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Abstract: It is important to accurately evaluate ecosystem respiration (RE) in the alpine grasslands of
the Tibetan Plateau and the temperate grasslands of the Inner Mongolian Plateau, as it serves as a
sensitivity indicator of regional and global carbon cycles. Here, we combined flux measurements
taken between 2003 and 2013 from 16 grassland sites across northern China and the corresponding
MODIS land surface temperature (LST), enhanced vegetation index (EVI), and land surface water
index (LSWI) to build a satellite-based model to estimate RE at a regional scale. First, the dependencies
of both spatial and temporal variations of RE on these biotic and climatic factors were examined
explicitly. We found that plant productivity and moisture, but not temperature, can best explain
the spatial pattern of RE in northern China’s grasslands; while temperature plays a major role
in regulating the temporal variability of RE in the alpine grasslands, and moisture is equally as
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important as temperature in the temperate grasslands. However, the moisture effect on RE and
the explicit representation of spatial variation process are often lacking in most of the existing
satellite-based RE models. On this basis, we developed a model by comprehensively considering
moisture, temperature, and productivity effects on both temporal and spatial processes of RE, and
then, we evaluated the model performance. Our results showed that the model well explained the
observed RE in both the alpine (R2 = 0.79, RMSE = 0.77 g C m−2 day−1) and temperate grasslands
(R2 = 0.75, RMSE = 0.60 g C m−2 day−1). The inclusion of the LSWI as the water-limiting factor
substantially improved the model performance in arid and semi-arid ecosystems, and the spatialized
basal respiration rate as an indicator for spatial variation largely determined the regional pattern of
RE. Finally, the model accurately reproduced the seasonal and inter-annual variations and spatial
variability of RE, and it avoided overestimating RE in water-limited regions compared to the popular
process-based model. These findings provide a better understanding of the biotic and climatic controls
over spatiotemporal patterns of RE for two typical grasslands and a new alternative up-scaling
method for large-scale RE evaluation in grassland ecosystems.

Keywords: ecosystem respiration; MODIS; moisture effect; ChinaFLUX; alpine grasslands;
temperate grasslands

1. Introduction

Grasslands are one of the most widespread vegetation types and store one-fifth of the total global
carbon in its vegetation and soil [1,2]; thus, they play an important role in the global carbon cycle.
The extensive grasslands in China make up ~10% of the total area of grasslands in the world and have
been estimated to store 9–15% of the total carbon held in the grasslands worldwide [3]. Northern
China’s grasslands located in the Tibetan Plateau and Inner Mongolian Plateau, in particular, constitute
the majority (more than 70%) of the grasslands in China and represent two significant grassland
types worldwide (i.e., alpine and temperate grasslands) [4]. Moreover, they are sensitive to climate
changes due to their unique plateau topography, the extreme cold, arid and semi-arid ecological
environment and the high soil carbon density [5–7]. Therefore, a better understanding of the carbon
cycle in northern China’s grasslands is necessary for it to serve as a sensitivity indicator of regional
and global carbon cycles.

Ecosystem respiration (RE) is an important outflow component of ecosystem carbon cycle and
represents the second largest carbon exchanges between terrestrial ecosystems and the atmosphere [8].
However, as the result of the complex interactions among physical, chemical, and biological processes,
RE varies greatly at different temporal and spatial scales [9]. Extensive studies at regional or global
scales suggest that RE estimates still remains a large uncertainty [10]. Therefore, it is particularly
essential but challenging to accurately evaluate the regional RE in northern China’s grasslands
for a quantitative assessment of the terrestrial ecosystem carbon budget and its response to future
climate changes.

Generally, modeling is the commonly adopted method for inferring RE at a large scale.
Remote-sensing models, with relatively simple model structures and high spatiotemporal resolutions,
provide promising tools for monitoring regional RE. Currently, with the development of fine-scale
remote-sensing technology and long-term regional and global FLUXNET observations, extensive
studies have revealed the robust statistical and physiologically meaningful relationships between
RE and satellite products, e.g., the land surface temperature (LST) [11–13] and vegetation index
(VI) [14–16]. Based on this information, many semi-empirical satellite-based models were developed
and well validated at the plot scale [13,16–19]. However, RE at large scale involves complex spatial
and temporal variation processes [20]. Few satellite-based models have an explicit representation
of the spatial process of RE. Specifically, the basal respiration rate, an important parameter in RE
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models to describe the location-specific respiration rate, is usually set as a constant parameter, which
introduces considerable error in the simulated spatial variability of RE [8,20,21]. Therefore, it is
critical to identify the controlling mechanism involved in the spatial variations of RE with more
comprehensive data, not just in the temporal variations, thus serving as a valuable basis to better
understand patterns of RE at regional scale and to scale-up from specific sites to vegetation biomes.
In addition, both climatic and biotic controls over RE should be considered comprehensively in
RE simulation [22,23]. In satellite based models, RE has often been linked to temperature or plant
productively solely. Some studies advanced RE estimates by accounting for the combined two effects
of temperature and plant productivity [13,15]. The moisture limitation on RE is often lacking in most of
the current satellite-based respiration models, leading to a potential underestimation of drought effects
on respiration (e.g., [19,24]). However, grasslands are one of the most sensitive ecosystems to the
alteration of water regimes [25]. Water stress was found to have a strong influence on northern China’s
grasslands, especially in southwestern Inner Mongolia and northwestern Tibet [26]. Recently, some
satellite-based models gradually began incorporating the moisture effect on RE, but it still depends
which satellite product and form are selected to represent the moisture factor and the response process
of RE to moisture. For instance, a linear equation of an indirect water indicator (diurnal LST difference,
LSTdiff) was utilized in the RECO model during the dry season for water-limited biomes, which were
mostly concentrated in the Mediterranean climate region without a temperature limitation [27]; thus,
its utility in northern China’s grasslands still needs to be validated. Root-zone soil moisture derived
from the Advanced Microwave Scanning Radiometer-Eos was adopted in a soil respiration (Rs) model
in the Midwest USA, and it yielded a lower explanation capacity for seasonal variation of Rs than the
surface soil moisture under extreme moisture regimes [28]. Currently, increasing attention is being
given to the moisture effect on RE [29,30], as most climate change scenario analyses have predicted that
the frequency and severity of drought will increase in most biomes across the world [31]. It is practical
to develop a satellite-based RE model that integrates temperature, plant productivity, and moisture
effects together in both temporal and spatial processes, to yield reliable simulations of regional RE for
northern China’s grasslands.

