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Abstract: Focused on the issue that conventional remote sensing image classification methods have
run into the bottlenecks in accuracy, a new remote sensing image classification method inspired
by deep learning is proposed, which is based on Stacked Denoising Autoencoder. First, the deep
network model is built through the stacked layers of Denoising Autoencoder. Then, with noised input,
the unsupervised Greedy layer-wise training algorithm is used to train each layer in turn for more
robust expressing, characteristics are obtained in supervised learning by Back Propagation (BP) neural
network, and the whole network is optimized by error back propagation. Finally, Gaofen-1 satellite
(GF-1) remote sensing data are used for evaluation, and the total accuracy and kappa accuracy reach
95.7% and 0.955, respectively, which are higher than that of the Support Vector Machine and Back
Propagation neural network. The experiment results show that the proposed method can effectively
improve the accuracy of remote sensing image classification.

Keywords: deep learning; stacked denoising autoencoder; Back Propagation neural network; land
cover classification

1. Introduction

Remote sensing image classification has always been a hot spot in remote sensing technology.
It refers to the process of assigning each pixel in the remote sensing image to a semantic interpretation
of the land cover or land use category. With the rapid increase in the amount of remote sensing image
data and the gradual improvement in resolution, remote sensing image classification technology plays
an increasingly important role in urban planning, environmental protection, resource management,
mapping, and other fields. In general, remote sensing image classification is mainly divided
into parametric and nonparametric methods [1]. Since parametric classifier requires knowing the
distribution of data in advance, this is often difficult to achieve in remote sensing images. Therefore,
the nonparametric classifier has been widely used, including artificial neural network, expert system,
Support Vector Machine (SVM), decision tree, and so on [2–6]. All of the above methods, however,
require analysis and extraction of a manually designed feature, and the overall classification accuracy
is to be improved.

In recent years, with the difficulty in training problem of the deep neural network successfully
solved by Hinton et al. [7,8], deep learning has widely concerned researchers, and has gradually
been an upsurge in internet big data and artificial intelligence. The deep neural network is used to
simulate the multi-layer structure of the human brain, abstract the original data layer by layer, and
finally obtain the features suitable for classification. Today, deep learning has achieved great success in
handwriting character recognition, speech recognition, and other fields, and it also provides a new
idea for remote sensing image recognition technology. Presently, Hinton [9] used the DBN model to
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realize the road recognition of airborne remote sensing images. Wang et al. [10] used SAE to extract
water from remote sensing images. Tang et al. [11] used a deep neural network for ship detection.
Convolution neural networks have been widely used in remote sensing for scene classification [12],
image segmentation [13] and target classification in SAR data [14], and recurrent neural network is
utilized for learning land cover change [15]. Stacked Denoising Autoencoder (SDAE), an improved
model of SAE, has made outstanding achievements in areas such as speech recognition [16] and other
domains. Its excellent capacity for feature abstraction can be also utilized in remote sensing image
classification so as to reach the higher accuracy just like it did in other domains. However, it has not
been found that SDAE is used for relevant research of remote sensing classification.

In this paper, a remote sensing image classification method based on SDAE is proposed and
verified by GF-1 remote sensing data. The experiment results show that the proposed method can
achieve better classification effect compared with SVM and BP neural network.

2. Stacked Denoising Autoencoder Model

Stacked Denoising Autoencoder was proposed by Pascal Vincent el al. in 2010 [17], the core
idea of which is to add the noise through each layer of the encoder input to train and learn more
robust feature expression. From the structural point of view, SDAE is composed of a multi-layer of
unsupervised denoising autoencoder network and a layer of supervised BP neural network. Figure 1
is the schematic of SDAE.
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The learning process of SDAE has two steps: unsupervised learning and supervised learning.
First, unlabeled samples are used for denoising autoencoder’s greedy layer-wise training, in which
raw data is used to feed the first layer of DAE for unsupervised training, and then the parameter w(1)

of the first hidden layer is obtained. In each subsequent step, the front k− 1 trained layers as input are
used to train the kth layer and obtain the parameter w(k). The weight from training of each layer is
taken as the weight of the final deep network’s initialization. Second, BP neural network with labeled
data is carried out for supervised learning. While getting parameters of the associated feature and
category of the last layer, the parameters of the entire network are fine-tuned by error back propagation
so that the parameters converge to the position that is in or near the global optimum.
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2.1. Denoising Autoencoder

