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Abstract: NASA’s Gravity Recovery and Climate Experiment (GRACE) has already proven to be
a powerful data source for regional groundwater assessments in many areas around the world.
However, the applicability of GRACE data products to more localized studies and their utility to water
management authorities have been constrained by their limited spatial resolution (~200,000 km2).
Researchers have begun to address these shortcomings with data assimilation approaches that
integrate GRACE-derived total water storage estimates into complex regional models, producing
higher-resolution estimates of hydrologic variables (~2500 km2). Here we take those approaches
one step further by developing an empirically based model capable of downscaling GRACE data to
a high-resolution (~16 km2) dataset of groundwater storage changes over a portion of California’s
Central Valley. The model utilizes an artificial neural network to generate a series of high-resolution
maps of groundwater storage change from 2002 to 2010 using GRACE estimates of variations in
total water storage and a series of widely available hydrologic variables (PRISM precipitation and
temperature data, digital elevation model (DEM)-derived slope, and Natural Resources Conservation
Service (NRCS) soil type). The neural network downscaling model is able to accurately reproduce
local groundwater behavior, with acceptable Nash-Sutcliffe efficiency (NSE) values for calibration and
validation (ranging from 0.2445 to 0.9577 and 0.0391 to 0.7511, respectively). Ultimately, the model
generates maps of local groundwater storage change at a 100-fold higher resolution than GRACE
gridded data products without the use of computationally intensive physical models. The model’s
simulated maps have the potential for application to local groundwater management initiatives in
the region.

Keywords: GRACE; downscaling; groundwater; neural networks; California’s Central Valley;
water resources management

1. Introduction

Groundwater monitoring has historically relied on a network of local observations of well levels,
or in situ measurements. In the United States, the United States Geological Survey (USGS) maintains a
network of 850,000 active monitoring wells that provides fundamental data on groundwater quantity
and quality [1] and enables essential regional studies [2,3]. In many other parts of the world, however,
groundwater observation networks often lack adequate spatial and temporal coverage, they are often
underfunded, and therefore they may well be unreliable [4,5]. Even in the United States, where a
relative abundance of well data provides information to water managers on short- and long-term
water level trends at specific locations, more monitoring sites are needed to better understand the
groundwater surface and the spatial distribution of pumping patterns [1].
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To overcome the shortcomings from sparse observation networks and insufficient in situ data,
significant progress has been made in the way the groundwater surface and its behavior are represented.
These advances have come from the fields of groundwater modeling [2,6–8], monitoring network
design [9], and geostatistical analysis of groundwater data [10–12]. While this research has made
huge strides in characterizing groundwater from limited data, many of these studies focused on small,
sub-basin scales and represented limitations to capture wider spatial trends in groundwater.

Satellite remote sensing can complement existing monitoring networks and modeling studies,
and can help compensate for gaps in spatial and temporal coverage. In particular, several authors
have now demonstrated that NASA’s Gravity Recovery and Climate Experiment (GRACE) can reliably
measure monthly groundwater storage changes in the large aquifer systems of the world [13–15]. Some
examples include the Ogallala aquifer [16], northwestern India [17], California’s Central Valley [18],
South America’s Guarani aquifer [19], the Middle East [20], the North China Plain [21], and several
others [22–24].

Despite these studies, the ability of GRACE to monitor changes at finer scales, which could
directly benefit local water management authorities, is limited. This is largely due to the low spatial
resolution of its observations (~200,000 km2), and researchers and hydrogeologists have noted these
drawbacks [25,26]. The lack of ground truthing and the potential errors in retrieval algorithms are also
cited as deficiencies in remotely sensed data [27]. A higher-resolution GRACE data product would
significantly improve information availability for local-scale decision makers, as well as offer novel
data for regions that do not have adequate in situ monitoring networks.

To complement the shortage in regional in situ data and improve upon the resolution of
GRACE data, this study downscales GRACE and creates a hybrid product that utilizes available local
observations along with GRACE estimates of changes in total water storage to accurately characterize
local changes in groundwater availability. Our approach has potential for use in data-scarce regions
world-wide, as it requires only minimal hydrologic data and GRACE estimates of changes in total
water storage to simulate groundwater storage change in a complex aquifer system.