This study was based on 57 site-year flux-tower data and remote-sensing data from northern
China’s grasslands. The major objectives of this study were threefold: (i) to quantify the relationships of
climatic and biotic factors and the spatial and temporal variability of RE in the Tibetan alpine grasslands
and the Inner Mongolian temperate grasslands; (ii) to develop a high-resolution satellite-based
model for simulating RE at regional scale on the basis of comprehensive consideration of vegetation
productivity, temperature, and moisture; and (iii) to assess the model performance in terms of the
temporal dynamics as well as the spatial pattern simulation of RE in northern China’s grasslands.

2. Materials and Methods

2.1. Study Area

This study was conducted in the alpine grasslands on the Tibetan Plateau and the temperate
grasslands on the Inner Mongolian Plateau. The Tibetan region is in the alpine climate zone, where
temperature appears as the controlling factor for the grassland ecosystems. With an average elevation
of ca. 4000 m, the mean annual air temperature on the plateau ranges between −5.75 and 2.57 ◦C, and
the mean annual precipitation varies from 200 to 600 mm. The alpine meadow covers more than half
of the plateau, representing not only a typical ecosystem in central Asia alpine environment but also
a unique ecosystem within the alpine regions of the world [32]. Located in the arid and semi-arid
zone, the grassland ecosystems in the Inner Mongolian region are mainly limited by moisture. With
an average elevation ca. 1000 m, the mean annual temperature in this area varies between 3 and
6 ◦C, and the mean annual precipitation ranges from 200 to 350 mm. The temperate grasslands are
a typical vegetation type under the temperate continental climate and they represent an important
component of the Eurasian grasslands [33]. According to the Atlas of China’s Grassland Resources
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(1:1,000,000), we fully considered the spatial representativeness of the flux-tower sites collected for
this research and focused on three types: (i) alpine meadow; (ii) alpine meadow steppe (AS); and (iii)
temperate steppe. The alpine meadow was further subdivided into three types: (1) alpine Kobresia
meadow (KO); (2) alpine shrub meadow (SH); and (3) alpine swamp meadow (SW); the temperate
steppe was also subdivided into three types: (1) meadow steppe (MS); (2) typical steppe (TS); (3) and
desert steppe (DS). The distribution of these vegetation functional types (PFTs) as well as the typical
grassland flux-tower sites is shown in Figure 1.
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Figure 1. Map showing the spatial distribution of the alpine and temperate grasslands in China.
Triangles denote the 16 flux-tower sites. DXST = DangXiong alpine meadow steppe; DXSW =
DangXiong alpine swamp meadow; HBSW = HaiBei alpine swamp meadow; HBSH = HaiBei alpine
shrub meadow; HBKO = HaiBei alpine Kobresia meadow; MQSW = MaQu alpine swamp meadow;
MQKO = MaQu alpine Kobresia meadow; ZF = ZhuFeng; NMC = NaMuCuo; GL = GuoLuo; AR = ARou;
NMG = NeiMengGu; XLHT = XiLinHaoTe; SZWQ = SiZiWangQi; HLBE = HuLunBeEr; DL = DuoLun.

2.2. Data

2.2.1. Flux-Tower Data

A total of 57 site-year data from 16 grassland sites during 2003–2013 were retrieved from the
ChinaFLUX and the Coordinated Observations and Integrated Research over Arid and Semi-Arid
China (COIAS) databases, including 43 site-years from 11 sites on the Tibetan Plateau and 14 site-years
from 5 sites on the Inner Mongolia Plateau (Table 1). The observed eddy-covariance data were
processed through a three-dimensional coordinate rotation, WPL (Webb-Pearman-Leuning) correction,
and invalid data exclusion [34]. Subsequently, the missing nighttime RE and daytime RE data were
calculated using the Lloyd-Taylor equation based on net ecosystem exchange (NEE) observations
during the nighttime [35]. The entire procedure was completed using the ChinaFLUX CO2 data
processing system [36]. The half-hourly flux data was summed to obtain daily values, and the
site-years with more than 30% of the daily RE missing were eliminated. To comply with the temporal
scale of the Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day composite imagery,
the processed daily RE were averaged within the same periods.
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Table 1. Main characteristics of the 16 flux-tower sites over China’s grasslands.

