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Abstract: Hyperspectral remote sensing inversion models utilize spectral information over optically
shallow waters to retrieve optical properties of the water column, bottom depth and reflectance,
with the latter used in benthic classification. Accuracy of these retrievals is dependent on the
spectral endmember(s) used to model the bottom reflectance during the inversion. Without prior
knowledge of these endmember(s) current approaches must iterate through a list of endmember—a
computationally demanding task. To address this, a novel lookup table classification approach
termed HOPE-LUT was developed for selecting the likely benthic endmembers of any hyperspectral
image pixel. HOPE-LUT classifies a pixel as sand, mixture or non-sand, then the latter two are
resolved into the three most likely classes. Optimization subsequently selects the class (out of the
three) that generated the best fit to the remote sensing reflectance. For a coral reef case, modeling
results indicate very high benthic classification accuracy (>90%) for depths less than 4 m of common
coral reef benthos. These accuracies decrease substantially with increasing depth due to the loss of
bottom information, especially the spectral signatures. We applied this technique to hyperspectral
airborne imagery of Heron Reef, Great Barrier Reef and generated benthic habitat maps with higher
classification accuracy compared to standard inversion models.

Keywords: benthic classification; coral reef; heron reef; hyperspectral; remote sensing

1. Introduction

Although coral reef and other coastal ecosystems provide high socio-economic benefits,
they continue to decline due to global impacts such as heightened thermal stress and ocean acidification,
as well as from local human induced impacts of over-fishing, destructive fishing, coastal development,
influx of pollution, and spread of marine diseases and invasive species [1–3]. Promoting coral reef
resilience and adaptability requires effective management strategies [3], which in turn are aided by
large-scale habitat maps that remote sensing can produce [4,5]. The ability to operationally reproduce
high accuracy maps over large spatial areas (>1000 km2) is therefore paramount, as it can directly
influence the effectiveness of management strategies [6,7].

A primary goal for remote sensing in coral reefs where the water-leaving signal is dominated
by the bottom (i.e., optically shallow water), is the derivation of bottom reflectance that can be
subsequently used in benthic classification. Unfortunately, the benthic signal is reduced by the
depth and the absorptive and scattering properties of the overlying water column that synergistically
determine the above-water remote sensing reflectance, Rrs [8]—an apparent optical property that
can be derived from passive remote sensing platforms. Under such optically complex conditions,
approaches that can differentiate the impact of the water column from that of the bottom reflectance
solely from Rrs are desired. Indeed, research into the benthic classification from multispectral imagery
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has indicated that higher classification accuracies are obtained from approaches that remove the
influences of the water column [9,10].

Physics-based semi-analytical (SA) inversion algorithms and look up table (LUT) approaches are
two such methodologies that can achieve this. Both SA and LUT methods rely on matching between the
sensor-derived and modeled Rrs spectra [11]. These have been primarily developed for hyperspectral
sensors, where the number of bands in the visible domain (with a high enough signal-to-noise ratio)
can detect subtle spectral differences in the water-leaving radiance due to changes in depth, bottom
substrate or magnitudes of in-water optically active constituents [12]. The high amount of spectral
information afforded by hyperspectral imagery theoretically minimizes non-uniqueness issues in
the retrieved water inherent optical properties (IOPs), bottom depth and bottom reflectance, hence
reducing uncertainty [13,14].

The past two decades have seen the development of several SA models; however all can be traced
back to Hyperspectral Optimization Processing Exemplar (HOPE; Lee et al. [15]), which employs
semi-analytical expressions to approximate the radiative transfer equation, relating Rrs to the IOPs,
depth and bottom reflectance. Additionally, parameterizations of the water column’s absorption
and backscattering coefficients and bottom reflectance are made such that each can be represented
by a scalar variable. Spectral optimization is then applied to determine the values of the scalar
variables whose modeled Rrs (RM

rs ) best matches the sensor-derived Rrs (Rsens
rs ). SA models based

on Lee et al. [15] include BRUCE [16], SAMBUCA [17] and BOMBER [18] and those described in
Jay et al. [19] and Petit et al. [20]. However, use of a single endmember to model bottom reflectance
(as in HOPE) confounds benthic retrievals for heterogeneous pixels or other pixels not represented by
the single endmember.

LUT methodologies such as CRISTAL [14] and ALLUT [21] search for the RM
rs spectrum within

a large dataset (the LUT) that best matches the Rsens
rs . The corresponding IOPs, depth and benthic

substrate (assuming spatially uniform substrate for a given pixel) are then assumed to match the
conditions that formed the Rsens

rs . The differences between CRISTAL and ALLUT lie in the selection of
the model parameters (depth, IOPs, bottom reflectance), the searching algorithm and the minimization
of the resultant discretization errors. In an intercomparison between a variety of LUT and SA
methodologies, Dekker et al. [11] showed that BRUCE obtained the highest overall benthic classification
accuracy of 79% followed by ALLUT (78%), CRISTAL (65%) and SAMBUCA (52%). Thus, SA and LUT
methodologies can be comparable. For SA models the benthic classification accuracy is dependent on
the suitability of the assumptions to the radiative transfer equation, where the total absorption and
backscattering coefficients are decomposed into a limited set of optically active constituents. In contrast,
the accuracy of LUT methods is dependent on the minimization of discretization errors and whether
the finite IOPs, depth and bottom substrate combinations included in the LUT are representative of
the imaged area. Both SA and LUT methods must define the benthic endmembers and spectral shapes
of the IOPs beforehand.

A key input to any SA inversion model is the spectral shape of the bottom reflectance (ρ) to
invert the corresponding Rrs of a given pixel. Paradoxically, ρ is unknown prior to any processing,
and, even more problematically, the use of an incorrect ρ can lead to inaccurate retrievals of IOPs
and depth. In the standard application of the HOPE inversion algorithm [15,22], ρ was chosen
to be that of a single “pure” endmember of Sand or Seagrass based on scene-specific reflectance
and reflectance-ratio values. As such, HOPE is more applicable to very high spatial resolution
imagery or over spatially homogeneous regions where a pixel is dominated by a single benthic class.
In the BRUCE [16] and SAMBUCA [17] inversion models, ρ is modeled as a linear mixture of three
and two benthic endmembers, respectively. Given that a coral reef environment has more than
three (or two) benthic components, a common practice is to iterate through unique combinations
of endmembers in a benthic spectral library during the inversion. This allows for the modeling of
multiple sets of benthic endmembers (e.g., Sand/Brown Algae/Coral, Sand/Turf Algae/Seagrass
etc.). By doing so, these inversion models optimize for the IOPs (or as in the case of SAMBUCA,
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the concentrations of optically active water constituents), depth and a “refined” (albeit modeled) ρ. This
is a computationally expensive procedure requiring multiple inversions per-pixel to find the benthic
endmember combination that yields the lowest relative error between the RM

rs and Rsens
rs . For example,

using a three component model (e.g., BRUCE), a library of seven benthic endmembers would result
in 35 unique combinations, i.e., 35 inversions per pixel. A two component model (e.g., SAMBUCA)
in this case would result in 21 inversions per pixel. Note that, for each inversion, the optimization
algorithm would require usually tens of iterations to minimize the cost function.

In this paper, we develop an LUT-based approach that preselects the likely benthic classes from
an Rrs spectrum and an initial estimate of the depth, thereby significantly narrowing the selection
of potential benthic endmembers from a spectral library. These selected endmembers can then be
applied in an inversion model to retrieve the IOPs, depth and a refined ρ more efficiently than currently
employed schemes (e.g., BRUCE or SAMBUCA). At the same time, the new approach overcomes the
caveats of the default HOPE model (single endmember) that cannot handle subpixel benthic variations
(spectral mixing). The LUT-based approach splits the database of RM

rs into smaller fragments (termed
nodes) from which a classifier is generated. Self-consistency tests indicate that these classifiers are
robust against the spectral variability present within each benthic endmember. We have implemented
this approach to hyperspectral airborne PRISM (Portable Remote Imaging Spectrometer) imagery of
Heron Reef, Great Barrier Reef, Australia. The benthic classification map generated for Heron Reef
is consistent with that previously published [6,23] and obtains higher classification accuracy than
the map generated by the standard BRUCE model. HOPE-LUT represents a standardized approach
of preselecting benthic endmembers used in benthic classification, without the use of scene-specific
training datasets as in traditional supervised classification, to simultaneously retrieve IOPs, bottom
depth and reflectance.