1.1. Downscaling GRACE Data

The majority of research approaches for downscaling remote satellite data originate in the climate
modeling literature, owing to the need to better understand the regional impacts of global change.
Two approaches, dynamical and statistical, are the most common [28]. Dynamical methods typically
utilize a higher-resolution, physically-based model using low-resolution data, such as those from a
global climate model or general circulation model, as the lateral boundary conditions. Previous data
assimilation approaches with GRACE have effectively been a form of dynamical downscaling [29].
Monthly GRACE observations of terrestrial water storage change (i.e., the change in the sum of snow,
surface water, soil moisture, and groundwater) were assimilated into a physically based land surface
model at the scale of the major watersheds of the Mississippi River Basin [29]. The output of the physical
models—the higher-resolution, modeled water storage changes within the major watersheds—was
forced to sum to the lower-resolution assimilated constraint from GRACE. The physics of the land
surface modeling and atmospheric forcings were used to distribute the GRACE data to finer scales.
Schumacher et al. (2017) combine GRACE data on total water storage (TWS) with a conceptual ~500 km
resolution model to improve drought simulations within the Murray–Darling Basin, Australia [30].
Their results show that a simultaneous calibration and data assimilation approach that incorporates
GRACE data leads to more accurate groundwater model simulations. Data assimilation methods
have the strong advantage of being physically consistent but, at the same time, require significant
computational time, limiting their applicability [31].

Statistical downscaling methods, instead, draw upon relationships between coarser-scale input
data and finer-resolution target data [32]. A variety of statistical techniques have been applied and
studied in the downscaling literature, including classification-based methods, regression models,
Markov chains, statistical inversion [33], and stochastic models [34]. The advantages of these methods
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are that they are relatively flexible to various data types and spatial and temporal scales, they can
generate uncertainty estimates of parameters and model output, and they are generally easy to
apply [34]. Statistical methods are, however, based on the assumptions that the input and target data
fully capture the dynamics of the system under study and that these dynamics are valid even outside
of the observation period [34]. Studies that have compared dynamical and statistical downscaling
approaches have revealed relatively similar results between the two types of methods [31].

Some researchers have opted for a physically based statistical modeling approach that combines
both methods, promoting a decrease in computational time as one of the method’s advantages [35].
Purely statistical methods, though, offer ease of use, even lower computational requirements,
and simplicity, which has been shown to be an advantageous attribute for downscaling hydrologic
data [36–38].

Given these benefits, we have adopted a tried and true statistical downscaling approach that
will be novel in its application to downscale GRACE data. It will rely on derived relationships
from local observations instead of on equations based on physical processes. Of the possible
statistical methods available for this approach, the artificial neural networks technique was selected.
This technique has been widely used for statistical downscaling in the hydrosciences [39–41], in spatial
data analysis [42–44], in studies for groundwater management [45], for predicting groundwater
levels [46–52], as well as for predicting groundwater levels with GRACE data [53]. Neural network
studies have also illustrated the method’s ability to simulate complex hydrological characteristics
across various regions and time periods [54,55]. In addition, artificial neural networks are highly
capable of processing different types of data efficiently [56]. This allows the proposed model to use
input data (GRACE, meteorological forcings, and soil types) similar to previous, well-established data
assimilation studies, yet depart from these physically based methods conceptually and offer a quicker
computational time. The neural network model also has the flexibility to incorporate alternative data
sets and future GRACE data releases, such as GRACE RL05M Mascon Solutions and future GRACE
Follow-On (GRACE-FO) data [57,58].

1.2. Goals and Objectives

Here we present a neural network model to spatially downscale GRACE data from ~200,000 km2

to ~16 km2, as well as to vertically isolate the groundwater component from GRACE estimates
of total water storage. We apply the downscaling model to the time period 2002–2010 in order
to generate a series of annual, high-resolution maps of changes in groundwater storage over a
portion of California’s Central Valley. In doing so, we seek to determine whether or not a neural
network statistical downscaling approach is appropriate for downscaling remote sensing data. We also
examine the optimal spatial and temporal characteristics of the calibration dataset that would inform
future work and a more widespread application of downscaled remote sensing data to groundwater
management. We assess this by testing the type of groundwater information (i.e., point data or
interpolated surfaces) that improves the neural network’s estimate of groundwater change in a given
year. Finally, our modeling approach also investigates the best way to calibrate and validate the model
in time and if the method has the capability to project forward in time.

2. Study Region: California’s Central Valley

In California’s Central Valley (see Figure 1), where agricultural water use accounts for one-fifth of
the nationwide demand for groundwater, groundwater levels have been declining dramatically over
the past few decades [2]. Dependence on groundwater resources is even more pronounced during
times of drought as communities and farmers have few alternatives to meet their water needs [59].
In many areas of the Central Valley, the intensive overuse of and reliance on groundwater resources
has resulted in land subsidence, degraded water quality, and increasing costs of extraction due to
deepening water tables [3,59]. Studies have revealed that the region lost 100 km3 of groundwater
since the 1960s [3]. Between 2003 and 2010, GRACE satellite observations showed that the Central
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Valley lost 20.3 km3 of groundwater, primarily due to extensive groundwater pumping to support
agriculture [18]. Dire drought conditions that began in 2011 have caused additional water losses
of approximately 10 km3 of freshwater between 2012 and 2013 [22]. From 2012 to present, land
subsidence within the Central Valley, which is the result of water loss and compacting sediments
within an aquifer, reached up to 280 mm in some places [3]. Another estimate shows that peak rates of
subsidence—500 mm/year—occurred during 2014 [3,60].