Grassland Type Site Name Location Elevation
(m)

Canopy
Height (m)

Tower
Height (m) Operation Period

Alpine shrub meadow HBSH 37.67◦N
101.33◦E 3293 0.6–0.7 2.2 2003–2008, 2010–2012

Alpine Kobresia meadow

HBKO 37.61◦N
101.31◦E 3148 0.2–0.3 2.2 2003–2005, 2009, 2012

GL 34.35◦N
100.56◦E 3980 0.2–0.3 2.2 2007, 2010–2011, 2013

AR 38.04◦N
100.46◦E 3033 0.2–0.3 3.15 2008–2010

MQKO 33.88◦N
102.15◦E 3533 0.2–0.3 3.15 2009–2010

Alpine swamp meadow

HBSW 37.61◦N
101.33◦E 3160 0.2–0.5 2.2 2004–2008, 2010–2012

DXSW 30.47◦N
91.06◦E 4286 0.2–0.5 2.1 2009–2010

MQSW 33.76◦N
101.68◦E 3503 0.3–0.5 3.2 2010

Alpine meadow steppe

DXST 30.50◦N
91.06◦E 4333 <0.2 2.2 2004–2010

ZF 28.36◦N
86.95◦E 4293 <0.2 3.1 2009

NMC 30.77◦N
90.96◦E 4730 <0.2 3.1 2009

Typical steppe

NMG 43.53◦N
116.67◦E 1200 0.2–0.3 4 2004–2008, 2010, 2012

DL 42.05◦N
116.28◦E 1324 0.3–0.5 5 2010–2011

XLHT 44.13◦N
116.32◦E 1187 0.1–0.3 5 2010–2011

Desert steppe SZWQ 41.8◦N
111.9◦E 1438 0.1–0.2 3 2011–2012

Meadow steppe HLBE 49.06◦N
119.4◦E 628 0.3–0.5 3 2012

2.2.2. Remote-Sensing Data

At the site scale, the MODIS products of the LST, enhanced vegetation index (EVI), and land
surface water index (LSWI) at each site-year (2003–2013) were downloaded from the University of
Oklahoma Data Center (http://www.eomf.ou.edu/visualization/manual/), based on the pixels where
the flux towers located, to match up with the flux data for model parametrization.

At the spatial scale, the 8-day (best observation in 8 days) MODIS land surface reflectance datasets
(MOD09A1, Level 3, Collection 5) during 2001–2010 were downloaded from NASA Land Processes
Distributed Active Archive Center (https://lpdaac.usgs.gov/) to generate the spatial EVI and LSWI
data using Equations (1) and (2), as model drivers in regional simulation.

EVI = G × (ρnir − ρred)/(ρnir + (C1 × ρred − C2 × ρblue) + L), (1)

LSWI = (ρnir − ρswir) / (ρnir + ρswir), (2)

where ρnir, ρred, ρblue, and ρswir represent the reflectance of near infrared bands (NIR, 841–875 nm), red
bands (620–670 nm), blue bands (459–478 nm), and short wave infrared bands (SWIR, 1628–1652 nm),
respectively. The coefficients G, C1, C2 and L used in the EVI algorithm are 2.5, 6, 7.5 and 1,
respectively [37].

http://www.eomf.ou.edu/visualization/manual/
https://lpdaac.usgs.gov/
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The MOD11A2 and MYD11A2 products (Level 3, Collection 5), which are 8-day average values
of cloud free observations, were also downloaded from the LP DAAC data pool to obtain the spatial
daytime LST and nighttime LST data, respectively. The spatial resolution of EVI and LSWI is 500 m,
and that of LST is 1 km. For the regional application in China’s grasslands, the extracted EVI and
LSWI were resampled to a 1-km resolution. The temporal resolution of these products is 8-day, which
ensures a better data quality as selected on the basis of the absence of clouds or aerosol, etc., and is
confirmed by extensive RE modeling research to be able to robustly capture the seasonal variation of
RE [24,27,28]. Additionally, to further reduce the effect of cloud and to capture the seasonality of EVI,
the original time series were smoothed using the double logistic curve fit in the TIMESAT software
(Lund University, Lund, Sweden) [38].

2.3. Model

RE at the regional scale is a coupling result of complex spatial and temporal processes. The process
of spatial variability refers to the basic trend of RE changing with the climate and substrate at a specific
location, which is especially significant in regional simulations [39]; the process of temporal variability
refers to the cyclical changes of RE induced by the seasonal dynamics of environmental factors and
plant growth. A multiplication factor is usually used to express the interaction of the above two
processes in an RE simulation [20–22,27]. Based on the remote-sensing model RECO [27] and the
traditional climate-driven model T&P [20,22], we put forward a modified model of RE for grasslands
by taking the effects of temperature, vegetation productivity, and moisture on both the spatial and
temporal variability of RE into account and making full use of the high-resolution satellite data as
the model drivers. To account for spatial and temporal variability separately, we partition RE into a
site-specific reference respiration rate (Reref ) and the remaining seasonal variation (f (T,P,W)), which is
detrended for site characteristics (Equation (3)). The structure of the model is shown below (Figure 2).

RE = Rere f ∗ f (T, P, W), (3)
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2.3.1. Representation of Spatial Variability of RE

Reref is the site-specific respiration rate at the reference temperature (Tref ). It is used to describe
the difference in basal respiration between sites and years, thereby reflecting the spatial variability
of RE [8]. Numerous studies have indicated that a spatially heterogeneous Reref results in a better
estimation of RE at different sites [20–22,27]. The long-term spatial variation of RE or Reref is found to
be mainly driven by the mean annual temperature [40–42], mean annual plant productivity [43,44],
and mean annual moisture [45–47]. Thus, the functional description of Reref in this study is developed
based on its dependencies on the temperature, productivity, and moisture factor (Figure 3). Since
Reref becomes less suitable to capture site characteristics at higher Tref values [27], Tref was set as
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the mean springtime (DOY 96-144) temperature (i.e., 3 ◦C for the Tibetan alpine grasslands, and 7 ◦C
for the Inner Mongolian temperate grasslands), and the Reref for each site-year was calculated as the
mean respiration rate at the temperature approximate to Tref during the spring time. Finally, Reref is
estimated in our model as follows:

Rere f = p1 + p2 ∗ EVImean + p3 ∗ LSTmean + p4 ∗ LSWImean, (4)

where EVImean is the mean annual springtime EVI, LSTmean is the mean annual daytime LST (LSTd),
LSWImean is the mean annual growing season LSWI (DOY 136-272), and p1 to p4 are parameters to be
inferred herein. Figure 3 displays the Reref dependencies on EVImean, LSTmean and LSWImean.
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Figure 3. Reference respiration (Reref ) response to the mean annual springtime EVI (EVImean), mean
annual LST (LSTmean) and mean annual growing season LSWI (LSWImean) for the Tibetan alpine
grasslands and the Inner Mongolian temperate grasslands.