2. Materials and Methods

We present a four-stage workflow (Section 2.1) for the preselection of the benthic endmembers
that are input to a shallow water inversion model for the retrieval of IOPs and depth. The classification
approach utilizes classifiers generated from an LUT of modeled Rrs (Table 1 presents a list of relevant
symbols and acronyms). Sections 2.2.1 and 2.2.2 describes the generation of the LUTs and the use
of Binary Space Partitioning (BSP) to aid the classification. Section 2.3 describes the shallow water
inversion models, while a description of PRISM imagery is provided in Section 2.5.

Table 1. The relevant acronyms and symbols and their definitions.

Acronym Units Definition

IOPs Inherent Optical Properties
SA Semianalytical model

LUT Look up table
BSP Binary Space Partitioning
PCA Principal Component Analysis

HOPE Hyperspectral Optimization Process Exemplar
BRUCE Bottom Reflectance Un-mixing Computation of the Environment
PRISM Portable Remote Imaging Spectrometer

rrs sr−1 Subsurface remote sensing reflectance
Rrs sr−1 Above-water remote sensing reflectnace
RM

rs sr−1 Forward modeled Rrs
Rsens

rs sr−1 Sensor-derived Rrs
ρi(λ) dimensionlesss Bottom reflectance of class i
ρ∗i (λ) dimensionlesss ρi(λ) normalized to a value of 1.0 at 550 nm
PrB

rs dimensionless Percentage contribution of the bottom signal to rrs
Λ nanometers Wavelength
θs radians Solar zenith angle

aw(λ) m−1 Absorption coefficient of pure water
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Table 1. Cont.

Acronym Units Definition

aphy(λ) m−1 Absorption coefficient of phytoplankton
adg(λ) m−1 Absorption coefficient of detritus and gelbstoff
bbw(λ) m−1 Backscattering coefficient fo pure water
bbp(λ) m−1 Backscattering coefficient of suspended particles

P m−1 aphy(440)
G m−1 adg(440)
X m−1 bbp(440)
H m Geometric depth of the water column
τ m Optical depth of the water column
Bi dimensionless ρi(550)

RH sr−1 The relative height of the Rrs peak between 685 and 740 nm

2.1. Workflow

The approach (Figure 1) begins with step (1), which estimates the depth, H0, of all optically
shallow water pixels using an initial HOPE inversion. H0 is used in step (3) to aid the distinction
between “sand” and “mixture” pixels and in step (4) to select the three most likely benthic classes.
We define “mixture” and “non-sand” based on the proportion of Sand present, with “non-sand” as
having none to a small proportion of Sand. These shallow “non-sand” pixels were distinguished in
step (2), using the relative height, RH, of the Rrs peak between 685 and 740 nm derived from PRISM
imagery. This peak is prominent for pixels that are very shallow consisting of non-sand benthos and
corresponds to their characteristic high reflectance towards the NIR. This peak is also predominant in
pixels that have minor amounts of Sand, hence the reason why “non-sand” was defined as having
none to small proportions of Sand.

RH = Rrs,peak − R′rs,peak, “non-sand” if RH > 0.003 sr−1,

R′rs,peak = Rrs,740 + (Rrs,685 − Rrs,740)×
(

λpeak−λ740
λ685−λ740

) (1)

where R′rs,peak and λpeak are the Rrs value and wavelength of the peak (if any) between 685 and 740 nm,
respectively. R′rs,peak is the estimated baseline at this peak, and RH the relative height. Equation (1)
follows the form of the MERIS MCI [24] and Floating Algae Index [25] equations, which utilize a
spectral peak at the red-edge to identify and quantify floating plant matter. In clear water, shallow
(<2 m) Sand displays a similar peak, and a threshold of RH = 0.003 sr−1 sufficiently distinguishes
“sand” from “non-sand” in PRISM imagery of Heron Reef. The wavelength of this peak, λpeak, is not
fixed as the absorption caused by an increasingly deep water column shifts the peak’s center towards
680 nm while at the same time decreasing its magnitude. The RH threshold is derived from PRISM
imagery, and analysis indicates that a value in the range 0.001–0.004 sr−1 can be used to identify
shallow “non-sand” pixels. At the lower end of this range, more “mixture” pixels are identified as
“non-sand.” Note that “non-sand” pixels with a retrieved depth >3 m generally had an RH < 0.003 sr−1

for the PRISM image of Heron Reef. Hence a threshold of 0.003 sr−1 is only suitable to identify shallow
“non-sand” pixels.

In step (3), a classifier was used to distinguish those pixels whose RH ≤ 0.003 sr−1 as either “sand”
or “mixture”/“non-sand.” The latter represents a pixel that could be either “mixture” or “non-sand.”
Here, H0 was used to assign the Rrs to the appropriate depth-specific classifier (see Section 2.2.2) that
was trained with a depth range that encompassed H0. In this study, we generated six depth-specific
classifiers for the depth ranges of 0.2–2 m, 2–4 m, 4–6 m, 6–8 m, 8–10 m and 10–12 m. Hence
if H0 = 1.3 m, then the 0.2–2 m classifier was used to assign Rrs as “sand”, “mixture/non-sand.”
The rational for using depth-specific classifiers was simply to improve the classification accuracy by
reducing the within-class variability and hence inter-class overlap compared to using classifiers trained
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from an LUT whose modeled depth ranged from 0.2–12 m. Indeed, Hedley et al. [26], showed that
variance in depth increases across-depth confusion between classes thereby reducing the separability
of the benthic classes. In fact, the reduction in the separability of benthic classes due to variance
in depth overwhelms the reduction in separability due to variance in IOPs, sun elevation or sensor
signal-to-noise ratio [26].
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Figure 1. The workflow of the proposed benthic classification scheme and shallow water inversions.
Here ρ∗Sand, ρ∗j and ρ∗k represent the normalized bottom reflectance of Sand and the non-sand classes j
and k respectively.

In step (4), depth-specific classifiers resolved “mixture” and “non-sand” pixels into seven classes
consisting of Seagrass, Brown Algae, Calcareous Algae, Turf Algae, Brown Coral and the non-sand
mixtures of Brown/Blue Coral and Turf Algae/Brown Coral (see Figure 2b–h). Here, Calcareous Algae
refers to crustose coralline algae. Note that (1) Green algae is not included in the classifier because
it is unlikely to dominate an 8 × 8 m pixel and can be optically inseparable from seagrass at depth
as noted by Garcia et al. [27] (2) Soft coral has also excluded due its spectral similarity with Brown
Coral [28] and (3) reflectance spectra for Rubble was not available and thus not included, though it is
ecologically important in a coral reef ecosystem. Hochberg et al. [28] describes the spectral features
present in Figure 2. The three most likely classes (out of the seven) were then passed to an inversion
step that selected the class (out of the three) that generated the best matching RM

rs to Rsens
rs . A variant

of the HOPE model was used in this inversion step, such that the bottom reflectance for “mixtures”
was modeled with either two or three components depending if non-sand mixtures (i.e., Brown/Blue
Coral or Turf Algae/Brown Coral) were selected. Here one of the bottom components were set as
Sand. For “non-sand” pixels the bottom reflectance was modeled either with a single or two bottom
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components depending if a non-sand mixture was chosen. Section 2.3 discusses these inversions in
more detail.
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Figure 2. (a) the seven Sand reflectance spectra used in the LUT generation for the sand/mixture
classifiers; (b–h) the bottom reflectances of the seven classes used in the generation of the non-sand
LUTs. The average is given by the black curves. (a–f) were taken from the dataset presented in [28].
(g,h) are 50/50 mixtures generated from the Hochberg et al. [28] dataset.

The seven classes used in this study were chosen based on spectral separabilty [28] and ecological
importance. In coral reef ecosystems, corals are the fundamental species that provide structural habitat
and significantly contribute to reef development and growth rates [29,30]. With regards to reflectance,
hard corals exhibit two modes [28,31]; (1) the Brown Coral mode, which has a triple peak pattern
with peaks near 575, 600 and 650 nm (Figure 2f), and is exhibited by corals that appear by eye as
brown, red, green, orange and green, and (2) the Blue Coral mode, which has a broad plateau-like
peak between 600 and 650 nm (see Hochberg et al. [31]). This mode is exhibited by corals that appear
pink, gray, purple and blue [28]. Turf Algae and Calcareous Algae dominate coverage on the reef flats
and crests [32,33] and hence dominate the net primary production in these areas [34]. Turf Algae are a
major food source by primary consumers [35,36], while Calcareous Algae (crustose coralline algae)
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precipitate calcium carbonate [37] and causes the cementation of the reef pavement which sustains
the reef structure [38,39]. Additionally, Calcareous Algae is a preferred substrate for the settlement of
certain coral larvae [40]. Macroalgae are a preferred food source for herbivorous fish and echinoids
and compete with scleractinian corals for space [41]. Seagrass, although not present in Heron Reef,
can occur in the back-reef or lagoon and provides habitat and predation refuge to a diverse range of
fauna [42].

