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Abstract: The Arctic sea ice cover has decreased strongly in extent, thickness, volume and age in recent
decades. The melt season presents a significant challenge for sea ice forecasting due to uncertainty
associated with the role of surface melt ponds in ice decay at regional scales. This study quantifies the
relationships of spring melt pond fraction (fp) with both winter sea ice roughness and thickness, for
landfast first-year sea ice (FYI) and multiyear sea ice (MYI). In 2015, airborne measurements of winter
sea ice thickness and roughness, as well as high-resolution optical data of melt pond covered sea ice,
were collected along two ~5.2 km long profiles over FYI- and MYI-dominated regions in the Canadian
Arctic. Statistics of winter sea ice thickness and roughness were compared to spring fp using three data
aggregation approaches, termed object and hybrid-object (based on image segments), and regularly
spaced grid-cells. The hybrid-based aggregation approach showed strongest associations because it
considers the morphology of the ice as well as footprints of the sensors used to measure winter sea ice
thickness and roughness. Using the hybrid-based data aggregation approach it was found that winter
sea ice thickness and roughness are related to spring fp. A stronger negative correlation was observed
between FYI thickness and fp (Spearman rs = −0.85) compared to FYI roughness and fp (rs = −0.52).
The association between MYI thickness and fp was also negative (rs = −0.56), whereas there was
no association between MYI roughness and fp. 47% of spring fp variation for FYI and MYI can be
explained by mean thickness. Thin sea ice is characterized by low surface roughness allowing for
widespread ponding in the spring (high fp) whereas thick sea ice has undergone dynamic thickening
and roughening with topographic features constraining melt water into deeper channels (low fp).
This work provides an important contribution towards the parameterizations of fp in seasonal and
long-term prediction models by quantifying linkages between winter sea ice thickness and roughness,
and spring fp.

Keywords: Arctic; sea ice thickness; roughness; melt pond fraction; object-based image analysis
(OBIA)

1. Introduction

Due to its sensitivity to fluctuations in climate, Arctic sea ice is often pointed to as a clear indicator
of climate change. It has been well established that in recent decades the Arctic sea ice cover has been
decreasing in extent, thickness and volume [1,2]. These changes are accompanied by a longer melt
season and a transition from a mainly multiyear ice (MYI) regime to a first-year ice (FYI)-dominated
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system [3]. Currently, climate models are capturing the observed sea ice decline; however large model
uncertainties associated with underrepresentation of internal variability and key physical processes
remain [4]. Improved characterization of physical processes in forecast models will advance our
understanding of how the sea ice cover is likely to evolve in the future. Key aspects of sea ice decay
that are poorly represented in climate models are melt pond formation and evolution. Melt ponds
are shallow, meter-scale features that form on sea ice during the spring/summer melting periods,
decreasing the surface albedo and enhancing mass and energy exchanges between the atmosphere,
sea ice cover and ocean [5]. The current understanding of melt evolution is based primarily on detailed
in situ observations, and macro-scale satellite-based studies necessary to initialize the models are
hindered by pervasive cloud cover during the spring and summer months.

It is important to understand and predict melt pond evolution at the macro-scale, because the shift
in ice type at the pan-Arctic scale from MYI- to FYI-dominated has potentially profound consequences
on the climate system, particularly from an energy balance perspective [6]. The much lower surface
albedo of melt ponds (0.2–0.4) compared to the surrounding ice (0.5–0.7) increases energy transfer to
the upper ocean layers [6,7]. Melt ponds on FYI transmit four times more incident light than snow
free ice, which allows for and encourages large under-ice phytoplankton blooms [8]. Melt ponds have
also been shown to enhance the delivery of legacy organochorine pesticides (OCPs) and current-use
pesticides (CUPs) into the upper ocean layers [9]. This process is strongly favored for FYI, because it
exhibits large expanses of melt ponds (larger surface area for “atmospheric scrubbing”) and higher
brine concentrations, which allows for larger and more numerous drainage channels. Finally, spring fp
has been linked with subsequent September minimum sea ice extent suggesting a possible positive
feedback mechanism where lower melt pond surface albedo promotes increased melting, thus further
increasing melt pond fraction and enhancing energy absorption into the sea ice cover [10].