2.3.2. Representation of Temporal Variability of RE

The seasonal dynamics of RE are reflected by f (T, P, W), which is mainly controlled by the
temporal variability of temperature [48,49], vegetation productivity [43,50], and water [20–22,40].
Especially in the arid and semi-arid ecosystems, water is the main limiting factor of the seasonality of
RE [51,52]. The values of f (T,P,W) are obtained by calculating the ratio of the observed RE from the
flux tower and the site-specific Reref partitioned from the observed RE. Figure 4 displays the f (T, P, W)

dependencies on the temporal variation of EVI, LST and LSWI. The form of f (LST, EVI) scalar was
based on the LST-driven Lloyd-Taylor equation [48] and EVI-driven linear equation, while the form of
fw scalar was derived from a Michaelis-Menten equation firstly proposed by Raich et al. [53]. During
the growing season, we calculate the f (T, P, W) as follows:

f (T, P, W) = f (LST, EVI) ∗ fW , (5)
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f (LST, EVI) = p5 ∗ exp (E0 ∗ (
1

Tre f − T0
− 1

LSTn − T0
)) + p6 ∗ EVIstd + p7, (6)

fW =
(0.5 + LSWI)

k + (0.5 + LSWI)
, (7)

where LSTn is nighttime LST, EVIstd is the standardized EVI (8-day EVI divided by EVImean), p5

to p7 are the parameters to be sought, E0 is the activation energy, T0 is the minimum temperature
for respiration, which is set to 227.13 k (−46.02 ◦C) as in the original Lloyd-Taylor model, k is the
half-saturation constant of the hyperbolic relationship, and 0.5 is an empirically given value to maintain
the numerator/denominator of fw > 0.
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Figure 4. f (T,P,W) response to nighttime LST (LSTn), standardized EVI (EVIstd), and LSWI for the
Tibetan alpine grasslands and the Inner Mongolian temperate grasslands.

During the non-growing season, temperature, but not water, becomes the main limiting factor
for RE in northern China’s grasslands [24]. In addition, the surface covered by ice and snow in the
non-growing season has a strong absorption of the shortwave infrared band that causes LSWI to
increase sharply; thus, it cannot reflect the actual water content in the winter [54]. Therefore, the fw
scalar is only considered for the growing season (Equation (5)). During the non-growing season, we
calculate the temporal variability of RE as follows:

f (T, P, W) = f (LST, EVI) , (8)

The different periods of MODIS indices (i.e., the mean springtime of EVI, the mean annual of
LSTd in Reref, and LSTn in f (T, P, W)) used here have already been selected by Jägermeyr et al. [27] as
the best index for fitting the relationship with RE. LSWI, selected by us as the model driver, is a more
direct proxy for moisture than LSTdiff, which was used in RECO but had no significant relation with
the temporal dynamics of RE in our study (R2 < 0.2, p > 0.05); in addition, land surface moisture was
found to have greater influence on RE than deep soil water [20,28], which is especially instrumental
in northern China’s grasslands with the large number of roots distributed in the soil surface [55].
Therefore, all these drivers appear to be chosen empirically but are based on the physiological
dependencies of RE, thereby ensuring reliable estimates from our model.
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2.4. Model Parameterization and Validation

The two components, i.e. Reref for each site and year and the remaining seasonal variation
f (T,P,W) partitioned from the overserved RE, were used to optimize parameters for Equations (4) and
(5) separately to better constrain each component of the model. The nonlinear least-squares curve
fitting method was utilized to estimate the model parameters. In addition to joint-sites estimation for
the two grasslands in two regions, the leave-one-out cross validation method was employed to test the
validity of the joint estimation of parameters (i.e., one subtype was excluded at a time, and the data for
all other subtypes were used to estimate the parameters for each grassland type). The coefficient of
determination (R2) and root mean square error (RMSE) were chosen to assess the model performance.
Regional-scale application is based on PFT-specific parameters retrieved from the entire site-data of
alpine grasslands and temperate grasslands to assure most robust parameters.

To further verify the model improvement by incorporating the moisture effect on both spatial
and temporal variability, the LSWImean in Reref and fw in f (T,P,W) were removed, respectively, to test
the accuracy of the model. In addition, we also compare some other semi-empirical or process-based
models to assess the ability of our model. Specifically, for the RE estimation at a site scale, we chose
the two original models that our model was based on, namely T&P [22] and RECO [27]; for the RE
estimation at a regional scale, an independent regional RE product simulated by a mainstream dynamic
global vegetation model CLM4CN, derived from Piao et al. [56], was applied.

3. Results

3.1. Quantitative Relationships between RE and Biotic and Climatic Factors

The observed RE values were partitioned into Reref and f (T,P,W) to account for the spatial and
temporal variability of RE separately. The quantitative relationships between these two components
and the climatic and biotic factors provided a clear physiological basis for the development of
the model.