2.2. Depth-Specific Classifiers

2.2.1. LUT Generation

Depth-specific classifiers were generated from a LUT of modeled Rrs. We follow the approach of
ALLUT [21] where the forward model given by [15,22] was used for the efficient generation of large
datasets of Rrs (>4.0 × 106 spectra, 400–700 nm, 3 nm resolution) that encompass a wide range of IOPs
(Equation (2)), depth and bottom reflectance.

0.003 ≤ aphy(440) ≤ 0.2 m−1

0.001 ≤ adg(440) ≤ 0.6 m−1

0.001 ≤ bbp(440) ≤ 0.01 m−1
(2)

aphy(440) of 0.17 m−1 approximately equals a chlorophyll-a concentration of 5 mg m−3 [43] and
was included in case optically complex water were encountered. Bottom reflectance was parameterized
using the spectral library presented in [28] that included the spectral variability of Sand, Seagrass,
Brown Algae, Calcareous Algae (crustose coralline algae), Turf Algae and Brown and Blue Corals.
To reduce discretization errors in the resultant LUT, we applied an iterative subdivision approach,
analogous to Hedley et al. [21], to the depth parameter. Thus, for a given IOP combination and ρ

the depth was sampled to generate uniform sampling at Rrs(550). Although the IOPs were sampled
evenly in parameter space, the resultant discretization errors would be less of an issue as classifiers
were created rather than using the LUT for spectral matching. Furthermore, RM

rs with weak bottom
reflectance signal were excluded from the LUT by excluding RM

rs whose bottom contribution to Rrs

(notated as PrB
rs) was less than 30% at the most water penetrating wavelength.

For the sand/mixture depth-specific classifiers in step (3), six LUTs were generated with modeled
depths of 0.2–2 m, 2–4 m, 4–6 m, 8–10 m and 10–12 m. We limit the depth to 12 m as shallow water
inversion models typically struggle to retrieve accurate depths beyond this depth (e.g., [11]). We also
included a 20% variability in the bounding depth; for instance, the 2–4 m LUT included depths that
ranged from 1.6 m to 4.8 m. This was to account for possible errors in the initial depth, H0, which
was used to assign the input Rrs to the appropriate depth-specific classifier. For these LUTs, the depth
parameter was iteratively subdivided 13 times between the depth bounds and the IOPs were sampled
at 30 regular intervals between the IOP bounds specified in Equation (2). The bottom reflectance of
seven Sand and seven representative mixtures were used to model the Rrs. The latter seven ρ mixtures
were generated in the following manner: (a) 77 combinations of 70%/30% sand/non-sand mixture ρ

were created from seven Sand and eleven non-sand ρ, and; (b) N-FINDR endmember extraction [44]
was run 1000 times and the seven most occurring endmembers were selected to represent the mixture
class in the LUT. Here, the non-sand ρ taken from Hochberg et al. [28] were terrigenous mud, Bleached
Coral, Brown Macroalgae, Green Algae, Red Algae, Calcareous Algae, Turf Algae, Blue Coral, Brown
Coral, Soft/Gorgonian Coral and Seagrass.

For the non-sand classifiers in step (4), six LUTs were generated using the same depth ranges as
listed above, with a 20% variability included in the bounding depths. Here the depth parameter was
subdivided 10 times between the depth bounds and the IOPs were sampled at 15 regular intervals
between the IOP bounds specified in Equation (2). The LUT at each depth range were generated in the
following manner: (a) intra-class variability in the bottom reflectance were included by utilizing more
than one spectral shape for the seven classes of Seagrass, Brown Algae, Calcareous Algae, Turf Algae,
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Brown Coral, Brown/Blue Coral and Turf Algae/Brown Coral (See Figure 2b–h), and; (b) the modeled
Rrs were normalized to emphasize classification based on the spectral shape, in order to minimize
possible issues with under/over correction during the atmospheric correction.

2.2.2. Classifiers aided by Binary Space Partitioning Trees

Creating benthic classifiers directly from the LUT would reduce their classification accuracy due
to the large intra-class variability and inter-class overlap present in the Rrs. A method that reduces
this variability in the LUT is therefore crucial. Binary space partitioning (BSP) has been used by
Hedley et al. [21] to subdivide a LUT into smaller subsets (termed nodes) for the purpose of efficiently
matching Rsens

rs with a Rrs in the LUT. The subdivision produces nodes with lower intra-class variability
and would create classifiers with improved accuracy. In the first layer, the BSP subdivides the initial
LUT into a left and right child node. Subsequent child nodes are then recursively subdivided into
two nodes. This generates a tree-like structure with terminal nodes prior to and at the user-specified
tree layer. This tree structure allows an input Rsens

rs to traverse the tree to a terminal node where it is
identified as belonging to a benthic class. The creation of the BSP tree is similar to [21], except with
minor modifications as described below:

1. A principal component analysis (PCA) is performed on the initial LUT of RM
rs ;

2. The LUT is subdivided into a left and right child node using a dividing plane in spectral space.
This dividing plane is perpendicular to the first principal component and passes through the
spectral mean of the LUT;

3. The left and right child nodes are then subdivided into two nodes with same procedure, with PCA
performed on the given node, thus computing the dividing plane.

4. Terminal nodes are formed when a child node contains RM
rs from one benthic class or when a

benthic class has a lower limit of 50 RM
rs spectra. This lower limit is necessary in order to have

enough spectra per class to generate a classifier (i.e., a non-singular covariance matrix).
5. At each terminal node a classifier is trained from the RM

rs spectra present in that node. Additionally,
for the classifiers in step (3) of the workflow, 70% of the RM

rs of each class present in the node were
randomly selected and used to generate the classifier. The remaining 30% were used to assess the
misclassification rates. The reasoning behind this is described below.

The dividing plane at each parent node is stored, allowing an input Rrs spectrum to traverse the
tree to a terminal node. There, a classifier assigns the input Rrs to a benthic class that exists in that
terminal node. The Mahalanobis distance (assuming unequal covariance matrices between classes)
is used as the classifier-based its underpinning of quadratic discriminant analysis [45]. To make
the classifier robust to spectral noise present in an image Rrs, a PCA-based dimension reduction
is performed on all RM

rs present in a terminal node. Specifically, all n-band RM
rs are converted to

s-band spectra, where s is the number of principal components that explained 99.5% of the variance
in the terminal node (s < n). The resultant s-band spectra are then used to compute the mean and
inverse covariance matrix from each benthic class. Hence, when an input Rrs reaches a terminal
node, it is converted to an s-band spectrum and then assigned a benthic classed based on the lowest
Mahalanobis distance.

Serious repercussions are encountered if a mixture pixel is misclassified as “sand” in step (3) of the
workflow, because there is no possibility to reassign it as “mixture.” The consequences are less severe
for sand pixels that are misclassed as “mixture”, as subsequent inversions utilize a sand component in
the modeling of the bottom reflectance (see Section 2.3). Hence, for these depth-specific classifiers in
step (3), terminal nodes that have a misclassification rate greater than 30% are flagged. If an input Rrs

reaches one of these terminal nodes an additional inversion is performed to assess the proportional
brightness of the Sand component, Ps. If Ps > 90% then the Rrs is assigned as “sand” and “mixture” if
Ps ≤ 90%. Analyzes have shown that Ps never reaches 100%, even over shallow Sand targets. The likely
cause of this is the presence of benthic microalgae, which generally have spectral features associated
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with photosynethic and photo-protective pigments [46]—features that not predominant in the Sand
reflectance spectra (Figure 2a) used. Thus, sand pixels with higher concentration of microalgae will
have Ps < 100%.