Remote Sens. 2018, 9, 143  4 of 18 

 

subsidence within the Central Valley, which is the result of water loss and compacting sediments 
within an aquifer, reached up to 280 mm in some places [3]. Another estimate shows that peak rates 
of subsidence—500 mm/year—occurred during 2014 [3,60]. 

 
Figure 1. Map of California groundwater basins [61]. The study region, the San Joaquin Valley, is 
highlighted in yellow. 

Despite these dramatic physical impacts to Central Valley aquifers, a comprehensive assessment 
of California groundwater basins has not been performed since 1980 [62]. The California Department 
of Water Resources (DWR) cites the lack of information to properly quantify groundwater overdraft 
as the main reason for this gap in analysis [62]. This is not unique to California. Calls by scientists, 
engineers, and water managers for more extensive monitoring networks that provide better 
information for water management have been commonplace throughout the 20th century and still 
continue to be so today [1]. 

Ongoing drought conditions, continued groundwater losses, and dramatic rates of land 
subsidence all point to the need for effective management and heightened monitoring of California’s 
groundwater resources [59]. GRACE observations provide comprehensive information on drought 
impacts, climate change, and groundwater and have proven to be a powerful tool for understanding 
regional water resources behavior [25]. Results from GRACE-based studies have already been used 
to inform decision-making processes in California’s Central Valley, Texas, and the American 
Southeast [63]. Refining GRACE to higher resolution estimates of groundwater changes would 
provide a significant value-added to groundwater management efforts and upcoming 
implementation of California’s Sustainable Groundwater and Management Act (SGMA) [64]. 

3. The Neural Network Approach and Input Data 

The GRACE downscaling model employs an artificial neural network (ANN) to combine  
low-resolution GRACE data with higher resolution hydrologic variables in order to predict changes 
in local groundwater storage and to, in effect, vertically isolate the groundwater component of the 
GRACE signal. ANNs are particularly useful for this task as they are often employed in spatial data 
analysis and offer the ability to efficiently and comprehensively handle large, diverse, and noisy 
spatial datasets [56]. Because they are not yet widely used in statistical downscaling of remote sensing 
data, this research also represents a novel application of ANNs. 

In essence, the ANN derives non-linear, empirical relationships between GRACE, the input 
hydrologic datasets to the downscaling model, and the output variable—groundwater storage 
change. These relationships are represented statistically by a network of empirical equations that are 

Figure 1. Map of California groundwater basins [61]. The study region, the San Joaquin Valley, is
highlighted in yellow.

Despite these dramatic physical impacts to Central Valley aquifers, a comprehensive assessment
of California groundwater basins has not been performed since 1980 [62]. The California Department of
Water Resources (DWR) cites the lack of information to properly quantify groundwater overdraft as the
main reason for this gap in analysis [62]. This is not unique to California. Calls by scientists, engineers,
and water managers for more extensive monitoring networks that provide better information for water
management have been commonplace throughout the 20th century and still continue to be so today [1].

Ongoing drought conditions, continued groundwater losses, and dramatic rates of land
subsidence all point to the need for effective management and heightened monitoring of California’s
groundwater resources [59]. GRACE observations provide comprehensive information on drought
impacts, climate change, and groundwater and have proven to be a powerful tool for understanding
regional water resources behavior [25]. Results from GRACE-based studies have already been
used to inform decision-making processes in California’s Central Valley, Texas, and the American
Southeast [63]. Refining GRACE to higher resolution estimates of groundwater changes would provide
a significant value-added to groundwater management efforts and upcoming implementation of
California’s Sustainable Groundwater and Management Act (SGMA) [64].

3. The Neural Network Approach and Input Data

The GRACE downscaling model employs an artificial neural network (ANN) to combine
low-resolution GRACE data with higher resolution hydrologic variables in order to predict changes
in local groundwater storage and to, in effect, vertically isolate the groundwater component of the
GRACE signal. ANNs are particularly useful for this task as they are often employed in spatial data
analysis and offer the ability to efficiently and comprehensively handle large, diverse, and noisy spatial
datasets [56]. Because they are not yet widely used in statistical downscaling of remote sensing data,
this research also represents a novel application of ANNs.



Remote Sens. 2018, 10, 143 5 of 18

In essence, the ANN derives non-linear, empirical relationships between GRACE, the input
hydrologic datasets to the downscaling model, and the output variable—groundwater storage change.
These relationships are represented statistically by a network of empirical equations that are fit during
the network learning, or calibration, process. Our downscaling model employs a two-layer feed
forward neural network, which was calibrated with a Bayesian regularization back propagation
learning algorithm [56,65]. A more complete discussion on the training algorithm and neural network
architecture can be found in [56,66], respectively.