3.1.1. Quantitative Relationships between Reref and Biotic and Climatic Factors

Multiple regression analyses between Reref and the remote-sensing data show that Reref has
a significant dependence on EVImean, LSTmean and LSWImean, which can be approximated linearly
(Figure 3). The variation of Reref in the Tibetan alpine grasslands is primarily attributed to the
change in vegetation productivity (EVImean, R2 = 0.612) and to the water regime (LSWImean, R2 = 0.334).
Temperature plays a negligible role in the Reref (LSTmean, R2 = 0.128). Similarly, productivity (R2 = 0.576)
and moisture (R2 = 0.480) tend to be more important than temperature (R2 = 0.461) for Reref in the
temperate grasslands of Inner Mongolia. However, the temperature limitation among the temperate
grassland sites is characterized by a negative slope.

3.1.2. Quantitative Relationships between f (T, P, W) and Biotic and Climatic Factors

The regression analyses between f (T, P, W) and the remote-sensing indexes (Figure 4) indicate
that the temporal variability of RE has a strong exponential dependency on temperature, which could
be described using the LSTn-driven Lloyd-Taylor equation. RE still has a significant linear response
to the seasonal dynamics of EVI, which is decided by the behind mechanism that growth respiration
supplies energy at the cost of consuming some photosynthate, causing the RE to be approximate to a
constant fraction of plant productivity [57,58]. In terms of the response to temporal variation of LSWI,
RE is almost linearly related to LSWI firstly (when LSWI < 0.1) and then it reaches saturation during
the final stage in the Inner Mongolian region with a relatively low soil water content, whereas in the
Tibetan region with a relatively high soil water content, the response of RE to LSWI follows a gradual
saturation. The responses of RE to moisture under the two different water regimes both agree well
with the typical Michaelis-Menten curve.
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The temporal variation of RE in the alpine grasslands of the Tibetan Plateau is mainly correlated to
temperature (LSTn, R2 = 0.752), followed by plant productivity (EVIstd, R2 = 0.617), while water (LSWI,
R2 = 0.451) plays a minor role in regulating the temporal dynamics of RE in this temperature-limited
region (Figure 4). In contrast, water exerts a strong influence (LSWI, R2 = 0.656) on the temporal
variability of RE in the temperate grasslands of Inner Mongolia, which is comparable with the
determinant factor (LSTn, R2 = 0.687), while plant productivity exerts a relatively weak impact (EVIstd,
R2 = 0.485).

3.2. Model Parameterization and Validation

Based on the quantitative dependencies of spatiotemporal variability in RE to these biotic and
environmental factors, we developed a semi-empirical RE model described in 2.3. The long-term
flux tower-observed RE was used for parameter estimation and validation. Detailed parameter
values for Reref and f (T, P, W) in the two grasslands are presented in Table 2. These parameters are
mostly empirical coefficients varying with the vegetation types and structures, site conditions, and
histories. One of the parameters for Reref, for example, p3, has the opposite sign for the temperate
grasslands (negative) relative to the alpine grasslands (positive). This phenomenon implies a negative
correlation between the spatial variation of RE and mean annual temperature in Inner Mongolia.
Among the parameters for f (T,P,W), the activation energy E0 and the half saturation constant k are
two key parameters that have a special physiological implication. In the alpine grasslands, E0 has a
higher value than the temperate grasslands. This result accurately reflects the increasing temperature
sensitivity with the decreasing temperature. Regarding the half saturation constant, k, the value is
higher (0.207) in the temperate grasslands than the alpine grasslands (0.021). The drier ecosystem has a
higher half saturation point, accurately characterizing the different responses of RE to moisture among
the alpine and the arid and semi-arid regions.

Table 2. Parameter estimation of Reref and f (T,P,W) for two grassland types in two regions.

Grassland Type Alpine Grasslands Temperate Grasslands

Reref

p1 −2.646 ± 0.456 −0.019 ± 0.023
p2 15.100 ± 2.062 8.347 ± 1.068
p3 0.173 ± 0.024 −0.029 ± 0.009
p4 18.828 ± 0.939 3.952 ± 0.322

f (T,P,W)

p5 1.787 ± 0.081 (1.421 ± 0.136) * 0.658 ± 0.119 (0.941 ± 0.147) *
E0 279.764 ± 53.87 (164.507 ± 31.874) * 166.327 ± 12.402 (154.305 ± 18.729) *
p6 0.250 ± 0.024 (0.193 ± 0.046) * 0.944 ± 0.039 (0.085 ± 0.061) *
p7 0.094 ± 0.039 (0.108 ± 0.046) * −0.363 ± 0.081 (0.190 ± 0.050) *
k 0.021 ± 0.064 0.207 ± 0.0.082

* Among the parameters for f (T,P,W), the values inside the parentheses are for the non-growing season, while the
others are for the growing season.

The model parameter estimation reveals that approximately 77.8% and 74.9% of the variation in
the observed RE across the alpine and temperate grasslands, respectively, could be explained by this
model, albeit with a small bias (Figure 5; Table 3, joint-sites). Specifically, the model could explain
more than 55% of the spatial variability of RE (Reref ) in the two regions. The simulation error in the
Tibetan alpine grasslands (RMSE = 0.62 g C m−2 day−1) is higher than that in the Inner Mongolian
temperate grasslands (RMSE = 0.11 g C m−2 day−1). The temporal variability (f (T,P,W)) is generally
explained to a greater degree (more than 65%) compared to the spatial variability, while the simulation
error in the temperate grasslands (0.91 g C m−2 day−1) is higher than that in the alpine grasslands
(0.35 g C m−2 day−1). The cross-validation among subtypes in the alpine and temperate grasslands
shows that approximately 75.6–91.7% and 57.5–80.3%, respectively, of the variation in the observed RE
could be predicted by the model, with the values of RMSE ranging from 0.841 to 1.544 g C m−2 day−1

and 0.405–1.021 g C m−2 day−1 for the alpine and temperate grasslands, respectively (Table 3). Except
for the typical steppe, where the parameters derived from the limited sites in the meadow steppe and
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desert steppe do not represent for the typical steppe well, the other vegetation types differ slightly in
performances from the cross-validation and parameter estimation, which verifies the robustness of the
parameterization results.Remote Sens. 2018, 10, 149  11 of 20 
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Figure 5. Comparison between the observed and predicted ecosystem respiration (RE) in the Tibetan
alpine grasslands (left) and the Inner Mongolian temperate grasslands (right).