2.3. Retrievals of IOPs and Depth

In the workflow, three variants of the HOPE inversion model are implemented to retrieve IOPs and
depth. These variants differ in the way that bottom reflectance, ρ, is modeled. Briefly, the HOPE model
approximates rrs as a function of the absorption coefficients of phytoplankton, P, and of dissolved and
detrital matter, G at 440 nm; the backscattering coefficient of suspended particles at 440 nm, X; depth, H;
and ρ. Here, P changes the magnitude and shape of the spectral absorption of phytoplankton [11,15,22].
For the inversions, spectral slopes of G and X are set to −0.015 nm−1 and 0.5, respectively, and the
spectral optimization approach modified from Garcia et al. [47] is used to obtain more global solutions
(see Section 2.3.2).

2.3.1. Parameterization of Bottom Reflectance

For the computation of the initial depth H0 in step (1), the bottom reflectance is modeled as,

ρSand = BSandρ∗Sand (3)

where ρ* is the bottom reflectance normalized to 1.0 at 550 nm, and B represents the retrieved albedo
at 550 nm. Although ρSand is not an adequate representation of the bottom reflectance of “mixture” or
“non-sand” pixels, it is sufficient to estimate H (e.g., [11,48]). For those Rrs that reach a terminal node
and have a misclassification rate ≥30% (in step (3) of the workflow), an additional inversion was used
to compute Ps. Here, the bottom reflectance is modeled as,

ρ = BSandρ∗Sand + Bmixρ∗mix (4)

and Ps as,

Ps =
BSand

BSand + Bmix
(5)

where ρ∗mix is the average ρ* of Turf Algae and Brown Coral. In this case, BSand and Bmix are functions
of both the bottom albedo at 550 nm and the fractional coverage of each bottom component [49].
The classes assigned to a “non-sand” pixel in step (4) determined how the bottom reflectance was
modeled in the subsequent inversion. There are seven possible classes consisting of five pure
endmembers of seagrass, Brown Algae, Calcareous Algae, Turf Algae and Brown Coral, as well
as two non-sand mixtures of Brown/Blue Coral and Turf Algae/Brown Coral. If a pure endmember is
selected, then bottom reflectance was modeled using a single endmember, otherwise a combination of
two endmembers is used:

ρnon−sand = Bjρ
∗
j (6)

or
ρnon−sand = Bjρ

∗
j + Bkρ∗k (7)

For example, if a “non-sand” pixel is assigned, the mixed class of Turf Algae/Brown Coral then
subscripts j and k in Equation (7) would correspond to Turf Algae and Brown Coral, respectively.
For a given “non-sand” pixel, three inversions were performed corresponding to the three most likely
benthic classes provided by the classifier. The retrieval from the benthic class that generates the lowest
relative error is selected.

“Mixture” pixels follow the same classification approach, except that a Sand endmember is
included, and thus the bottom reflectance was modeled either with a two or three component model,

ρmixture = BSandρ∗Sand + Bjρ
∗
j (8)
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or
ρmixture = BSandρ∗Sand + Bjρ

∗
j + Bkρ∗k (9)

This workflow would require at most two and five inversions for “sand” and “mixture” pixels
and a total of four inversions for shallow “non-sand” pixels. We compared the classification accuracy
and computational speed of the procedure presented here with the standard implementation of the
BRUCE model [16]. In an inter-comparison study BRUCE obtained the highest classification accuracy
compared to other SA and LUT approaches [11]. BRUCE uses spectral optimization to solve for P, G,
X, H and the bottom albedos of B1, B2 and B3 that correspond to three endmembers,

ρBRUCE = B1ρ∗1 + B2ρ∗2 + B3ρ∗3 (10)

For a single pixel, the standard implementation of BRUCE [16] is coded to iterate over eleven
unique combinations of endmembers in the benthic spectral library specified in Table 2. Furthermore,
the spectral shape of aphy(λ) is fixed with the scalar variable P changing its magnitude as specified in
Klonowski et al. [16],

aphy(λ) = P aphy*(λ) (11)

where aphy* is the phytoplankton specific absorption normalized to a value of 1.0 at 440 nm and is
provided in Appendix 7.2 of Klonowski [49]. In HOPE-LUT, the variable P changes both the magnitude
and spectral shape of aphy(λ),

aphy(λ) = P [a0(λ) + a1(λ) ln(P)] (12)

where a0 and a1 are spectral coefficients that are provided in Lee et al. [22].

Table 2. The unique benthic endmembers used to parameterize the bottom reflectance (ρBRUCE) of the
BRUCE model. For each PRISM pixel, the BRUCE model iterates over each of the eleven combinations
and selects the combination that generated the lowest optimization cost function.

Combination Number ρ1 ρ2 ρ3

1 Sand Seagrass Brown Algae
2 Sand Calcareous Algae Brown Algae
3 Sand Calcareous Algae Brown Coral
4 Sand Calcareous Algae Blue Coral
5 Sand Turf Algae Brown Algae
6 Sand Turf Algae Brown Coral
7 Sand Turf Algae Blue Coral
8 Sand Brown Coral Blue Coral
9 Calcareous Algae Brown Coral Blue Coral

10 Turf Algae Brown Coral Blue Coral
11 Brown Algae Brown Coral Blue Coral

2.3.2. Optimization and Constraints

A modified version of the spectral optimization algorithm employed by Garcia et al. [47] is used
to find the values of P, G, X, H and bottom albedos, B, whose RM

rs spectrum best matched the Rsens
rs .

Here, a combination of the Latin Hypercube Sampling (LHS) and the Update-Repeat implementations
of the Levenberg-Marquardt (LM) algorithm described in [47] is used to find a more global solution.
Conceptually, LHS efficiency samples the broader parameter space with ten sets of initial guesses.
For each of these different starting points the LM algorithm is used to converge to a local solution.
An Update-Repeat (UR) mechanism then randomly perturbs the LHS-LM solution values by 20% to
generate new starting positions for the LM algorithm to find the best solution in that region of the
parameter space. The subsequent retrieved values were only accepted if the optimization reached
a lower cost function than that obtained from LHS-LM. Here, the Update-Repeat mechanism is run
four times for each of the ten LHS-LM solutions. The optimization is terminated if the same solution
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was obtained four times during the combined LHS/UR-LM procedure otherwise the solution with
the lowest cost function was selected. This optimization approach analogous to particle swarm
optimization was used for both HOPE-LUT and BRUCE inversion models.

The parameter bounds for HOPE-LUT are presented in Table 3. Here, the upper bounds for the
bottom albedos represent the maximum reflectance at 550 nm that were observed for each class in
the bottom reflectance dataset [28]. Allowing the bottom albedo to vary this way partially accounts
for the spectral variability of each benthic class that is present within a coral reef. The BRUCE model
used the same optimization bounds as given in Table 3, except the lower bound for P was set to 0.0.
The different lower bounds on P between HOPE-LUT and BRUCE reflect the way that aphy(λ) was
modeled (see Equation (12)). For HOPE-LUT, setting the lower bound to 0.0 may result in undefined
values, e.g., natural logarithm of zero, during the inversion.

Table 3. Optimization bounds.

Parameter Lower Bound Upper Bound

aphy(440), P [m−1] 0.003 0.5
adg(440), G [m−1] 0.0 0.6
bbp(440), X [m−1] 0.0 0.5

Depth, H [m] 0.0 60
BSeagrass 0.0 0.16

BBrown Algae 0.0 0.12
BTurf Algae 0.0 0.22

BCalcareous Algae 0.0 0.26
BBrown Coral 0.0 0.15
BBlue Coral 0.0 0.15

BSand 0.0 0.60

2.4. Evaluation with Simulated Data

Error matrices were computed to evaluate the classification accuracies of the 0.2–2 m, 2–4 m,
4–6 m, 6–8 m and 8–12 m non-sand classifiers in step (4). This approach assesses the spectral confusion
between classes with increasing depth, solar zenith angles and spectral slopes of IOPs in more
detail than the limited in situ validation data can provide. Thereby providing upper bounds on
the classification performance of each class using this classification technique. For each non-sand
classifier 210,000 reference RM

rs spectra (30,000 per class for seven classes) were generated using the
Lee et al. [15] forward model. The RM

rs spectra (400–700 nm at 3 nm intervals) for each class were
generated with the same P, G, X and H combinations (generated randomly), where the differences
in RM

rs solely lie in the bottom reflectance. The values of P, G and X ranged between the bounds
given in Equation (2), while H ranged between the bounds imposed by the particular depth-specific
classifier. For example, randomly selected depths between 0.2 and 2 m were generated for the analysis
of the 0.2–2 m “non-sand” classifier. These reference RM

rs spectra were normalized, passed through the
non-sand classifier, then labeled as belonging to the most likely class. Note that RM

rs that had PrB
rs < 10%

were ignored so that this analysis is consistent with constraints imposed on the PRISM validation data
(see Section 2.5).