Because neural networks are data-driven models, the quality and nature of the data used as inputs
are of critical importance. Previous studies that employed neural networks to predict groundwater
levels utilized both environmental and hydrologic variables and included distinct combinations of:
precipitation, temperature, surface discharge (in riparian groundwater systems), tidal levels (in coastal
aquifers), and potential evapotranspiration [47,49,50,67]. This study extends this work to focus on
storage change rather than groundwater levels. To do so, we use precipitation and temperature
data along with GRACE and other key local hydrogeologic datasets (soil type and slope) that are
shown in the literature to be significant predictors of terrestrial water storage change [68]. Together,
these variables—GRACE observations of terrestrial water storage, slope, soil type, precipitation, and
temperature—serve as the hydrologic input data to the neural network model, which is calibrated
to changes in in situ groundwater storage. Once calibrated, the downscaling model utilizes the fit
empirical relationships between these datasets to generate new estimates of changes in aquifer storage
from an alternate set of hydrologic input data from either a new region or from a different point in
time. Because the model is calibrated to changes in storage from groundwater alone, the downscaling
model also vertically isolates the groundwater component of the GRACE input data. While some
studies have modeled or estimated GRACE data input errors [69], it is uncommon in neural network
studies [70,71]. As such, we do not address the impact of input errors on model outputs in this work.

Hydrologic datasets used as model inputs were obtained from the 2002–2010 period over
California’s Central Valley. They include: annual 2.5 min (~4 km) resolution precipitation and annual
mean temperature data from PRISM [72]; static 10-m DEM [73], processed in ArcGIS for percent
slope; static 10-m Natural Resources Conservation Service (NRCS) soil maps from the Gridded Soil
Survey Geographic (gSSURGO) Database, with 118 different soil types that were coded as dummy
variables [74]. All input data were discretized to the 4 km × 4 km target spatial resolution.

GRACE Release 5 (R05) data compiled and processed by the Center for Space Research (CSR) for
the period 2002–2010 were used as model inputs and can be found at http://grace.jpl.nasa.gov/data/
get-data/monthly-mass-grids-land/. These data consist of monthly measurements across the land
surface at a 1-degree × 1-degree resolution. Each grid was multiplied by its scale factor, as provided
by GRCTellus, in order to adjust for attenuation of the signal during smoothing and destriping.
This procedure is outlined in [75]. Next, each GRACE grid cell in the study region was discretized and
spatially interpolated to the target 4 km resolution. To do this, the original GRACE grid cell value was
treated as the centroid of the new 4 km discretized grid cell and was interpolated to the centroid of
each of the neighboring GRACE grid cell values. A linear interpolation was performed to fill in the rest
of the discretized grid between the centroid GRACE value and the values at the corner points. In this
way, GRACE data were treated as a surface, taking into account not only a single grid cell but also its
neighbors. This allowed the model to incorporate more information about the spatial distribution of
groundwater change, rather than just considering a single magnitude. To annualize the GRACE data
and make it comparable to the in situ groundwater data, the storage change for twelve months of each
year, starting in February, were summed to obtain an annual storage change value.

The groundwater data that serves as the calibration and validation datasets for the neural network
model were taken from 2189 wells across San Joaquin County [76]. This dataset can be accessed at
http://www.water.ca.gov/waterdatalibrary/. It is important to note that region covered by the model
domain, as shown in Figure 1, includes the eleven groundwater sub-basins of the San Joaquin Valley
Groundwater Basin and encompasses an area of 15,100 km2 [77]. In general, the basin’s hydrogeology

http://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/
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is characterized by unconsolidated alluvium and consolidated rocks and includes both confined and
unconfined aquifers [77]. The presence of a Corcoran Clay confining layer in most of the Central
Valley indicates the transition from unconfined to confined aquifers [2]. Across the study region,
hydrogeological studies have shown that most confined aquifers begin at a depth of over 60 m [78,79].
The depth of most of the wells in the dataset ranged between 10 and 25 m, with very few wells at a
depth of over 45 m and less than 4% over 60 m. Because nearly all wells tapped unconfined aquifers,
groundwater storage change for each well was calculated using a specific yield of 10%, which was
reported as the average value for the San Joaquin Valley by the USGS [80]. The specific yield was
multiplied by annual groundwater level change, calculated as the difference in well levels from one
year to the next, using winter (December–February) as an annual reference point. This assured the
capture of the full irrigation season in a given year, as groundwater abstraction is the key driver
of storage change in this region. A more specific description on the complex hydrogeology of the
individual sub-basins can be found in California’s Department of Water Resources Bulletin 118 basin
descriptions: http://www.water.ca.gov/groundwater/bulletin118/.

The neural network downscaling approach reduces some of the hydrogeological complexity
found in the natural system, as we do not directly include any hydrogeological data on these multiple
aquifer systems. The model, instead, relies on empirical relationships derived between groundwater
change behavior and the input datasets (GRACE, precipitation, temperature, slope, and soil type).
These empirical relationships, which vary across space and time, reflect not only temporal and spatial
trends in extraction, they also represent the physical characteristics of the multiple aquifer systems,
due to their grounding in location-specific in situ datasets.