Table 3. Joint-sites estimation and leave-one-out cross validation for each vegetation type.

Vegetation Type Types of Parameter Estimation Types of Cross-Validation R2 RMSE p Value

Alpine
Grasslands

SH_SW_ST KO 0.844 0.841 <0.01
KO_SW_ST SH 0.756 1.047 <0.01
KO_SH_ST SW 0.917 0.927 <0.01
KO_SH_SW ST 0.784 1.544 <0.01

Joint-sites (AR_GL_HBKO_GL) / 0.778 0.774 <0.01

Temperate
Grasslands

TS_DS MS 0.803 0.405 <0.01
MS_DS TS 0.575 0.919 <0.01
TS_MS DS 0.643 1.021 <0.01

Joint-sites (TS_MS_DS) / 0.749 0.605 <0.01

3.3. Model Simulation for Seasonal and Inter-Annual Dynamics of RE at the Site Scale

Using the model parameters in Table 2, we simulate time-series RE of all 57 site-years and then
further compared them to the flux tower-observed RE for each vegetation subtype in the alpine and
temperate grasslands. In most cases, the temporal variation of the RE is tracked robustly by our model
(Figure 6). The agreement between the modeled and observed RE is the best for the desert steppe and
meadow steppe (R2 > 0.9), followed by the alpine shrub meadow (R2 = 0.872), the alpine meadow
steppe (R2 = 0.805), the alpine Kobresia meadow (R2 = 0.778), the typical steppe (R2 = 0.743), and the
alpine swamp meadow (R2 = 0.715). Ground covered by water in the alpine swamp meadow would



Remote Sens. 2018, 10, 149 12 of 20

affect the spectral reflectance and further disturb the model drivers (EVI and LSWI), and this may be
the main reason for the relatively low performance in this vegetation type.Remote Sens. 2018, 10, 149  12 of 20 
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Figure 6. Time-series plots for observed (black square dot) and modeled (red round dot) ecosystem
respiration (RE) at all sites. The text in the abscissa represents the abbreviation of the site name, and
the following number represents the year.

The seasonal variation of RE in China’s grasslands could be described as a unimodal curve
peaking in July or August. Across the seven vegetation types, the mean annual peak respiration rate
ranges from 1.10 to 5.84 g C m−2 day−1. The highest value occurring in the alpine meadow or the
meadow steppe is approximately four times higher than that of the alpine meadow steppe or the
desert steppe. There are also significant inter-annual fluctuations in the RE at some sites; for instance,
the observed RE decreased remarkably as precipitation decreased in 2011 in SZWQ (Figure 6f), 2005
and 2006 in NM (Figure 6e), and 2009 in HBKO (Figure 6a). In addition, our model could accurately
reproduce the inter-annual dynamics of RE due to the variation in precipitation across years.

3.4. Model Simulation for Spatial Patterns of RE at the Regional Scale

Based on the parametrized RE model dependent on prescribed PFTs (alpine and temperate
grasslands in Figure 1) and the spatial driver data of MODIS EVI, LST, and LSWI, the spatial distribution
of the mean annual REs from 2001 to 2010 were obtained (Figure 7a). The predicted annual RE of
China’s northern grasslands is 258.18 ± 12.07 g C m−2 yr−1 on average. For the alpine grasslands
on the Tibetan Plateau, the alpine shrub meadow has the largest RE value (434.69 ± 8.83 g C m−2

yr−1), followed by the alpine swamp meadow (413.82 ± 8.21 g C m−2 yr−1), the alpine Kobresia
meadow (368.64 ± 7.52 g C m−2 yr−1), and the alpine steppe meadow (146.57 ± 3.21 g C m−2 yr−1),
exhibiting a clear decreasing gradient from the southeast to the northwest with increasing elevation
across the Tibetan Plateau. For the Inner Mongolian Plateau, RE also shows a clear decreasing
gradient from northeast to southwest. Specifically, the highest value of RE occurs in the meadow
steppe (470.27 ± 39.24 g C m−2 yr−1) in the northeast, and the lowest value of RE occurs in the desert
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steppe in the southwest (144.91 ± 21.75 g C m−2 yr−1). The mean annual RE in the typical steppe is
193.6 ± 30.84 g C m−2 yr−1.Remote Sens. 2018, 10, 149  13 of 20 
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Figure 7. Predicted spatial distribution of the mean annual ecosystem respiration (RE). (a) and the
reference respiration (Reref ); (b) by our model and mean annual RE by CLM4CN; (c) in northern
China’s grasslands.

Reref appears to be a key component in this model in terms of quantifying the spatial variability of
RE across sites. Nevertheless, the spatial patterns of Reref have rarely been investigated due to the lack
of spatially explicit algorithms to allow the upscaling of Reref. Here, we took abiotic and biotic factors
into consideration to parameterize Reref spatially and revealed that the mean annual Reref has a clear
spatial heterogeneity among different vegetation types in northern China’s grasslands (Figure 7b),
ranging from 0.22 g C m−2 day−1 in the desert steppe to 2.25 g C m−2 day−1 in the meadow steppe.
In addition, the spatial distribution of Reref, to a large extent, determines the spatial pattern of the
mean annul RE (Figure 7a,b).