An analysis of the classification performance with changing solar zenith angles (θs), and spectral
slopes of bbp (Y) and adg (Sdg) was also assessed using the same approach as above. Here, normalized
Rrs that were modeled with different θs (10◦, 50◦, 60◦), Y (0.0, 1.0, 1.5) and Sdg (0.012, 0.015, 0.012 nm−1)
were passed through the depth specific classifiers that were trained from RM

rs having θs = 30◦, Y = 0.5
and Sdg = 0.018 nm−1.
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2.5. Evaluation with PRISM Imagery

2.5.1. PRISM Imagery and Preprocessing

As part of the CORAL (COral Reef Airborne Laboratory) project—that aims to understand the link
between biogeophysical forcing and coral reef condition—hyperspectral imagery from the Portable
Remote Imaging Radiometer (PRISM) [50] at 8 m spatial resolution were captured of Heron Reef
(23.45◦S/151.95◦E) on 17 September 2016 (Figure 3). The Heron Reef study site is one of five validation
sites that also include sites at Lizard Island (Great Barrier Reef), Guam, Palau and Hawaii. The PRISM
instrument has 246 spectral bands between 350–1046 nm with a FWHM that ranges from 3.27 nm to
3.46 nm. The image data were atmospherically corrected using a variant of the ATREM model [51–53].
The at-surface reflectance products were divided by pi followed by sunglint correction described in
Lee et al. [22] to generate above-water remote sensing reflectance.

In the preprocessing of the PRISM imagery, land (and some cloud pixels) were first masked using
the criterion Rrs(750) > Rrs(400). Optically deep water pixels were then masked using the following
efficient pre-inversion step: (a) pixels were grouped using the Felzenszwalb efficient graph-based
image segmentation [54], and the average Rrs for each resultant group computed; (b) HOPE using
ρSand was used to retrieve the IOPs, depth, Bsand, PrB

rs and the modeled Rrs, RHOPE
rs ; (c) the deep water

term of HOPE was then used to invert the Rrs of those groups whose PrB
rs < 50% to obtain the modeled

Rrs, RDEEP
rs , and; (d) optically deep groups were identified if the relative unbiased difference between

RDEEP
rs and RHOPE

rs was less than 5%. For the PRISM image of Heron Reef, (a) generated 1415 groups
and hence 1415 HOPE inversions were performed in (b).
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Figure 3. Pseudo RGB image of two PRISM swaths of Heron Reef captured on (a) 00:10 h 17 September
2016 and; (b) 23:12 h 16 September 2016 UTC. Sunglint is evident on the northern edge of swath (a).
The circles show the locations of the benthic mosaics. The RGB color of these circles represents the
fractional coverage of Coral, Algae and Sand derived from the benthic photomosaics.
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2.5.2. Validation Data

The benthic community at Heron Reef varies across the different reef geomorphic zones.
According to Salmond et al. [55], the reef slope consists of Hard Coral (31–74% cover), Rock with Turf
Algae and low levels of Rubble. Near Heron Island toward the western end of the reef, there is a high
proportion of Sand, with <10% Hard Coral and 10–22% macroalgae. Green benthic microalgae occur
in the lagoon with high concentrations in the southeast portion [56].

Benthic cover data derived from 34 photo mosaics of survey sites corresponding the PRISM flight
line Heron Reef (see Section 2.5.2) were downloaded from SeaBASS (https://seabass.gsfc.nasa.gov/
archive/BIOS/Hochberg/CORAL/CAH1609/archive). The geolocated benthic photomosaics each
cover an area of approximately 10 m × 10 m and were collected between the 17 and 2 September 2016.
The 10-m footprint of these photomosaics was set specifically for PRISM imagery that has a resolution
of ~8 m. For this study, the benthic cover data were further simplified into four classes consisting of
algae, coral, sediment and “other.” The latter class contained functional groups such as invertebrate,
urchin, giant clams and sponge. Across the sites of Heron Reef, the “other” class generally had a
fractional cover <3%. The latitude and longitude for each photomosaics were used to determine the
closest PRISM pixel. Benthic data were ignored from the validation based on the following conditions:

1. The PRISM-derived PrB
rs for the validation point was < 10% (i.e., very weak bottom signal), or;

2. The validation point was deemed to be optically deep (see Section 2.5.1).

These constraints reduced the number of photomosaics (and thus validation points) from 34 to 23,
which were subsequently used to evaluate the classification accuracy of HOPE-LUT and the standard
implementation of the BRUCE model using the 11 endmember combinations.

The benthic cover data were categorized into Sand, Algae and Coral if one of these classes had
>80% fractional cover; otherwise the two dominant classes were used to categorize the benthic cover
data into the classes of Coral/Algae, Sand/Algae and Sand/Algae/Coral. The output from HOPE-LUT
and BRUCE was assigned into these six categories based on the class selected and the retrieved bottom
albedos. For example, consider the case where HOPE-LUT or BRUCE selected the class of Sand/Turf
Algae/Brown Coral with retrieved bottom albedos of BSand = 0, BTurf Algae = 0.09 and BBrown Coral = 0.08.
In this case, the pixel would be assigned as coral/algae-based the two dominant bottom albedos.
Alternatively, if the retrieved bottom albedos were BSand = 0, BTurf Algae = 0.12, BBrown Coral = 0, then
the pixel would be categorized into the algae class. We stress that these bottom albedos are a function
of the brightness and fractional coverage of the respective bottom components [49]. Hence they can be
used to ascertain which bottom components dominate the bottom reflectance signal.

3. Results

3.1. Evaluation with Simulated Data

Figure 4 shows the classification accuracy (i.e., error matrix diagonals—see Tables S1–S6 in
Supplementary Materials) of each benthic class for the six depth-specific BSP-classifiers. The general
trend of this figure is a decrease in classification accuracy as the depth increases, which is expected as
the Rrs between benthic classes become less distinct with increasing depth [27]. Up to 6 m, the classifiers
generally have high classification accuracy (>90%) for Seagrass, Turf Algae, Calcareous Algae and all
coral classes. With increasing depth, the classification accuracy of Brown Coral decreases, though its
Rrs spectra are mainly misclassified with the Blue/Brown Coral and Turf Algae/Brown Coral classes
(error matrices, Tables S1–S6). Likewise, the Rrs spectra of the Blue/Brown Coral class are misclassified
as Brown Coral or Turf Algae/Brown Coral. In short, although classification accuracy decreases with
depth for all coral classes, the resultant misclassifications are attributed to another coral class rather
than algae or seagrass.

The classification accuracy of Brown Algae decreases significantly deeper than 4 m; the error
matrices (see Supplementary Material) indicate that its Rrs spectra become predominantly confused

https://seabass.gsfc.nasa.gov/archive/BIOS/Hochberg/CORAL/CAH1609/archive
https://seabass.gsfc.nasa.gov/archive/BIOS/Hochberg/CORAL/CAH1609/archive
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with the Turf Algae and Turf Algae/Brown Coral classes. In most cases Brown Algae was selected as
the second or third likely class. A subsequent inversion will unlikely account for this misclassification,
as certain Turf Algae/Brown Coral mixtures can be made to mimic the reflectance of Brown Algae.
This conclusion was drawn based on the fact that across the 4–6 m, 6–8 m, 8–10 m and 10–12 m depth
classifiers, <8% of Rrs(Brown Algae) were misclassified as Brown Coral, and <17% were misclassified
as Turf Algae, yet >35% of Rrs(Brown Algae) were misclassed as Turf Algae/Brown Coral mixture.
In other words, Rrs(Brown Algae) are distinct from Rrs(Brown Coral) and Rrs(Turf Algae), however
significant confusion exists with Rrs(Turf Algae/Brown Coral).