Melt pond formation and evolution vary considerably between FYI and MYI, with fine-scale
observations pointing to MYI areal melt pond fraction (fp) being dominated by surface roughness,
whereas ponding is relatively unconstrained on FYI, and fp is higher [11]. FYI and MYI fp evolution can
be broken down into 4 stages: (1) topographic control; (2) hydrostatic balance; (3) ice freeboard control;
and (4) fall freeze-up or ice break-up [12]. Stage 1 begins with snow melt and melt pond formation and
is characterized by positive hydraulic head and a rapid increase in fp that concludes with a seasonal
peak in fp. The undulating topography of MYI restricts melt pond expansion and constrains melt
water into deeper and narrower channels leading to peak fp of approximately 0.4 compared to FYI,
which can reach an fp of greater than 0.7 [13]. During Stage 2, variations in fp for both FYI and MYI
are dominated by diurnal cycles in hydrostatic balance between melt water production and drainage.
Melt ponds form interconnected networks that enhance lateral melt water flow to macroscopic flaws
such as ice floe edges, cracks and seal holes (the latter in FYI only) [13]. Through preferential melting,
melt ponds continue to deepen, lateral flow decreases, vertical channels begin to dominate drainage
and a hydraulic head of zero marks the end of Stage 2. During Stage 3, the ice continues to thin and
freeboard decreases. Finally, Stage 4 marks the complete melt out or break-up of FYI and beginning of
the open water season. The ice that remains through Stage 4 until subsequent fall freeze-up becomes
MYI [8].

A lack of observations over large spatial and temporal scales, as well as the uncertainty in available
observations, are major challenges for understanding key sea ice properties such as ice thickness,
roughness, as well as fp and their macro-scale relationships. fp observations are mainly obtained using
medium- to low-resolution satellite optical imagery such as Terra/Aqua Moderate Resolution Imaging
Spectroradiometer (MODIS), the ENVISAT Medium Resolution Imaging Spectrometer (MERIS) and
the Landsat-7 Enhanced Thematic Mapper Plus (ETM+). Classification of MODIS data using a spectral
unmixing algorithm has shown promise for estimating fp for the entire Arctic [14]. Although these
data allow for estimating fp over large spatial scales, they lack in spatial resolution and are limited by
pervasive cloud cover at high latitudes. Significant research has been dedicated to retrieval of fp using
passive microwave and SAR data, which operate independently of sunlight and cloud cover [15,16].
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With the emergence of high-resolution remote sensing imagery, it has become possible to isolate objects
of interest that are composed of multiple pixels. Object-based image analysis (OBIA) aims to isolate
discrete features of interest from remotely sensed data using image segmentation techniques that date
back to the 1970s [17]. Segmentation is the process of generating accurate, representative and spatially
appropriate objects from an image. Once created, these objects can be integrated into statistical analyses
and image classification. OBIA builds off more commonly used remote sensing techniques such as
edge-detection, feature extraction and image classification to create vector representations of real-world
geographic entities such as agricultural fields, river and ice floes [18]. These vectorized features are
easily integrated into analyses by providing physically meaningful extents for data aggregation and
further quantitative study. Unlike pixel-based image analysis, OBIA addresses the modifiable areal unit
problem, which is a source of statistical bias associated with the shape and scale of data aggregation
features. OBIA enables analysis at appropriate, and non-arbitrary spatial scales representative of
physical boundaries such as extents of individual sea ice floes [19]. OBIA can also introduce a variety
of contextual (e.g., land use type, ice type), texture (e.g., homogeneity, entropy, and dissimilarity)
and shape (e.g., area) variables compared to pixel-based analysis, which only provides spectral
information [18]. OBIA has been shown to improve iceberg detection using wide-swath SAR images
in the Amundsen Sea [20].

It has been shown that spring melt pond fraction can be used to accurately forecast September
minimum sea ice extent. This result is explained by the following positive feedback mechanism:
increase in melt pond fraction reduces the surface albedo; a lower albedo leads to more melting;
increased melting leads to a further increase in melt pond fraction [10]. In addition, it is generally
understood that sea ice that is thin and has low surface roughness in the winter will have a high
spring fp and ice that has been dynamically thickened and roughened will have a low fp [11] (Figure 1).
This study aims to establish a link between winter conditions and spring fp in order to evaluate to
what extent the ice cover is pre-conditioned for spring melt. The goal of this paper is to quantify
relationships between winter sea ice thickness, roughness, and spring fp for an area comprising
a mixture of landfast FYI and MYI in the Canadian Arctic Archipelago (CAA). Explicitly we first
investigate the macro-scale relationships between winter sea ice thickness and roughness, and spring
fp; followed by an investigation of how these relationships differ between FYI and MYI.
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Airborne winter snow plus sea ice thickness and surface roughness transects and satellite 
GeoEye-1 optical and RADARSAT-2 (RS-2) SAR images were collected in Victoria Strait region of the 

