 and closed to the right endpoint DNS. Therefore, the change
patterns of the urban areas are closed to breaking up. Figure 6 shows the urban areas around Beijing
extracted from both methods. Although the urban areas capture the core in Beijing, separation patterns
can be discovered in this stage and the sub-areas begin to appear.

Table 2. Statistics for the head/tail breaks method and power-law distribution exponent on NTL data.

Light Number
of Pixels

Mean
Value

Count of
Head

Percentage
of Head

Count of
Tail

Percentage
of Tail fi p-Value

0.00–359.59 55,548,465 0.26 9,171,200 16.51 46,377,265 83.49
0.26–359.59 9,171,200 1.73 1,685,716 18.38 7,485,484 81.62 2.07 0.00
1.73–359.59 1,685,716 8.23 519,035 30.79 1,166,681 69.21 1.98 0.48
8.23–359.59 519,035 19.87 191,648 36.92 327,387 63.08 1.76 0.00
19.87–359.59 191,648 33.14 70,202 36.63 121,446 63.37 1.83 0.01
33.14–359.59 70,202 47.71 29,265 41.69 40,937 58.31 1.94 0.26
47.71–359.59 29,265 66.13 23,514 79.37 5751 20.63 2.08 0.00
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Thus, the optimal threshold from the head/tail breaks method is lower than the nonurban-urban
demarcation point. Both methods consider the fractal and self-similar behaviors of cities. The head/tail
breaks method utilizes the percentage of the head and tail parts to describe the self-similarity and
explores each mean value. Our proposed method utilized the Zipf’s law model or power-law
distribution model and calculates continuous values. For both methods, utilizing one threshold
derives urban areas without the help of ancillary data, but the Zipf’s law base method utilizes the
model which reflects more information and calculates the values with a finer precision.

Furthermore, our method can solve the sensitivity issue in the head/tail breaks method. This
sensitivity issue refers to the fact that objectivity is required for the condition to determine when the
recursion process terminates in the method. Following the head/breaks method, the count of the tail is
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less than that of the head [8]. Thus, the percentage of the tail, as seen in the seventh column in Table 2,
can be regarded as a sensitive variable for the method. Previous studies [8] have suggested that this
sensitive variable is approximately set to 60%. However, Jiang [62] noted that the sensitive variable
could be modified in many cases, such as to 50% or even more. Therefore, this sensitive variable in the
head/tail breaks method needs more objectivity. The proposed Zipf’s law-based method provides the
criterion to determine the sensitive variable. Taking the results in Table 2 as an example, the power-law
distribution exponent β and the goodness-of-fit is computed at each break, as shown in the eighth
and ninth column in Table 2. According to our method, the threshold is set to 33.14. This optimal
threshold is the same as the results when the sensitive variable is assumed to be 60%. If we relax the
threshold to 50% in this case, the exponent locates in Phase 3; moreover, the exponent then suggests
the disappearance of the self-organized behavior. It can be suggested that the stopping threshold in
the head/tail breaks method is better to set at 40% of the NPP-VIIRS NTL data.

Therefore, compared with the head/tail breaks method, the Zipf’s law method can capture the
change of the nonurban-urban pattern better and automatically terminate the recursion process.

4.4. Urban Area and Accuracy Evaluation

We apply this method to map the urban extents from the NPP-VIIRS NTL data in 2013. The optimal
threshold in 2013 is 24 according to Section 4.1. Figure 7 displays the urban areas extracted by the
proposed method. The urban areas vary significantly in different cities in China, and the majority
are located in the southeast coastal cities and the northern areas, while the western inland cities are a
relative minority.Remote Sens. 2018, 10, 130  17 of 24 
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We evaluated the extracted urban area results utilizing the GlobeLand30-2010 data [51] at the
pixel level. Now that the GlobeLand30 data, the high-resolution (30-m spatial resolution) LULC data,
utilized multispectral images and auxiliary data in the classification process, the overall accuracy of the
GlobeLand30-2010 product arrives at 80.33% [52] and the kappa indicator reaches 0.75 [52]. Therefore,
these data can be assumed to be the ground truth reference. The GlobeLand30 classification data
contain 10 land cover types including artificial surfaces. Therefore, the artificial surfaces, where pixel
values equal eight, were segmented as the urban areas [51] in this study. After we extracted and
calculated the non-urban areas derived from both the proposed method and the GlobeLand30-2010
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data, the urban areas delineated from both our method and the ground truth reference, and for the
total area, the overall accuracy has been calculated and reached 98.45%.