The classification accuracy of Turf Algae drops from >90% at depths less than 6 m to approximately
61% for depths between 10 and 12 m. At these depths, Rrs(Turf Algae) is misclassified as either
Calcareous Algae or Turf Algae/Brown Coral mixture. Across these depths Calcareous Algae is
primarily misclassified as Turf Algae—a consequence of their similar ρ in the ranges of 435–490 nm,
500–565 nm and 600–680 nm [28]. In fact, Hochberg et al. [28] showed that the reflectance spectra of
Calcareous Algae (with no water column considered) are predominantly misclassified as Brown Algae
and Turf Algae. Thus, future work will merge them into one class beyond a certain depth as they
have high accuracies for depths shallower than 8 m. It should be noted that Calcareous Algae and
Turf Algae have different functional roles in a coral reef and thus their identification is important from
an ecological perspective. Seagrass is the only benthic class that has a consistent high classification
accuracy of >90% for depths between 0 and 10 m. The cause of this is its distinct ρ from algae and coral
(see Figure 2).

The overall accuracies for the 0–2 m, 2–4 m, 4–6 m, 6–8 m, 8–10 m and 10–12 m depth classifiers
are 98.5%, 98.0%, 89.7% 84.8%, 69.6% and 53.5%, respectively. These overall accuracies and those
presented in Figure 4 were derived from a wide range of IOPs, some of which may not be actually
be encountered in a coral reef environment, such as chlorophyll-a concentrations greater than 2 mg
m−3. Under optically clear water conditions where PrB

rs > 80%, the overall accuracies are 99.3%, 99.5%,
96.9% and 91.1% for the 0–2 m, 2–4 m, 4–6 m and 6–8 m depth classifiers respectively. These accuracies
can be further improved by using an LUT of RM

rs that were generated with IOP variability specific for
coral reef regions. In situ IOP data collected as part of the CORAL project across a diverse range of
water types will aid in assessing this variability.

The LUTs of normalized RM
rs were modeled using a solar zenith (θs) of 30◦, a slope for bbp (Y) of

0.5 and a slope of adg (Sdg) of −0.018 nm−1. Table 4 presents the change in the overall classification
accuracy of the 0–2 m, 4–6 m, and 8–10 m depth BSP-classifiers when these three parameters were
varied in the modeled Rrs spectra. Classification accuracy was determined from the most likely
benthic class selected by the BSP-classifier, not after the inversion. Table 4 illustrates that the overall
classification accuracy for the 0–2 m classifier is largely unaffected by varying solar zenith angles and
spectral slopes of adg and bbp. Indeed, the largest decrease in accuracy occurred when Sdg = 0.012 nm−1,
reducing the overall accuracy by ~2.9% from the reference of 97.8%. Here, the reference accuracy was
produced from the Rrs modeled with the same θs, Y and Sdg used in the generation of the classifier.
The robustness against these three parameters is due to the incorporation intra-class spectral variability
in the BSP classifier, where in shallow conditions (<2 m) the intra-class variability far outweighs the
variability due to spectral varying slopes of adg, bbp and the solar zenith angle.

As the depth increases the contribution of bottom reflectance to the total water leaving radiance
decreases, and changes in Y, Sdg and θs affect the classification accuracy more noticeably. For the 4–6 m
and 8–10 m classifiers, a change in θs from 30◦ to 60◦ reduces the overall classification accuracy by
2.9% and 10.3%, respectively, from the reference. Increasing Y from 0.5 to 1.5, which increases bbp at
shorter wavelengths thereby decreasing the bottom reflected signal, causes a decrease in the accuracy
of 9.0% and 25.2% from the reference of the 4–6 and 8–10 m classifiers, respectively. Similarly, reducing
Sdg from 0.018 to 0.012 nm−1, which effectively increases the absorption coefficient for wavelengths
longer than 440 nm and reduces the relative contributions of the bottom signal, causes a decrease in
the accuracy of 27.2% and 35.2% from the reference of the 4–6 m and 8–10 m classifiers.
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Figure 4. Classification accuracy of the five depth BSP-classifiers for (a) seagrass and algae classes, and;
(b) the coral classes.

Table 4. The overall classification accuracy of: (a) 0–2 m; (b) 4–6 m, and; (c) 8–10 m depth BSP-classifiers
when θs, Y, Sdg are varied for the modeled Rrs. * shows the reference accuracy generated with
parameters (θs = 30◦, Y = 0.5 and Sdg = 0.018 nm−1) used to train the classifiers. † shows the parameter
that produced the largest decrease in classification accuracy.

Parameter
Overall Classification Accuracy (%)

0 to 2 m 4 to 6 m 8 to 10 m

θs, solar zenith (◦)
10 98.4 † 90.3 71.6

30 * 98.5 89.7 69.6
50 98.6 88.2 63.7
60 98.7 86.8 † 59.3

Y (slope of bbp)
0.0 98.5 83.8 47.0

0.5 * 98.5 89.7 69.6
1.0 98.4 86.2 56.6
1.5 98.3 † 80.7 † 44.4 †

Sdg (slope of adg)
0.012 95.5 † 56.6 † 34.4 †

0.015 98.6 83.6 46.0
0.018 * 98.5 89.7 69.6
0.020 97.6 83.8 55.2

The obvious solution to minimize these reductions in accuracy is to have separate classifiers
for different Y, Sdg and θs. This can quickly become unmanageable with all the different possible
combinations that can exist. Furthermore, prior knowledge of Y and Sdg would be necessary to inform
the selection of the particular classifier. To date there is no published method that can analytically
retrieve Y and Sdg from Rrs in optically shallow environments, and a common practice is to assume a
fixed value for the entire image when performing inversion models. Including the variability of Y and
Sdg is the generation of the LUT could improve these accuracies, but potentially run into processing of
extremely large LUTs.

3.2. Evaluation with PRISM Imagery

The error matrix for the BRUCE approach is shown in Table 5. Here, BRUCE achieved an
overall accuracy of 57%. In this error matrix an additional class of “other” was added to contain
retrieved classes of Sand/Coral, Algae/Seagrass and Sand/Seagrass that were output from BRUCE.
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This implementation of BRUCE is a standard approach that can be applied to an image without prior
knowledge of the substrate class. The act of selecting the benthic endmembers that generated the
lowest cost-function, however, resulted in mixtures of Algae/Seagrass selected for cases when the
pixel is Coral/Algae. In contrast, HOPE-LUT, which only preforms inversions on the three likely
benthic classes, achieved an overall accuracy of 74% (Table 6). Improvements in the classification of
Sand, Coral/Algae and Sand/Algae were observed with HOPE-LUT compared to BRUCE.

Tables 5 and 6 show that HOPE-LUT and BRUCE misclassified the algae validation point as a
mixture of Coral/Algae and Sand/Algae, respectively. In both instances, the proportional brightness
of the algae endmember was greater than 40%. HOPE-LUT can correctly identify this pixel as algae by
using a different Turf Algae and Brown Coral reflectance spectra in the inversion. Note that iterating
over different class spectra is impractical and a method of incorporating the intra-class variability in
the inversion such as in Jay et al. [19] may improve the classification in this case. Iterating over different
Brown Coral and Turf Algae spectra, however, did not improve the classification of the two coral
validation points (Table 6), although in both cases BBrown Coral was greater than BTurf Algae. Despite this,
it is encouraging that HOPE-LUT selected the Turf Algae/Brown Coral mixture class for these two
coral pixels. It is unclear why the subsequent inversion over-estimated BTurf Algae, though residual
spectral artefacts from the atmospheric correction may impact the retrievals.

Table 6 also highlights that validation point 32588, which had 83% coral and 17% algae,
was misclassified by HOPE-LUT as Sand/Algae. In this case, the non-sand classifier selected Sand/
Calcareous Algae, Sand/Turf Algae and the mixture Sand/Turf Algae/Brown Coral as the three most
likely classes. The subsequent inversion however selected Sand/Calcareous Algae instead of the
Sand/Turf Algae/Brown Coral mixture based on having the lowest cost-function (i.e., best fit to the
PRISM-derived Rrs). The most accurate classes for HOPE-LUT were the Coral/Algae mixture and
Sand/Algae with user accuracies of 92 and 100% respectively. Further validation of HOPE-LUT will be
performed using benthic mosaic and in situ Rrs data collected for the validation survey sites in Hawaii,
Guam, Palau and Lizard Island, GBR. This preliminary accuracy assessment, however, highlights the
significant improvement of HOPE-LUT on the standard implementation of the BRUCE model.