Figure 1. Schematic of our melt pond formation hypothesis derived primarily from in situ studies of
sea ice evolution. Top panel shows a cross-section of pre-melt conditions of thin/smooth (left) and
thick/rough (right) sea ice prior to melt. Bottom panel shows a cross-section during spring conditions.
Left panel shows smooth/level ice dominated by extensive melt ponds. Right panel shows lower melt
pond coverage due to high surface topography. Blue and grey bar in the center illustrates a bird’s-eye
view of melt pond extent.
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2. Materials and Methods

2.1. Study Area

Airborne winter snow plus sea ice thickness and surface roughness transects and satellite
GeoEye-1 optical and RADARSAT-2 (RS-2) SAR images were collected in Victoria Strait region of the
CAA during April and June 2015 (Table 1; Figure 2). Victoria Strait is part of the Northwest Passage in
the CAA, which typically contains a mixture of FYI and MYI. The sea ice in the CAA is not strongly
affected by wind driven movement because the ice is landfast for six to eight months of the year [21].
Furthermore, wind driven movement of sea ice is restricted by the narrow channels that dominate
the CAA [22]. During the melt season, MYI drifts into and subsequently through the CAA from the
central Arctic during late summer and early fall and becomes locked in place by FYI that forms in the
fall and early winter [23]. This makes for an ideal study area for understanding the evolution of sea ice
from winter to summer conditions, without the need for tracking mobile ice.
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Figure 2. Map of study area located in the CAA depicting the locations of RADARSAT-2 (RS-2) image
acquisitions shown in purple and gray for FYI-dominated (FYID) and MYI-dominated (MYID) areas
respectively. Corresponding GeoEye-1 optical image coverages for FYID are shown in green and MYID
zone are shown in red. The track of airborne winter snow plus sea ice thickness and surface roughness
point measurements is shown in black. The location of in situ snow depth measurements is shown by a
red star in the outset map.

Table 1. Description of the datasets.

Parameter Instrument Measurement
Approach Platform Acquisition

Dates Description

Snow plus Ice
Thickness EM-bird

Electromagnetic
induction and
laser altimeter

Airborne 19 April 2015
Spatial resolution: 6.0 m

Swath width: ~120 m
Accuracy: 0.15 m

Ice Surface
Roughness

Riegel Laser
Measurement
System Q120

2D laser
scanner Airborne 19 April 2015

Spatial resolution: 1.2 m
Swath width: 105 m
Accuracy: 0.025 m

Melt Pond
Fraction (fp) GeoEye-1 Multispectral

(VIS/NIR) Satellite
22 June 2015
23 June 2015
25 June 2015

Spatial resolution: Panchromatic
(0.5 m), Multispectral (2.0 m)
Spectral resolution: RGBNIR

Objects RADARSAT-2 C-band
frequency SAR Satellite 23 April 2015

25 April 2015

23 April 2015
Pixel Spacing (azimuth × range):

5.1 × 4.7 m
Incidence angle: 40.2◦–41.6◦

Polarization: Fine Quad
25 April 2015

Pixel spacing (azimuth × range):
4.9 × 4.7 m

Incidence angle: 22.3◦–24.2◦

Polarization: Fine Quad
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The FYI-dominated (FYID) zone (Figure 3, left) is characterized by thinner and smoother ice
compared to the MYI-dominated (MYID) ice zone (Figure 3, right). The majority of the ice within the
FYID zone is under 2.5 m thick, compared to the MYID zone, which is dominated by ice thicker than
2.5 m. Similarly, the FYID zone is smoother than the MYID, with areas of thicker ice corresponding to
rougher ice in both areas.
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Figure 3. FYID (left) and MYID (right) ice zones. The first image in each panel is a winter RS-2 SAR
image of the overlain by winter snow plus sea ice thickness measurements. The second image depicts
the co-located spring GeoEye-1 optical scene of melt pond covered sea ice overlain by surface roughness
measurements. Bottom panels show zoomed in data within the extents of the red polygons directly
above each panel.