Autoencoder is a kind of unsupervised three-layer neural network [18], which consists of two parts
of encoder and decoder, including an input layer, a hidden layer, and an output layer. The network
structure is shown in Figure 2.Remote Sens. 2018, 10, 16  3 of 11 
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The role of the encoder is to map the input vector to the hidden layer and then get a new feature
expression. The function is expressed as follows:

y = f (x) = s
(

W(1)x + b(1)
)

(1)

where x ∈ Rd×1 is input vector, d is the dimension of the input data, y ∈ Rr×1, r is the number of
hidden layer units, W(1) ∈ Rr×d is the input weight for the hidden layer, and b(1) ∈ Rr×1 is the input
bias for the hidden layer. s is the activation function, which is usually non-linear. The commonly used
activation functions are sigmoid function s(x) = 1

1+e−x and tanh function s(x) = ex−e−x

ex+e−x .
The role of the decoder is to map the expression y of the hidden layer back to the original input.

The function is expressed as follows:

x = g(y) = s
(

W(2)y + b(2)
)

(2)

where W(2) ∈ Rd×r, b(2) ∈ Rd×1. Thus, the reconstruction error for each data is

L = ‖x− g( f (x))‖2 (3)

Define the cost function as
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where x(i) is the ith sample, W(l)
ji is connection weight between the ith unit of the lth layer and the jth

unit of the (l + 1)th layer, N is the number of samples, and Sl is the number of units in the lth layer.
The optimal solution W and b of the model can be obtained by the error back propagation and the

batch gradient descent algorithm.
Denoising Autoencoder (DAE) is based on the autoencoder. Noise (Gaussian noise generally,

or setting the data to zero randomly) will be added to the training data, and the autoencoder is
forced to learn to remove noise so that uncontaminated input data can be obtained. In the case of
corrupted input, the autoencoder can find more stable and useful features, which constitute a more
advanced description of the input data, and enhance the robustness of the entire model. The principle
of denoising training is shown in Figure 3:
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In general, we only need to randomly set the units in x to zero according to the noise figure
k (k ∈ [0, 1]), and then x1 will be obtained. The method of solving the parameters is the same as that
of the autoencoder.

2.2. BP Neural Network

The BP neural network proposed by scientists Rumelhart el al. in 1986 [19] is a multi-layer
feedforward network trained by an error back propagation algorithm. In this paper, we use the
BP neural network for supervised classification of the features learned by DAE with labeled data.
The feature vector can be associated with the corresponding label. At the same time, through the
error back propagation, the parameters of the DAE will be fine-tuned, so that the entire network
can converge further. The training of the BP neural network is mainly divided into two processes:
forward propagation and error back propagation. First, the input feature vector is calculated in the
forward direction, and the predicted category is obtained at the output layer. Then, the predicted
category is compared with the actually corresponding category to get the classification error. After this,
the parameters of the BP neural network are trained by error back propagation algorithm, and the
parameters of DAE in each layer will be fine-tuned.

In the process of error back propagation, the residual δ (which denotes the contribution to the
error) of each layer is calculated first. For each output unit i of the output layer, the formula of δ is

δi = ai(1− ai)(ai − yi) (7)

For the other hidden layers, the formula of δ is

δl
i = al

i

(
1− al

i

) Sl+1

∑
j=1

W l
jiδ

l+1
i (8)

where l is the lth layer of network, Sl+1 is number of the neurons of the (l + 1)th layer, al
i is the output

value of the ith unit of the lth layer.
After calculating the residuals of each layer, tune the parameters of the SDAE network layers

according to Equations (9) and (10), α is the tuning coefficient.

W l
ji = W l

ji − αal
iδ

l+1
i (9)
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bl
i = bl

i − αδl+1
i (10)