The calibration and validation data were formatted in two ways for the neural
network—distributed point data and spatially interpolated maps of the study region, as shown
in Figure 2. The distributed point dataset was obtained by directly applying the groundwater storage
change estimates to a 4 km grid of the region based on each wells latitude and longitude. If more than
one well fell within a given grid cell, the average of all wells was used. The spatially interpolated
groundwater storage change maps were created by kriging the individual groundwater storage change
estimates, as this approach has been found to best approximate groundwater spatially [12,81]. A more
complete discussion on the kriging methodology can be found in [82], and its applicability to represent
characteristics of multiple aquifer systems can be found in [83]. More specifically, ordinary kriging
was applied to groundwater well data points using an empirically fit spherical semivariogram with a
300 m nugget, a similar value to regional kriging approaches employed in the San Joaquin basin [2].
Spherical semivariograms are commonly used with ordinary kriging, and the choice of semivariogram
is often determined empirically. In this case, a spherical semivariogram resulted in the lowest mean
error, average standard error, and root mean square error when compared to pentaspherical and
exponential semivariograms. We followed the procedures outlined in [84,85] for semivariogram
selection. One kriged map was created for each year. The annual change in groundwater storage,
rather than the water levels themselves, was used to create a comparable dataset to the GRACE data,
which reflects variations in water storage. In this way, both GRACE and the groundwater data both
represented a monthly height difference in water storage.

http://www.water.ca.gov/groundwater/bulletin118/
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Figure 2. (a) Map of annual change in groundwater storage (m) from available in situ well levels for
2010; (b) Map of annual change in groundwater storage (m) from kriged in situ well levels for 2010.

4. Results

The results are divided according to the calibration data type and validation approach
used. Calibration and validation of the neural network model were performed with two data
types—distributed point data and spatially interpolated maps of the study region. The model
was then validated either on a spatial subset of the data within a given year (50% of the original
dataset) or was validated on the entire spatial dataset but for a temporal subset of a range years
(2007–2010). More specifically, the first calibration method uses annual groundwater storage changes
from individual wells in each year (2002–2010) for calibration and validates the model over a subset
of groundwater storage changes in each year. These in situ data remain spatially discrete points.
The second method, by contrast, uses spatially interpolated groundwater storage changes, e.g.,
groundwater maps, in each year (2002–2010) for calibration and validates the model over a subset of the
in situ data that is randomly selected in each year. This subset is kriged separately following the same
procedures to insure data independence. The final method uses spatially interpolated groundwater
maps for calibration for 2002–2006 and validates the model over the years 2007–2010 across the entire
spatial region. Each calibration and validation dataset is selected randomly from the total sample.
By analyzing these approaches, we are able to determine what type of calibration and validation
data best informs the network and improves its performance. The performance of each approach
was assessed through the use of various model evaluation statistics (Nash–Sutcliffe model efficiency
coefficient, root mean squared error, correlation coefficient) and measures of the spatial distribution of
model error (relative error, absolute error) [86].

In order to quantify the relative contribution of each input dataset onto the neural network model
output, we applied Garson’s method [87]. Garson’s method is based on the weights of the calibrated
neural network and has been widely cited and is widely used in neural network studies [88–91].
This method identifies the percentages of influence, Qik(%), of each of the input variables on the
model’s prediction of the output variable [87,88]. It is defined by the following equation:

Qik(%) =
∑n

j=1

(
|wij|

∑m
i=1|wij|

∣∣vjk
∣∣)

∑m
i=1

(
∑n

j=1

(
|wij|

∑m
i=1|wij|

∣∣vjk
∣∣)) × 100 (1)

where wij represents the weights between the input variables (neurons), i = 1, 2, . . . m, and each of the
two hidden layers, j = 1, 2. . . n; vjk represents the weights between the hidden layers and the output
variable (neuron), k = 1, 2, . . . l; and the number of input neurons, hidden layers, and output neurons
were m = 5, n = 2, l = 1, respectively. The number of output neurons is equivalent to the number of
grid cells being simulated. Each model has two hidden layers with 122 neurons each. The results of
this method are shown and discussed below in Section 4.4.
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4.1. Approach 1: In Situ Point Data for Calibration

The first approach calibrates the model with annual groundwater storage changes from each
available grid cell in each year (2002–2010). In this approach, 50 percent of the available well
information in a given year was selected randomly from the dataset and used for calibration, and the
remaining 50 percent was set aside for validation of the model. Results are shown below in Table 1.
From Table 1, we can see that Nash-Sutcliffe efficiency (NSE) values for validation mostly fall within
the acceptable range (0–1), but the correlation between simulated and observed values is fairly low.
Visual inspection of the spatial distribution of simulated groundwater data also performed poorly,
as little to no heterogeneity in the spatial pattern was visible. For these reasons, this approach does not
fully capture groundwater behavior across space and during the time period of study.