The benthic classification maps derived from HOPE-LUT and BRUCE are given in Figure 5.
The PRISM image were classified into 13 substrate types using HOPE-LUT, six represented 100%
cover of a single substrate (e.g., Sand, Turf Algae, etc.) and the remaining seven classes were mixtures
(e.g., Coral/Algae, Turf Algae/Sand, etc.). With the exception of Sand, very few pixels were classed as
having 100% coverage of a single benthos, which is expected given the 8 × 8 m spatial resolution of the
PRISM image. Sand dominates the lagoon, followed by various Algae/Sand and Coral/Algae/Sand
mixtures. The reef flat, crest and slope are dominated by Coral/Algae, Calcareous Algae/Sand,
Turf Algae/Sand and Coral/Algae/Sand, which is consistent with previous mapping of Heron
Reef [23,57]. The map afforded by BRUCE in contrast, assigns pixels on the reef flat and crest as
Turf Algae/Brown Algae, Algae/Seagrass, Seagrass/Sand, Brown Algae/Sand, Turf Algae/Sand and
Coral/Algae. The lagoon was dominated by Turf Algae/Sand and Calcareous Algae/Sand with only
a few patches of Sand. Brown Algae/Sand was assigned to pixels in the lagoon that, based on visual
analysis of Figure 5a, were considered to be benthic microalgae. A non-trivial amount of pixels in the
lagoon were incorrectly classed as Seagrass/Sand as Heron Reef does not have seagrass [23,55].
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Table 5. Error matrix for the PRISM image of Heron Reef using the standard implementation of the BRUCE model using 11 endmember combinations. The “other”
class contains output classes from BRUCE such as Sand/Coral, Algae/Seagrass and Sand/Seagrass, which do not match the categories from the benthic validation
data. The diagonals of this matrix are pixels correctly classed and are presented in bold, while non-diagonal elements represent false positives. The overall accuracy of
the classification from BRUCE is 57%.

Sand Algae Coral Coral/Algae Sand/Algae Sd/Al/Cr 1 Other User Accuracy, %

Sand 0 0 0 0 0 0 1 0
Algae 0 0 0 0 1 0 0 0
Coral 0 2 ‡ 0 1 0 0 0 0

Coral/Algae 0 1 0 9 0 0 3 69
Sand/Algae 0 0 0 0 4 0 0 100
Sd/Al/Cr 1 0 0 0 1 0 0 0 0

Other 0 0 0 0 0 0 0 N/A
Producer

Accuracy, % 0 0 0 82 83 0 N/A

1 Sd/Al/Cr represents Sand/Algae/Coral; ‡ refers to validation point 32,588.

Table 6. Error matrix for the PRISM image of Heron Reef using HOPE-LUT. The overall accuracy for HOPE-LUT is 74%. The diagonals of this matrix are pixels
correctly classed and are presented in bold.

Sand Algae Coral Coral/Algae Sand/Algae Sd/Al/Cr 1 User Accuracy, %

Sand 1 0 0 0 0 0 100
Algae 0 0 0 1 0 0 0
Coral 0 0 0 2 1 ‡ 0 0

Coral/Algae 0 0 0 12 0 1 92
Sand/Algae 0 0 0 0 4 0 100
Sd/Al/Cr 1 0 0 0 1 0 0 0

Producer
Accuracy, % 100 0 0 75 80 0

1 Sd/Al/Cr represents Sand/Algae/Coral; ‡ refers to validation point 32,588.
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Figure 5. Comparison between (a) the pseudo RGB of Heron Reef (b) the HOPE-LUT classification map,
and (c) the BRUCE classification map. Here, pixels with retrieved depths greater than 12 m were not
shown. Regions A and B in (a) highlights the inner lagoon and reef flat respectively. The highlighted
region in (b) are bright green patches that are likely to be benthic microalgae.

An assessment of the processing time between BRUCE and HOPE-LUT was performed for
the PRISM swath (a) shown in Figure 3. Using a single core computer with code written in the C
programming language, BRUCE processed the image, which contained 567,700 optically shallow water
pixels, in 2350 min compared to 721 min for HOPE-LUT. This improvement in computational speed is
due to: (a) the preselection of sand pixels, which only require one inversion to retrieve the IOPs and
depth, and; (b) the preselection of the three most likely benthic class. The standard implementation of
BRUCE on the other hand treats the class of each pixel as unknown and requires multiple inversions
per pixel to select the benthic endmember combination that generated the best fit to the sensor-derived
Rrs—which as highlighted in this research does not always lead to an accurate result.
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4. Discussion

The classification accuracy estimated from simulated, noise-free data decreases with increasing
depth, which is expected as an increasing depth reduces the ability to separate benthic classes—a
consequence of an environmentally limited system [26,58]. Despite this, all classes except Brown Algae
achieved a classification accuracy >90% up to 6 m in depth for simulated data that encompassed a wide
range of IOPs from very clear to very turbid conditions. These classification accuracies are much higher
when only considering clear water conditions particularly at depths greater than 6 m, and illustrates
the potential of this LUT-based supervised classification scheme. Slightly higher accuracies could
be achieved if the non-sand classifiers used Rrs rather than normalized Rrs, which is independent of
magnitude and where the spectral shape forms the basis of the classification. The reason being, that
there is significant overlap in magnitude between the non-sand classes—as illustrated in Figure 3 of
Hochberg et al. [28]. Thus, in this instance spectral shape would be the dominant factor in spectral
separation between classes. It should be noted that magnitude will influence the spectral distinction
between Sand and “non-sand” classes such as Turf Algae or Brown Coral because the reflectance of
Sand is significantly larger. In HOPE-LUT, Sand pixels are identified in step (3) of the workflow, prior
to classifying “mixture” and “non-sand” pixels.

Utilizing normalized Rrs also has the advantage of making the classifiers more robust to under-
or over-estimation of the aerosol path radiance during atmospheric correction, or the under- or
over-estimation of sunglint contribution. As the classification is based on the shape of the Rrs,
any errors in the atmospheric correction, such as the use of an incorrect aerosol model that leads to an
incorrect spectral shape of Rsens

rs may significantly degrade the classification accuracy. This approach
performs an inversion to estimate the initial depth of each pixel. If the atmospheric correction impacts
the accuracy of this depth retrieval then the resultant classification may be negatively impacted.
For satellite hyperspectral imagery this is more likely to occur over dark targets where there is a reduced
signal-to-noise ratio with a higher proportion of atmospheric path radiance to the total at-sensor
radiance. Here small errors in the sensor’s radiometric calibration or inaccuracies in the atmospheric
parameters used during atmospheric correction can significantly impact Rsens

rs (e.g., [59–61]).
Bottom reflectance and benthic classification of hyperspectral imagery are products that can be

generated using shallow water inversion models. These inversion models, however, require prior
knowledge of the spectral reflectance of the bottom substrate, which is generally an unknown input.
To overcome this, current approaches iterate over unique combinations of benthic endmembers during
the inversion [11]. The unique combination that generated the best fit via optimization is then assigned
the class for the image pixel. This standard implementation is computationally demanding requiring
excessively large processing times (2350 min for 567,700 image pixels) and may not achieve the
satisfactory classification accuracies. Indeed, the standard implementation of BRUCE achieved an
overall accuracy of 57%. This classification accuracy is a reflection of the unconstrained nature of the
standard implementation, which assumes all classes are equally possible in all parts of reef and that
spectral optimization is able to select the correct class. The classification of numerous reef flat and crest
image pixels as Seagrass/Brown Algae (Figure 5c)—regions where seagrass cannot physically grow—is
a direct result of this philosophy. Here, contextual editing [9,10] will aid in the classification accuracy.

The biggest difference in the classification maps between BRUCE and HOPE-LUT (Figure 5) is the
amount of sand pixels. HOPE-LUT was able to successfully identify sand pixels in the inner lagoon of
Heron Reef (region A of Figure 5a) consistent with previous mapping efforts [23]. In contrast, BRUCE
was only able to identify small pockets of Sand predominantly on the northern section of the lagoon.
Patch reefs (classed as Turf Algae/Sand or Coral/Algae/Sand) are clearly identifiable in region A
of the HOPE-LUT classification map (Figure 5b) above the surrounding Sand. In contrast, BRUCE
(Figure 5c) assigns this region predominantly as either as Calcareous Algae/Sand and Turf Algae/Sand
with small patches of Coral/Algae without any clear identification of these coral patches. Furthermore,
the different geomorphic zones of Heron Reef are readily identifiable with the HOPE-LUT classification
map, where the reef slope and crest consisting predominantly of Coral/Algae, the inner reef crest
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consisting of the Coral/Algae/Sand class and the lagoon containing Sand and Sand/Algae mixtures.
Sand is unlikely to exist on the reef crest and as such the Sand component of the Coral/Algae/Sand
class may actually represent rubble. The average and standard deviation of the retrieved Bsand for the
Coral/Algae/Sand pixels on the reef crest were 0.17 and 0.11, respectively. These values are consistent
with the reflectance of rubble at 550 nm (e.g., Figure 3 of [62]). The inclusion of a rubble class in the
classification scheme would greatly improve the interpretation.