Previous studies generate varying thresholds for separated clusters or different cities, whilst the
proposed method, which adopts the universal regularity—Zipf’s law—for all cities, utilizes one unique
threshold throughout China. With assistance from urban science theory, this method does not require
ancillary data, which makes this method less data-dependent and more convenient. The accuracy
assessment directly confirmed the effectiveness of our proposed method. Direct relationships between
derived urban areas and administrative cities [45] cannot be found in this study since Zipf’s law-based
method regard cities with geographic and economic incoherence as an interconnected whole [45]. As a
consequence, this proposed method provides a universal model to define urban behaviors [45] at the
country scale, and the study in the future will discuss the applicability of the proposed method at a
global and regional scale in detail.

4.5. Validation of Urban Area with POI Data

Previous studies have widely confirmed the utility of NTL data for extracting urban areas at the
country level by examining quantitative connections between NTL intensity and demographic and
economic factors [18]. The “Big Data Era” provides better clues to the properties of cities. The point of
interest (POI) data, a new kind of location-based VGI data [49] with strong timeliness, can be utilized
for validation as a proxy for human mobility or social interactions.

To detect the relationships between the urban areas extracted via our method and social
interactions or human activities, three human activity variables covering most aspects of daily human
life are extracted: shopping service POI, living service POI, and catering service POI, and the spatial
patterns are statistically analyzed at the prefectural level, as indicated in Figure 8a–c. It is noticeable in
these figures that most of the derived urban areas (the black polygons) are located in the prefectures
with the bigger circles (indicating bigger counts of POI). It indicates that the delineated cities have
strong connections with social interactions in the visual view. The further study explores the statistical
correlations between the urban areas delineated by the proposed method and the counts of these three
kinds of POI across the cities in China.

Figure 9 indicates the linear regression correlation results. Since the extracted areas fit the
heavy-tailed distribution—small numbers compost the most portion of the distribution, the influence
of large valued data is underrated for the conventional Ordinary Least Square (OLS) method.
The Weighted Least Square (WLS) method is utilized in this scenario. Facing the problem caused by
the heavy-tailed distribution data, the weighted matrix is used to make small data less overrated,
and big data less underrated. Thus, we build the weighted matrix, which is the reciprocal for the
probability distribution function (PDF) of extracted urban areas. The correlation results imply that
the extracted areas have a clear positive linear correlation with the counts of shopping service POI
(R2 = 0.90, p < 0.001), living service POI (R2 = 0.93, p < 0.001), and catering service POI
(R2 = 0.91, p < 0.001). Since these three categories of POIs are regarded as indicative of human
activities, the clear linear relationships suggest that the cities extracted by the proposed method are
functional, strongly interacting, and collocated social networks. Further statistical analysis of the
response of the extracted urban areas to social production was carried out to establish the statistic
correlations between the extracted urban areas and socioeconomic variables. For the NPP-VIIRS NTL
data, our study confirmed a clear linear correlation between the derived urban extents and the social
production variable: GDP (Figures 8d and 9d). These linear correlations connections with human and
economic activity variables verify that the derived urban areas can be a proxy for city functions and
human activities.
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4.6. Comparison with the INN-SVM Method [30]

To further verify the method described in this study, we make a comparative analysis of the
urban areas extracted via our method and the Integrated NTLs and normalized difference vegetation
index (NDVI) support the vector machine (SVM) classification (INN-SVM) method from Yang [30],
as shown in Figure 10. Yang produced a stratified SVM-based method at the country level using NTL
data and NDVI data to map the urban land. A similar method has been validated to have the best
performance compared to the local-optimized thresholding (LOT) and vegetation-adjusted NTL urban
index (VANUI) methods, which are popular methods to derive urban areas utilizing NTL data [19].