3. Remote Sensing Image Classification Method Based on SDAE

The purpose of remote sensing image classification in this paper is determining every pixel of
image into a land cover category, and the result is supposed to be consistent with the ground truth.
Because of the spatial correlation between each pixel and its neighboring pixels, such as texture, shape,
etc., we use a S× S square image block centered on the point to be classified as the input of SDAE,
which can avoid the interference of noise (Gaussian noise, speckle noise, and so on) with classification.
The image block contains a variety of information such as spectrum, texture, shape, and so on. SADE
can implicitly learn these features and use them for classification without the manual extraction of
features. The larger the S is, the more information the image block contains, which is more conducive
to classification. However, when the S is too large, there may be a variety of objects in an image block
to affect the classification results. Based on the resolution of the experimental data, we choose the
4-band gray value of the 3× 3 image block as the input for SDAE’s learning. So, the dimension of
the input vector is 3× 3× 4. The label of each image block is a vector whose dimension is the total
number n of categories. Each node of the vector only takes two values: 0 and 1. If the image block
belongs to the mth category, the mth number of the vector is set to 1, and the others are 0. Similarly,
if the mth number of the output vector of SDAE is the largest, it denotes that the input image block is
classified as the mth category. The process of our method is shown in Figure 4.
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4. Results and Discussion

4.1. Experimental Data

In this paper, GF-1 remote sensing data is adopted, and the image resolution is 8 m (4-band in total).
The study area is Qichun County, Hubei Province. The geographical coordinates are 115.6 degrees
east longitude and 30.2 degrees north latitude. The main categories of this land cover are forest, grass,
water, bare land (BL), architecture (ARC), sand ground (SD), crop, and river shoal (RS). BL mainly
refer to soil or sparsely vegetated ground. The difference between SD and RS is that SD is above water
and RS is under water. The ground truth is obtained manually using Google Earth. Experiment data
is a 4548× 4544 pixels image which is divided into two disjoint parts: one part is testing area that is
formed by two 300 × 300 image patches with different terrain, and the other part is the rest of image
that is used for training. The training and testing areas are separated to validate the robustness of
the proposed approach. The experimental training samples are randomly selected from the training
area with a total of 9410 blocks, of which the number of samples belonging to each object category is
positively correlated with the actual number of such objects of this category. After the model trained,
two 300× 300 areas that are called testing area, above, are selected from the original image as the
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test image. The one area is flatland, the other is mountainous area, and 4800 points of each area are
randomly and uniformly selected for the confusion matrix’s construction to evaluate the accuracy.

4.2. Evaluation Index for Classification Accuracy

In general, the confusion matrix is used to evaluate the classification accuracy of remote sensing
images. The confusion matrix is shown below.

M =


m11

m21

m12

m22

· · ·
· · ·

m1n
m2n

· · ·
mn1

· · ·
mn2

· · ·
· · ·

· · ·
mnn

 (11)

where mij is the number of that the pixel of the actual object category i in the test area is assigned to
the category j. n is the total number of categories, and mii is the total number of that pixels belonging
to the category i are correctly classified.

In this paper, we use the overall accuracy and kappa coefficient to evaluate the classification
accuracy. The expression of the overall accuracy is

OA =
∑n

i=1 mii

∑n
j=1 ∑n

i=1 mij
(5)

From Equation (12), it can be seen that the magnitude of the overall accuracy is only affected by
the diagonal elements, and it is more likely to be affected by categories that contain more elements, so it
is not sufficient to comprehensively evaluate the classification accuracy of all categories. Researchers
have proposed the comprehensive index of classification accuracy’s evaluation, which is the kappa
coefficient that utilizes all elements of the confusion matrix and reflects the consistency between
classification result and ground truth. The expression of kappa coefficient is

K =
N ∑n

i=1 mij −∑n
i=1 mi+m+i

N2 −∑n
i=1 mi+m+i

(6)

where N is the total number of pixels, n is the total number of categories, and mi+ and m+i represent the
sum of the elements of the ith row and the sum of the ith column of the confusion matrix, respectively.

4.3. Results and Discussion

In our experiment, we study the following aspects:

1. The impact of the amount of hidden layers in the network and the neural units per layer on
remote sensing image classification results;

2. The impact of the denoising process on classification ability of the model;
3. Comparison with SVM and the conventional artificial neural network.