BRUCE selected the Algae/Seagrass class for pixels on the reef flat (region B of Figure 5a). Based
on previous mapping [23], this region predominantly consists of “Live and Dead Coral”, “Macroalgae
with minor cover by Rock”, “Live Coral and Dead Coral”, and “Rubble and Sand.” Indeed, the substrate
composition of a site representative of the reef flat was 24% Hard Coral, 42% Rock with Turf Algae and
14% Sand [55]. On the reef slope and on portions of the reef crest, HOPE-LUT assigns the Coral/Algae
class. This is consistent with the literature where the mean coral cover on the reef crest and reef slope
were approximately 20% and 40% respectively (e.g., Figure 11b of [63]). BRUCE, on the other hand,
with the exception of the southeastern portion, preferentially selected Algae or Algae/Sand mixtures
on the reef crest and thus based on this map would contain very minor amounts of coral.

Based on the classification maps of Figure 5, BRUCE shows difficulties in identifying pixels
that are predominantly sand—particularly in the deep lagoon. The reason for this may be due to
the unnecessary over-parameterization of the bottom reflectance (Equation (10)) for pixels that are
homogeneous and dominated by a single benthos. Table 7 compares the retrievals of HOPE-LUT and
BRUCE for a homogeneous sand pixel in the PRISM image of Heron Reef. Here, HOPE-LUT classified
this pixel as Sand in step (3) of the workflow and as such the bottom was parameterized with a single
bottom during the inversion. The relative unbiased difference in the IOPs retrieved from BRUCE
and HOPE-LUT were greater than 30%. Note that BRUCE models the absorption of phytoplankton
differently than HOPE-LUT and would not retrieve the same value, though it should still be similar.
The differences in adg and bbp are more likely the result of spectral confusion in the optimization, where
the additional bottom albedos partly accounted for the reflectance signal caused by the water column.
Hence, BRUCE indicated the presence of both Brown Algae and Calcareous Algae endmembers to the
extent that Sand only contributed 74% of the total bottom brightness. From 600–700 nm, the modeled
bottom reflectance from BRUCE is on average a factor of 1.3 greater than that of HOPE-LUT, which
resulted in a deeper and more turbid water column. This raises concerns with over-parameterizing
inversion models though a more thorough analysis is needed to assess the applicability of the different
bottom parameterizations.

Table 7. The retrieved IOPs, depth, bottom albedo and relative cost function over a homogeneous sand
pixel in the PRISM image of Heron Reef. For BRUCE, the benthic endmember combination of Sand,
Brown Algae and Calcareous Algae generated the lowest cost-function of this pixel. The percentages in
brackets next to the bottom albedo values represent the relative contribution to the bottom brightness
at 550 nm. The unbiased relative difference was used to compare the retrievals from HOPE-LUT and
BRUCE. BC (max. λ) represents the percentage bottom contribution to the subsurface remote sensing
reflectance at the wavelength that most penetrated the water column.

Parameter BRUCE HOPE-LUT BRUCE vs. HOPE-LUT Relative Difference (%)

aphy(440), m−1 0.0166 0.0116 36
adg(440), m−1 0.0532 0.0330 47
bbp(550), m−1 0.0603 0.0279 74

Depth, m 2.56 2.36 8
BSand 0.451 (74%) 0.529

BBrown Algae 0.006 (1%) -
BCalcareous Algae 0.150 (25%) -
BC(max. λ), % 63.61 86.03

Relative Error, % 0.91 1.53
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The shallow lagoon region of Heron Reef is known from previous mapping studies to contain
benthic microalgae [56]. This endmember is absent from the classifier presented here and as a result
these regions (see Figure 5b) were misclassified as Coral/Algae or Coral/Algae/Sand in HOPE-LUT,
depending on whether these pixels were assigned as non-sand in step (2) of the workflow. Using
these incorrect endmembers for bright green microalgae pixels resulted in significantly elevated
retrieved IOPs compared to the surrounding pixels (results not shown). Further work will include
this endmember into the non-sand classifier of step (4), though potential misclassification with the
Seagrass class may result.

Leiper et al. [46] identified 22 different assemblage classes of Heron Reef from 1 m × 1 m benthic
photographs. Green Macroalgae was included as an assemblage class, which consisted of 75% Green
Macroalgae, with Turf Algae/Rock and Live Coral making the remaining 25%. Similarly, the Red
Macroalgae assemblage class consisted of 75% Red Macroalgae, 10% sediment, and 15% shared
between Green and Brown Macroalgae and Turf Algae. The Live Coral class consisted of ~70% Live
Coral and ~25% Turf Algae. This illustrates the heterogeneity of coral reef benthos, and may explain
why so many pixels in the PRISM image were classed as Coral/Algae mixtures rather than Coral.
Furthermore, the use of assemblage classes may enable the inclusion of a Green Macroalgae class.
This study excluded Green Macroalgae because its reflectance spectrum is spectrally inseparable with
that of Seagrass at depth [27]. A Green Macroalgae assemblage class on the other hand will be more
optically distinct from Seagrass due to the addition of other spectral features from Turf Algae and Live
Coral. Portability of assemblage classes is an issue as different mixtures of pure endmembers will
result for different spatial resolutions and coral reefs. However, the use assemblage classes rather than
pure endmembers as done in this study is an avenue for future work.

5. Conclusions

Current shallow water inversion schemes do not provide a comprehensive way of preselecting
the benthic substrate and as such is treated as an unknown spectral endmember. To overcome this,
inversion algorithms cycle through a spectral library of benthic endmembers and utilize spectral
optimization to select the benthic substrate(s) that produced the lowest cost function. This is a
computationally demanding approach and as demonstrated in this study may not produce the correct
classification. We presented a method of pre-selecting the benthic class from hyperspectral imagery
using both the Rrs and the estimated depth. This approach, termed HOPE-LUT first subdivides a
hyperspectral image into three basic components of sand, mixtures and non-sand. This segmentation
has several advantages with regards to the application of more appropriate inversion approaches,
where for instance sand pixels are exclusively inverted using a shallow water model with a single
bottom endmember (rather than two or three), and avoids the issue of over-parameterization
particularly over homogeneous pixels dominated by a single benthos.

HOPE-LUT improves both the processing speed and accuracy of shallow water inversions by
narrowing the search for the appropriate mixture/non-sand benthic endmember(s). Here, classifiers
are used to select three (out of seven) classes that likely correspond to an Rrs spectrum of a given pixel.
HOPE-LUT then selects the benthic class that generated the lowest cost function during optimization.
Modeling results have shown a very high classification accuracy of >90% for most classes with a
depth shallow than 4 m. Between 4 and 6 m all classes except Brown Algae have an accuracy of
>80%. The classification accuracy decreases with increasing depth as is expected as the information
from the bottom is reduced exponentially with the increase of depth. This approach was applied
to PRISM imagery of Heron Reef, with a preliminary overall accuracy of 74% compared to the
standard implementation of BRUCE that achieved 57% accuracy. Further comparisons showed that
the classification map from HOPE-LUT was more consistent with the literature compared to BRUCE.
Future work will include application of the HOPE-LUT scheme to other regions to evaluate its
portability, as well as any refinements to improve and broaden the application of this shallow-water
classification and inversion system.
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Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/10/1/147/s1,
Table S1: BSP-classifier. Bl/Br. Coral = Blue/Brown Coral and TA/BC = Turf Algae/Brown Coral. The diagonal
elements of this matrix contain the correct classification rates for each class, while the off-diagonals represent
misclassification rates. The overall classification accuracy for this classifier was 98.5%; Table S2: Error matrix
for 2–4 m depth BSP-classifier with an overall classification accuracy of 98.0%; Table S3: Error matrix for the
4–6 m depth BSP-classifier with an overall classification accuracy of 89.7%; Table S4: Error matrix for 6–8 m depth
BSP-classifier with an overall classification accuracy of 84.8%; Table S5: Error matrix for 8–10 m depth BSP-classifier
with an overall classification accuracy of 69.6%; Table S6: Error matrix for 10–12 m depth BSP-classifier with an
overall classification accuracy of 53.5%.
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