4. Discussion

4.1. Biotic and Climatic Control over RE

Our analysis reveals that among biotic and climatic factors, plant productivity and moisture
exert stronger influences than temperature on regulating the spatial pattern of RE. These two factors
together can well explain the spatial patterns of RE, accounting for 54% and 58% of the variation in
the temperate grasslands and alpine grasslands, respectively (Table 4). The important role of plant
productivity and moisture in regulating the spatial pattern of RE is in good accordance with other
studies across the world [20,46,59,60]. Most of the variation in RE could be attributed to the difference
in plant productivity among sites, with a relatively smaller proportion being further explained by
moisture, but the moisture effect differs significantly between the two grasslands and plays a more
crucial role in the water-deficit temperate grasslands than the alpine grasslands (Figure 3, Table 4).

Table 4. Relationship between Reref and the combined effects of EVImean, LSTmean, and LSWImean.

Grassland Type
EVImean EVImean & LSWImean EVImean & LSWImean & LSTmean

R2 RMSE (g C m−2 day−1) R2 RMSE (g C m−2 day−1) R2 RMSE (g C m−2 day−1)

Temperate grasslands 0.424 0.147 0.541 0.125 0.554 0.113
Alpine grasslands 0.539 0.714 0.577 0.653 0.588 0.617
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Although temperature has been noted to be positively correlated with RE across biomes at a global
scale [40,41] and an important limitation on RE in alpine ecosystems, the inclusion of LSTmean does
not significantly affect the explanation of Reref variation (Table 4). In the alpine grasslands, studies
increasingly suggest that plant biomass is the direct determinant of RE distribution [61–63], while
moisture changes, but not temperature, serve as another indirect determinant via regulating plant
growth and distribution in the vast alpine grasslands (4400–4800 m) [64]. The above two explanations
describe how temperature is less important to governing the spatial pattern of RE in the alpine
grasslands. However, the dependence of Reref on LSTmean appears to be stronger and negative in the
temperate grasslands (Figure 3, Table 2). In fact, the relation of RE with temperature can be confounded
by moisture in arid and semi-arid ecosystems [63,65]. Specifically, the gradient of precipitation mainly
defines the declining gradient of RE from the northeast to the southwest in the Inner Mongolian
Plateau, which is exactly opposite to the gradient of temperature [66], thus leading to the apparently
close and negative spatial correlation between temperature and RE.

In contrast, temperature becomes the major controlling factor in terms of the temporal pattern
of RE (Figure 4). The significant exponential dependence of seasonal RE on temperature that was
observed in these two regions is consistent with many other grassland ecosystems [67,68]. However,
there are obvious differences in the temperature control over RE among different climate zones. For the
alpine grasslands, temperature explained 75.2% of the seasonal variability of RE and was the strongest
controlling factor. However, the magnitude of the temporal dynamics of RE due to temperature
decreased to 68.7% for the temperate grasslands. This result is in accordance with the argument that
the seasonal variation of RE may depend much less on temperature when moisture become a limiting
factor [23,65,69]. As expected, moisture exerts a strong impact on the seasonal changes of RE in the arid
and semi-arid temperate grasslands, almost to the same degree as temperature (Figure 4). While the
dependence of RE on LSWI is relatively weak, productivity serves as a relatively stronger controlling
factor (Figure 4). Although some studies support the close correlation between the seasonal dynamics
of RE and plant growth [68,70], this correlation still contradicts the more universal argument that the
abiotic factors (temperature and moisture), rather than biotic factors (plant growth), mainly regulate
the seasonal patterns of RE [67]. The most significant cause of this strong dependency on production
in alpine grasslands is the relatively high root biomass density in this grassland community [71]; thus,
autotrophic respiration, which is closely related to plant biomass, contributes to a relatively large
proportion of the total RE [62].

4.2. Model Evaluation

The model demonstrates that flux-tower observed RE can be estimated with an applicable degree
of accuracy across grasslands using only remote sensing data. We first evaluate the precision of
our model at a site scale by comparing it to other recent semi-empirical approaches, e.g., the two
original developed-based models, T&P [22] and RECO [27] that achieved a mean site-level accuracy
of R2 = 0.679 with RMSE =1.227 g C m−2 day−1 and R2 = 0.625 with RMSE = 0.969 g C m−2 day−1,
respectively, for these 16 grassland sites, while our model performed better with a higher degree of
explanation and a lower bias (Table 3), verifying the model improvements with better representation
of Reref and further incorporation of the moisture effect. An independent regional RE product
from a popular process-based model CLM4CN [56] was employed to further evaluate the model
performance at a regional scale. The CLM4CN presented a mean annual RE value (309.18 ± 5.15)
within an order of magnitude of this study, but it still resulted in an overestimation. The general spatial
pattern of RE appeared similar but there were still distinct differences, especially in the water-deficit
area. For example, in the southwest of the desert grasslands which is driest, the CLM4CN failed to
produce the lowest values. Moreover, the CLM4CN unreasonably produced a higher RE in the alpine
meadow steppe than the surrounding alpine meadow (Figure 7a,c). These distinct differences are
likely associated with the different representation of Reref in the models, which has been proven to
largely determine the spatial pattern of RE (Figure 7a,b). Reref was set as the same constant for all
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biomes in the CLM4CN [72], as in the most process-based models [73–75]. However, more and more
studies demonstrate that a large error would be introduced if a constant Reref is used [76]. In fact, Reref
varies remarkably in space [9,22,60]. Therefore, the better representation of Reref makes our model
more sensible for capturing the regional characteristics of RE in grassland ecosystems and arid and
semi-arid areas, in particular.