4.3.1. The Impact of the Amount of Hidden Layer and the Neurons per Layer

The role of SDAE is to extract new features by multi-layer abstraction of original data. With the
increase in the number of layers, SDAE can use the limited neural units to train to get more complex
model, so as to learn more high-order features. These abstract features can describe the target more
fundamentally. When the number of layers is too large, it is easy to overfit that the target is described
with an overly complex model. Therefore, the selection of the network depth depends on the complexity
of the actual condition. There is currently no guiding principle for the selection of the number of
neurons in each hidden layer. When the number of neurons in hidden layer is small, the characteristic of
the data cannot be adequately learned, while the large number of neurons will also result in overfitting
and a large increase in the learning time of the network. In this paper, we choose 1 to 4 hidden layers
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in the network in this experiment. The number of neurons per layer is selected from 60 to 600, noise
figure k is 0.5. The experimental results are shown in Figure 5.Remote Sens. 2018, 10, 16  7 of 11 
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As shown in Figure 5, when the number of hidden layers is 2, the classification result is better.
At this point, we use the SDAE network with 2 hidden layers and change the number of neurons per
layer to do the experiment again. The experimental results are shown in Figure 6, where it can be seen
that when the number of units in each hidden layer is 180, the overall accuracy and Kappa accuracy
is largest. In addition, with the increase of the number of hidden layer units, the training time will
increase rapidly.
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4.3.2. The Impact of Denoising Pre-Training on Classification Ability of the Model

In the pre-training process of SDAE, in order to learn more useful features from the original data
and enhance the robustness of the model, noise was manually added to the DAE input of each layer.
Specifically, according to the proportion k, the input unit of DAE is randomly set to 0 in each training
process, while AE of each layer in SAE directly uses training data. In order to explore the effect of
denoising pre-training and the impact of different levels of noise added to the training data on the
classification ability of the model, we choose a different k ranging from 0 to 1 for the experiment and
compare the experimental results with SAE. The selected SAE model has the same network structure as
that of SDAE model, the number of hidden layers is 2, and each layer has 180 units. The experimental
results are shown in Figure 7.
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In Figure 7, when k is 0, the ordinate value is the classification accuracy of SAE. We can conclude
that a reasonable level of denoising pre-training significantly improves the classification accuracy of
the model. When the noise figure k is 0.2, the classification accuracy of SDAE is the highest, and when
it is greater than 0.9, the accuracy is lower than that of SAE, which indicates that noisy training data
will reduce the learning ability of the model and result in the decrease of classification accuracy.

4.3.3. Comparison with Conventional Remote Sensing Images Classification Method

According to the experimental result of Sections 4.3.1 and 4.3.2, it can be determined that when
the number of SDAE’s hidden layers is 2, the number of units of each layer is 180, and the denoising
coefficient is 0.2, classification performance is optimal. In order to verify the superiority of the proposed
method, the classification results are compared with that of conventional methods: the SVM and BP
neural network. The SVM model is established by the open source libsvm toolbox, the radial basis
function is selected as kernel function, the optimal gamma parameters are obtained by grid search
and cross validation, and the classification results at this time are taken as the final results. The search
range in experiment is 0.1 to 5, and the optimal gamma is 0.6. The BP neural network uses the same
network structure as SDAE, with a topology of 36-180-180-8. The experimental results are shown in
Table 1. The results of remote sensing image classification based on SDAE are obviously better than
the other two methods, whether it is evaluated according to OA accuracy or KAPPA accuracy.

Table 1. Comparison of classification results among different methods.

Area Class SDAE SVM BP

Flatland area
OA/% 95.7 94.1 92.4
KAPPA 0.955 0.936 0.921

mountainous area
OA/% 96.2 94.2 93.7
KAPPA 0.958 0.937 0.936

Computation Time/s 51.2 47.1 58.4

Compared to the BP neural network, the initial connection weights of the SDAE network are
obtained by layer-wise pre-training rather than random initialization. By pre-training, the initial
connection weights are in the vicinity of the optimal value, and then, through fine-tuning, the weights
can converge to the ideal value. The BP neural network’s random initialization easily results in the fact
that parameters are difficult to converge to ideal value or even fall into the local minimum value in the
training process, which leads to training failure. This is more easily reflected in the training of the deep
network, so the classification results of SDAE are better than those of the BP neural network. SDAE has
stronger classification ability than SVM because its deep nonlinear network abstracts the original data
layer by layer and gets the features that can describe the nature of the object better, which makes them
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easily classified. The robustness of the extracted features is further increased by denoising pre-training
of DAE per layer, and the spatial features of the remote sensing data are more fully excavated. In terms
of time, SDAE takes more than SVM because almost all of deep network models require a large number
of iterations to make the parameters converge to the optimal value.