Table 1. Results of neural network downscaling approach with uninterpolated points for calibration
(50% calibration, 50% validation).

Year
Calibration Results Validation Results

NSE Corr. Coeff. RMSE (m) NSE Corr. Coeff. RMSE (m)

2002 0.5185 0.1665 0.0512 0.1435 0.1222 0.0586
2003 0.8731 0.2543 0.1210 0.4831 0.3098 0.1061
2004 0.3555 0.3578 0.1036 0.1569 0.3397 0.0845
2005 0.3603 0.2745 0.0814 0.0967 0.2397 0.0941
2006 0.2683 0.1566 0.0861 0.0683 0.1770 0.1200
2007 0.1580 0.4180 0.5608 0.5851 0.2489 0.1044
2008 0.8732 0.2189 0.1215 0.2977 0.2211 0.1263
2009 0.8152 0.2340 0.1159 0.0773 0.1426 0.1466
2010 0.0448 0.1749 0.0853 0.1676 0.0818 0.1099

4.2. Approach 2: Kriged Groundwater Surface for Calibration

The second approach to the neural network validation and calibration used a spatially interpolated
(kriged) groundwater dataset. Similar to the first approach, 50 percent of the kriged groundwater data
was used for calibration, and the remaining portion of the dataset (50 percent) was used to validate the
model. By calibrating the model to a best guess of the groundwater surface in the region as opposed
to sparse point data, we provided more information to the neural network during the calibration
process. Note that computational time for each network calibration for each year was an average of
approximately 4 min, accounting for data preprocessing and kriging. Table 2 shows error indicators
of model results. This approach produced acceptable NSE values (ranging from 0.2445 to 0.9577) for
calibration and validation (ranging from 0.0391 to 0.7511), indicating that the model’s simulated values
are better predictors than observed values alone [92]. From Table 2, it is also evident that the model
results have a high degree of correlation to the calibration and validation datasets.

Figure 3 illustrates the modeled spatial distribution of groundwater change in 2010 along with the
absolute and relative errors between groundwater calibration data and model outputs. The error maps
show that the majority of the absolute and relative error is close to zero (shown in green). In addition,
there is little spatial bias in model error; however, most of the error does correspond to areas of
more extreme values, indicating that the model’s ability to predict extrema (peak and troughs) may
be limited.
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Table 2. Results of neural network downscaling approach with a kriged groundwater surface for
calibration (50% calibration, 50% validation).

Year
Calibration Results Validation Results

NSE Corr. Coeff. RMSE (m) NSE Corr. Coeff. RMSE (m)

2002 0.8364 0.9146 0.0266 0.3981 0.6359 0.0610
2003 0.9431 0.9717 0.0800 0.7511 0.8907 0.2390
2004 0.5624 0.7502 0.0754 0.0692 0.5227 0.3698
2005 0.6976 0.8393 0.0414 0.3185 0.5798 0.1326
2006 0.5799 0.7604 0.0511 0.0453 0.1602 0.0818
2007 0.6111 0.7826 0.3772 0.2096 0.3102 0.6236
2008 0.9577 0.9787 0.0690 0.3285 0.7219 0.2114
2009 0.8721 0.9365 0.1236 0.0391 0.7560 0.1924
2010 0.2445 0.4966 0.0541 0.2547 0.4843 0.0519Remote Sens. 2018, 9, 143  9 of 18 

 

 
(a) (b) 

Figure 3. (a) Simulated groundwater storage change for 2010 (m); (b) Absolute errors for 2010 (m). 

4.3. Approach 3: Kriged Groundwater Surface for Calibration (2002–2006) with Validation over Entire 
Surface (2007–2010) 

The final approach for calibration and validation of the neural network model utilized the same 
spatially interpolated (kriged) dataset from the second approach but validated the model over four 
annual time periods (2007–2010) rather than on a portion of the data within each year. In this case, 
calibration of the neural network model was performed over the first set of years (2002–2006). Table 3 
shows the overall performance and error indicators of model output. We can see that again NSE 
values fall in the acceptable range for calibration but are outside of this range for the validation time 
periods. Further visual inspection of the spatial distribution of both absolute error and relative error 
for this modeling approach shows significantly more error than in the second approach. 

Table 3. Results of neural network downscaling approach with a kriged groundwater surface for 
calibration. 