The consideration of moisture effects on both the spatial and temporal variabilities of RE is another
major factor contributing to the better performance of our model. For the spatial variability of RE
(Reref ), even though it has been gradually confirmed to vary systematically with the spatial variation of
productivity (GPP or LAI) and temperature [8,20–22,27,50], to our knowledge, this process has not yet
been linked to moisture change in satellite-based RE studies at large scales and with a high resolution.
Our findings reveal that Reref has a significant linear relation with LSWImean in both the Tibetan and
Inner Mongolian grasslands (Figure 3, p < 0.01), which is also supported by another recent study in
northern China [24]. Considerable improvement was found in the explanation of Reref (12%, Table 4)
in the temperate grasslands by the inclusion of the moisture effect, while the improvement is relatively
small (4%) in the alpine grasslands due to the colinearity of plant biomass and soil moisture [62].

Moisture also exerts significant influence on the seasonal dynamics of RE in northern China’s
grasslands (Figure 4), which further explained a large proportion of RE in the arid and semi-arid
vegetation types (Table 5). Obvious gaps would be found in the performance between the model
without fw and the model with fw for the arid and semi-arid ecosystems. The simulated RE with
fw has a higher correlation coefficient with observed values (R2 increased by 12–24%) and a smaller
bias from the observed values (RMSE reduced by 13–41%) in the desert steppe, typical steppe, and
alpine meadow steppe. Although various equations (e.g., linear, quadratic, parabolic, logarithmic,
exponential, and hyperbolic form) have been proposed to describe the response process of RE to
moisture [69,77,78], our findings reveal that the Michaelis-Menten equation is the most applicable
form for northern China’s grasslands, as the moisture content is hardly able to reach beyond field
capacity and toward saturation in these water-limited grasslands [62,66]. Therefore, the process of the
steep decline in RE at very high moisture levels could be ignored, while the remaining two phases, i.e.,
the strong increase at low moisture levels and the plateau of RE in response to a broad range of near
optimum water contents, agree well with the typical Michaelis-Menten-shaped curve.

Table 5. Comparison of model performance between the model without fw and the model with fw for
each vegetation type.

Vegetation Type Model without fw Model with fw

R2 RMSE (g C m−2 day−1) R2 RMSE (g C m−2 day−1)

Typical steppe 0.68 0.70 0.74 0.61
Desert steppe 0.78 0.22 0.97 0.13

Meadow steppe 0.94 0.35 0.95 0.34
Alpine Kobresia meadow 0.75 1.09 0.78 0.93
Alpine meadow steppe 0.71 0.21 0.81 0.16
Alpine swamp meadow 0.69 0.77 0.72 0.74
Alpine shrub meadow 0.86 0.74 0.88 0.72

4.3. Model Applications and Limitations

Our model was developed with a robust biological basis with long-term and inter-sites
observations, and it performed well in estimating RE for northern China’s grasslands solely driven
by MODIS products. The main advances introduced by this model are the better representation of
the Reref process and the comprehensive consideration of moisture effect combined with temperature
and productivity effects on RE. The derived parameters reported in Table 2 may be considered as
an optimized parameterization for the application of the model at a regional scale. Our model may
facilitate the simulation of RE at larger spatial scales with a high temporal resolution and could also
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be combined with the satellite-based GPP models or MODIS-retrieved GPP products to conduct a
regional-scale NEE simulation.

However, the further application of our model at a larger scale probably has several limitations:
(1) The spatial variability (Reref ) is explained to a relatively lower degree compared to the temporal
variability (f (T,W,P)). Since RE is also influenced by a number of other biotic and abiotic factors, such
as age of the ecosystem [57], nutrient availability [79], and acclimation and disturbance effects, we
expect that more comprehensive information could be incorporated in the model to better represent
the variations of Reref ; (2) Although the satellite-derived VIs can to some extent reflect the impacts
of GPP on respiration [80,81] and have also been widely used to explain the seasonal variation in
Rs as VIs are related to soil carbon through litter input [16,82,83], they are still difficult to mirror in
terms of the influence of the belowground organic matter on RE; (3) The performance of our model
for other vegetation types or in other regions needs to be validated in further study. Without further
testing, the model is strictly applicable to similar ecosystems (i.e., temperate and alpine grassland
ecosystems). Along with the development of satellite algorithms for soil moisture, plant biomass,
nutrient availability, human activity, and so on, we will optimize the model to improve its accuracy.

5. Conclusions and Implications

A statistical-mechanistic model driven by remote-sensing data was formulated for simulating
the spatial and temporal variability of RE. The effect of plant productivity, temperature, and moisture
were comprehensively considered using the publicly available MODIS products EVI, LST, and LSWI,
thereby yielding a better performance for the RE simulation across seven vegetation types in the
Tibetan alpine grasslands and Inner Mongolian temperate grasslands. The temporal variations as
well as the spatial patterns of RE in northern China’s grasslands were well reproduced by the model.
The inclusion of LSWI in the Reref and the seasonal dynamics of RE significantly improved the model
performance in arid and semi-arid ecosystems. Our results suggest that a good representation of the
spatial process and moisture effect on RE should be considered in the next-generation satellite-based
RE models.

Biotic and climatic control over RE is different for temporal and spatial processes. Plant productivity
and moisture mainly contribute to the spatial variation of RE in northern China’s grasslands. The influence
of moisture on the spatial pattern of RE is stronger in the temperate grasslands than in the alpine grasslands.
Temperature plays a minor role in regulating the spatial pattern of RE. In contrast, temperature tends to
be more important in controlling the seasonal patterns of RE in northern China’s grasslands, whereas
in the temperate grasslands of Inner Mongolia, moisture exerts strong impact on the seasonal variation
of RE, almost equally important as temperature. These conclusions drawn from the Tibetan and Inner
Mongolian grasslands, on behalf of the alpine grasslands and Eurasian temperate grasslands across the
word, can provide valuable information for large–scale estimates of RE and better understanding the
response of RE to climate change in grassland ecosystems.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/10/1/149/s1.
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