Tables 2 and 3 are the confusion matrixes from classification results using SDAE for flatland area
and mountainous area respectively. It can be seen that in both results Water, Forest, BL, and Crop have
the classification accuracy over 96%, and that of ARC is only 88% and 90.3%. A considerable part of
ARC is wrong classified as SD. This is because different buildings have many ways of performance in
the image, and the features of some kinds of buildings are similar to that of sand ground.

Table 2. Confusion matrix of classification results using SDAE for a flatland area.

Class
Classification Result

Total Accuracy/%
Forest Water Grass RS BL SD ARC Crop

Forest 720 0 16 0 4 0 0 0 740 97.3
Water 0 452 0 2 0 0 2 0 556 99.1
Grass 4 2 686 0 4 2 8 4 710 96.4

RS 2 18 0 450 0 0 10 4 484 93.0
BL 0 4 2 0 742 2 8 0 758 97.9
SD 2 0 0 0 0 412 24 2 440 93.6

ARC 0 0 0 8 4 44 482 12 550 88.6
Crop 0 2 0 2 0 0 12 646 662 97.6
Total 728 478 704 462 754 460 546 668 4800 100

Table 3. Confusion matrix of classification results using SDAE for a mountainous area.

Class
Classification Result

Total Accuracy/%
Forest Water Grass RS BL SD ARC Crop

Forest 2287 8 45 0 7 0 4 1 2352 97.2
Water 0 31 0 0 1 0 0 0 32 96.9
Grass 14 0 826 0 4 0 8 4 856 96.6

RS 0 0 0 0 0 0 0 0 0 0
BL 3 1 5 2 588 0 9 3 611 96.2
SD 0 0 0 0 0 0 0 0 0

ARC 0 1 3 1 10 23 408 6 452 90.3
Crop 1 0 9 0 6 0 4 477 497 96.0
Total 2305 41 888 3 616 23 433 491 4800 100

Figure 8 shows the classification results of the flatland area by several methods. We can see that
compared with the SVM and BP neural network, DAE significantly reduces the number of pixels
that belong to BL, SD, or Crop, but wrongly classified them as the ARC category. In addition, the
classification accuracy of SD has been significantly improved, which indicates that the method based
on SDAE can better preserve the details of the objects than other conventional methods. Figure 9 is the
classification results of the mountainous area. It can be observed obviously that many ARC pixels are
wrongly classified as SD in the results of SVM and BP, but they are correctly determined by SDAE.



Remote Sens. 2018, 10, 16 10 of 12
Remote Sens. 2018, 10, 16  2 of 2 

 

 

 

Figure 8. Classification results of flatland area by several methods. Figure 8. Classification results of flatland area by several methods.

Remote Sens. 2018, 10, 16  9 of 11 

 

part of ARC is wrong classified as SD. This is because different buildings have many ways of 
performance in the image, and the features of some kinds of buildings are similar to that of sand ground. 

Figure 8 shows the classification results of the flatland area by several methods. We can see that 
compared with the SVM and BP neural network, DAE significantly reduces the number of pixels that 
belong to BL, SD, or Crop, but wrongly classified them as the ARC category. In addition, the 
classification accuracy of SD has been significantly improved, which indicates that the method based 
on SDAE can better preserve the details of the objects than other conventional methods. Figure 9 is 
the classification results of the mountainous area. It can be observed obviously that many ARC pixels 
are wrongly classified as SD in the results of SVM and BP, but they are correctly determined by SDAE.  

	
Figure 8. Classification results of flatland area by several methods. 

Forest
Water

Grass

RS

BL

SD

ARC

Crop

 
Figure 9. Classification results of mountainous area by several methods. Figure 9. Classification results of mountainous area by several methods.

5. Conclusions

In this paper, a remote sensing image classification method based on SDAE is proposed. First,
greedy layer-wise training is used for training every layer except the last of SDAE. This step is
unsupervised, and it is fed with image data without label. Noise is put into data so the model could be
more robust. Then, a back propagation algorithm is used for training the total network, the last layer
is trained, and others are fine-tuned. Finally, the SDAE model is used for determining the category
of every block in the test area, and accuracy assessment is done. With GF-1 remote sensing data in
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experiment, the SDAE model achieves better classification results than the classical model SVM and
BP neural network but also results in a larger time cost. Since the time cost will certainly constrain the
application of a large-scale and deep SDAE model, we will compare SDAE with other deep learning
methods in the future and try to use the parallelization framework to improve the accuracy and speed
of remote sensing image classification.
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