Calibration (2002–2006), Validation (2007–2010) 
Year NSE Corr. Coeff. RMSE (m) 
2002 0.5509 0.7429 0.0240 
2003 0.8752 0.9355 0.0673 
2004 0.6887 0.8302 0.0582 
2005 0.8360 0.9143 0.0471 
2006 0.6839 0.8270 0.0479 
2007 −0.1029 0.1772 0.5246 
2008 −3.7980 0.1965 0.6708 
2009 −0.3598 0.2301 0.1605 
2010 −0.0029 0.3048 0.0642 

4.4. Finalized Neural Network Model Results 

The output data of the neural network model contained the least error and highest correlations 
when using the second approach. Because the model was unsuccessful in simulating groundwater 
change in new time periods, it is clear that the model requires some groundwater information as an 
input. This also highlights one of the limitations of an empirically based downscaling model—once 
calibrated to a particular period of time or location in space, the model may not accurately represent 
the groundwater changes in a new region or time period. However, following the second approach, 
which calibrates each year to a widely available interpolated set of groundwater storage change, the 
proposed model can acceptably simulate the groundwater surface and downscale GRACE data to 
the 4 km resolution. The maps shown below in Figure 4 are the final output of the model. Error data 
for these maps can be found in Table 2. 

Longitude
-121.5 -121 -120.5 -120 -119.5

L
at

itu
de

36.5

37

37.5

38

38.5
2010 Model Output

-1

-0.5

0

0.5

1

Longitude
-121.5 -121 -120.5 -120 -119.5

L
at

it
ud

e

36.5

37

37.5

38

38.5
2010 Absolute Errors 

-1

-0.5

0

0.5

1

Figure 3. (a) Simulated groundwater storage change for 2010 (m); (b) Absolute errors for 2010 (m).

4.3. Approach 3: Kriged Groundwater Surface for Calibration (2002–2006) with Validation over Entire
Surface (2007–2010)

The final approach for calibration and validation of the neural network model utilized the same
spatially interpolated (kriged) dataset from the second approach but validated the model over four
annual time periods (2007–2010) rather than on a portion of the data within each year. In this case,
calibration of the neural network model was performed over the first set of years (2002–2006). Table 3
shows the overall performance and error indicators of model output. We can see that again NSE values
fall in the acceptable range for calibration but are outside of this range for the validation time periods.
Further visual inspection of the spatial distribution of both absolute error and relative error for this
modeling approach shows significantly more error than in the second approach.

Table 3. Results of neural network downscaling approach with a kriged groundwater surface
for calibration.

Calibration (2002–2006), Validation (2007–2010)

Year NSE Corr. Coeff. RMSE (m)

2002 0.5509 0.7429 0.0240
2003 0.8752 0.9355 0.0673
2004 0.6887 0.8302 0.0582
2005 0.8360 0.9143 0.0471
2006 0.6839 0.8270 0.0479
2007 −0.1029 0.1772 0.5246
2008 −3.7980 0.1965 0.6708
2009 −0.3598 0.2301 0.1605
2010 −0.0029 0.3048 0.0642
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4.4. Finalized Neural Network Model Results

The output data of the neural network model contained the least error and highest correlations
when using the second approach. Because the model was unsuccessful in simulating groundwater
change in new time periods, it is clear that the model requires some groundwater information as an
input. This also highlights one of the limitations of an empirically based downscaling model—once
calibrated to a particular period of time or location in space, the model may not accurately represent
the groundwater changes in a new region or time period. However, following the second approach,
which calibrates each year to a widely available interpolated set of groundwater storage change,
the proposed model can acceptably simulate the groundwater surface and downscale GRACE data to
the 4 km resolution. The maps shown below in Figure 4 are the final output of the model. Error data
for these maps can be found in Table 2.Remote Sens. 2018, 9, 143  10 of 18 
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Figure 4. Neural network model downscaled groundwater storage change (m) maps from 2002–2010
of San Joaquin, Central Valley, CA.

From Figure 4, we can see that the large majority of the groundwater declines (shown in red)
during the 2002–2010 time period in California’s Central Valley occurred in the eastern and southern
portions of the southern Central Valley. These hotspots of groundwater depletion show up to 1 m
of storage loss per unit area in some locations of the southern and eastern portions of the study
region. Madera, for example, is located at 36.956476, −120.051041 and shows between 0.25 and
1 m of groundwater storage loss in all years except 2007. Other areas, shown in greens and blues,
experienced relative increases in groundwater storage. These locations varied from year to year.
The central portions of the southern end of the map had recurring increases in the groundwater table
(see years 2003, 2005, and 2009). Further study of this region could be complemented with the use of
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high-resolution groundwater models to help elucidate why and how certain regions may be losing or
gaining groundwater.

Overall, the model output maps point to a high degree of heterogeneity in groundwater behavior
compared to GRACE data. As such, it is critical to keep in mind the increase in resolution these maps
provide. Figure 5 below shows the resolution of the GRACE estimates of total water storage and
currently available groundwater well data for this region in 2010. Looking at the GRACE data in
Figure 5, we can see a slight average regional increase in groundwater storage. However, the model
output from this study shows that at a more local level, groundwater may be exhibiting more dramatic
increases and decreases. These extrema are more or less averaged out at such a low spatial resolution
seen in GRACE data. The in situ groundwater data shown in Figure 5 does capture some of these
highs and lows but fails to provide adequate spatial coverage.Remote Sens. 2018, 9, 143  11 of 18 
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Figure 5. (a) Spatial resolution of available remote sensing water storage change data over study region
for 2010 (m); (b) Spatial resolution of in situ water storage change data over study region for 2010 (m).