As shown in Figure 10, we can see that the extracted areas by the proposed method are slightly
smaller than those utilizing the INN-SVM method. However, the locations of the extracted areas by
both methods are consistent. This may be attributed to the fact that the proposed method is from the
perspective of the behaviors of urban systems resulting from social interactions, while the INN-SVM
method utilizes ancillary data about NDVI from the perspective of land use.

Comparing the overall accuracy of both methods, the overall accuracy of the proposed method
is 98.45% and the overall accuracy of the INN-SVM method is 98.47%. The result confirmed that the
Zipf’s law-based method has as good a performance as the INN-SVM method.
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The comparative analysis has been made to calculate the quantitative correlations between social
interactions and the urban areas extracted via our method and the INN-SVM method. It is noteworthy
that urban areas extracted via these two methods show similar significant responses to the three kinds
of POI variables denoting social interactions. The urban areas extracted by our method show slightly
stronger responses to the shopping service POI (R2 = 0.90 vs. R2 = 0.90), living service POI (R2 = 0.91
vs. R2 = 0.93), and catering service POI (R2 = 0.93 vs. R2 = 0.91). This result suggests that the city
area extracted by the proposed method can be a proxy for human activities.

Following the evaluation system in Shu et al. [63], we summarize the two methods from five
perspectives: convenience, the degree of automation, data dependency, accuracy, and response to
human activity. Similar to the INN-SVM method, the proposed method has directly shown a high
overall accuracy and strong response to human activity, thus validating the effectiveness. With the
assistance of urban science theory, the proposed Zipf’s law method does not require ancillary data,
indicating a high degree of automation. Therefore, the proposed method is not only effective but also
more convenient and achievable.

5. Conclusions

To extract urban areas from NTL data from the perspective of the behaviors of urban systems,
this paper proposes a Zipf’s law-based method to generate the optimal threshold and extract urban
areas without ancillary data, referring to human activities. The optimal threshold at the country scale
is estimated through the three-phase cluster dynamics based on the statistical properties of the Zipf’s
law model of NTL clusters on continuous potential thresholds. The three-phase model is discovered
through the power-law distribution investigated on clusters by varying the thresholds. The experiment
on the NPP-VIIRS NTL data in 2013 in China shows the three-phase cluster dynamics. The exponents
and the goodness-of-fit fluctuate violently in Phase 1 and Phase 3, and there are consistent statistically
significant power-law exponents in the range of 1.88 to 2.02 in Phase 2. The optimal threshold
corresponds to the abrupt transition between Phase 1 and Phase 2. The optimal threshold based on this
abrupt transition is compared with the head/tail breaks method, indicating that the proposed method
can capture the change of the nonurban-urban pattern better and shows a higher degree of automation.
The urban areas derived from the optimal threshold obtain a high overall accuracy. The validation
using POI data verifies that the proposed method is not only effective but also more convenient and
achievable compared to the INN-SVM method.

Our evaluation of the cluster dynamics in three phases suggests that the abrupt transition between
Phase 1 and Phase 2 denotes the rural-urban demarcation point, indicating the change in fractal
behavior, self-organized behavior, and agglomeration behavior on both sides. The validation of the
mapped urban extent at the country level in China with POI data confirms that it can be a proxy of
human activities. A comparison with existing methods validates the effectiveness of mapping urban
areas at the universal scale and the dynamics using the NPP-VIIRS NTL data in a convenient and
automated way. We conclude that a Zipf’s law-based optimal threshold allows for an automated and
systematic method to derive human activities in general at the country scale, from the perspective
of behaviors of urban systems without ancillary data. The proposed method is less data dependent;
thus, it can define and delineate the whole world utilizing big data. In consequence of the universality,
this method provides a valuable tool for urban studies from both spatial and temporal perspectives.

Zipf’s law, the urban science theory from the bottom up, provides information about how cities
behave differently from rural areas. The Zipf’s law-based method shows great potential to provide a
universal criterion to map urban areas from the perspective of the behaviors of urban systems without
ancillary data. In this paper, the statistical properties of a Zipf’s law model on continuous thresholds
provide an effective and efficient manner to map urban areas at the country scale. More analysis
should be conducted to explore the global and regional applicability of the proposed method in detail.
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