Figure 6 shows the percent by which each input variable influences the model output, as calculated
from Equation (1), in our final neural network model. GRACE has the highest percent influence (PI) on
model output, 38.76%, followed by precipitation, 21.99%, temperature, 15.54%, slope, 12.41%, and soil
type, 11.30%. These values illustrate that GRACE is able to explain a significant portion of groundwater
storage change in the San Joaquin portion of the Central Valley. Because GRACE only provides low
spatial resolution information, the PI values also show that the remaining input variables are necessary
to achieve model output at our target, higher spatial resolution.
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Figure 6. Percent influence of input variables on neural network model output.
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A time series of cumulative groundwater storage change over the 2002–2010 study period is
shown in Figure 7 as estimated from the three model approaches, from in situ data and from GRACE
estimates of changes in total water storage. The comparison of the two time series shows that in some
years, GRACE appears to be overestimating annual storage loss (2002–2004) and gain (2006) in this
region. This may be due to gaps in the spatial coverage of well data, where significant groundwater
pumping may be occurring. It could also be the result of surface water storage dynamics, as GRACE
also detects changes in surface water. In addition, the model output may be underestimating the
groundwater change due to errors in the spatial interpolation methodology. The actual annual change
is most likely somewhere between the two lines.Remote Sens. 2018, 9, 143  12 of 18 
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Figure 7. Cumulative annual groundwater storage change (km3) for the San Joaquin groundwater
basin, as estimated by GRACE water storage changes (blue), by ground-based in situ groundwater
data (red), and by the three downscaling models (yellow, purple, green).

5. Discussion

Overall, the model output demonstrates that when remote sensing and monitoring data are used
together, as in our neural network model, they are able to provide a clearer picture of local and regional
groundwater patterns than the use of each data type in isolation (shown in Figure 5). Our results
show that our neural network downscaling model effectively simulates groundwater storage change
and downscale GRACE data to a 4 km resolution. While we were able to generate high-resolution
groundwater maps for the central and southern portions of the Central Valley, our modeling approach
was unsuccessful in simulating groundwater change in new time periods or over new spatial domains.
Thus, one of the limitations of our empirically based model is that, once calibrated, the model
may not accurately represent the groundwater changes in a region or time period outside of the
calibration domain.

One of the advantages of our neural network downscaling model is that it is model-independent
and computationally flexible. The comparison of the high-resolution maps generated in this study
to the output from regional physics-based groundwater models could, however, further confirm
or improve the effectiveness of this method. In addition, a deeper analysis of the implications
of the findings in this study to local groundwater management would be highly beneficial for
groundwater managers.
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Further, the extension of GRACE data by means of statistical downscaling represents a unique
contribution to the scientific remote sensing community and advances the state of current remote
sensing-based hydrologic science. This approach departs from data assimilation methods in that it is
model-independent and thus offers more flexibility in data scarce environments and with changing
input data products (i.e., new data releases or alternate remote sensing products). This has implications
for world-wide applicability in developing regions, where models and dense monitoring networks
may not be freely available. This neural network model also constitutes an alternative, statistical
approach to improving the resolution of remote sensing products and offers a hybrid solution between
low-resolution GRACE data and sparse groundwater monitoring networks.

6. Conclusions

Sustainable planning and management of groundwater resources requires accurate information
about trends in groundwater availability. GRACE has already proven to be a powerful data source
for regional groundwater assessments in many areas around the world, yet its applicability to
more localized studies and its utility to water management authorities have been constrained
by its limited spatial resolution (~200,000 km2) [25,93]. We developed a robust, artificial neural
network model that downscales GRACE gridded land datasets (~1 degree) to higher-resolution
(~4 km) groundwater storage change estimates. The model utilized GRACE estimates of variations
in total water storage and a series of widely available hydrologic variables (PRISM precipitation and
temperature data, DEM-derived slope, and NRCS soil type) to derive spatial patterns in groundwater
behavior. The neural network downscaling model was able to effectively simulate groundwater storage
change over the central and southern portions of the Central Valley with NSE values ranging from
0.0391 to 0.7511. This study also showed that the model required richer estimations of groundwater data
(kriged datasets) for improved calibration and validation performance. The results of the downscaling
model—high-resolution maps of groundwater storage change—illustrated the high heterogeneity in
groundwater behavior and the tendency for more dramatic declines in the groundwater table to occur
in the southern and western portions of the San Joaquin Valley and Tulare Groundwater Basins.
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