2.2. Data and Pre-Processing

Airborne winter snow plus sea ice thickness and surface roughness data were acquired during a
late winter survey flown on 19 April 2015 [24] (Table 1; Figure 2). The survey was conducted in late
April in order to capture the late winter conditions indicative of maximum sea ice thickness and reduce
the amount of surface variability associated with atmospheric processes such as surface erosion and
wind-driven snow redistribution [24]. The snow plus ice thickness was obtained using an airborne
electromagnetic (EM) thickness sounding instrument [25]. The EM instrument induces an EM-field in
the conductive sea water under the resistive sea ice from which the height of the instrument above the
ice/water interface can be derived [25]. A single-beam laser altimeter included in the EM instrument
measures the height of the system above the top of the snow cover. The difference between those
two measurements is the total thickness, i.e., snow plus ice thickness. It is not possible to distinguish
between snow and ice thicknesses because both snow and ice are very resistive. Therefore snow
plus ice thickness is hereafter referred to as ice thickness [24,25]. This strongly oversamples the ice
because EM measurements have a footprint of approximately 3 to 4 times the instrument height
above the ice. With typical instrument heights below 30 m this corresponds to a footprint of up to
120 m. The sampling rate was 10 scans per minute therefore thickness observations were obtained
approximately every 6 m.
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A Riegel Laser Measurements Systems (Riegel LMS) Q120 near infrared laser scanner was used to
collect 2D swaths of relative surface elevation measurements. Each scan line was then approximated
with a flat surface hyperbolic equation and surface roughness was calculated from each scan line as the
standard deviation of the difference between measured and fitted surfaces [26]. The obtained surface
roughness therefore corresponds to root-mean-square (RMS roughness along the approximately 105 m
wide swath perpendicular to the flight direction. The scanning rate was 50 lines per second, resulting
in surface roughness measurements of approximately 1.2 m apart.

Two high-resolution panchromatic (0.5 m) and multispectral (2.0 m) optical image bundles of
spring melt pond covered FYID (23 × 5.3 km) and MYID (26.5 × 5.2 km) zones were acquired between
23 and 25 June, 2015 from the GeoEye-1 sensor (Figure 3). In order to combine the high spatial
resolution of the panchromatic imagery and high spectral resolution of the multispectral imagery,
image pairs were fused together using a Gram-Schmidt (GS) pan-sharpening algorithm. The GS
algorithm was chosen because it preserves the spectral and spatial integrity of the original imagery [27].
Pan-sharpened images were classified using a Maximum Likelihood (ML) supervised classification
algorithm to yield a binary output: ice (0) and pond (1). Classification accuracies were calculated using
confusion matrices built from a range of 50 to 96 samples representing homogeneous ice and melt pond
areas. This approach yielded overall accuracies of >99% with kappa coefficients of >0.9. The classified
images allowed for calculation of fp for regions of interest in the scene using the following equation:

fp =
∑ Pond Pixels
Total Count

(1)

where ∑ Pond Pixels represent the sum of pond pixels and Total Count is the total number of pixels
within the region of interest such as an image object or entire scenes. A flow chart depicting the
pre-processing chain and subsequent analyses is given in Figure 4.

2.3. Object Based, Hybrid and Grid-Cell Image Analysis

Two winter RS-2 Fine Quad-polarization (FQ) format SAR images of the FYID and MYID
zones were acquired between 23 and 25 April 2015 were used for segmentation into image objects
(Figure 4, left). The multiresolution segmentation approach implemented in the OBIA-driven software
eCognition (Trimble) was used for segmentation. This approach has been proven to be effective for
image segmentation related to cut block and tree crown delineation, classification of agricultural
landscapes, ship detection and sea ice studies [28–32]. Using a bottom up region merging approach,
objects are generated based on user defined spatial and spectral heterogeneity criteria, as well as a
scale criterion used to control object size. Spatial heterogeneity is related to shape of the object,
whereas spectral heterogeneity is variance of data within the object [33]. Emphasis was placed
on deriving a segmentation that yielded image objects displaying within-object homogeneity and
between-object heterogeneity and representing unique ice floes. To account for some uncertainty
in boundary delineation, multiple object sets were created by varying the scale parameter in the
segmentation algorithm. For the MYID zone, object features at the fine, medium and coarse scales
were delineated. For the FYID zone, object features at fine and medium scales were created. Due to a
lack of heterogeneity in the FYID zone, objects were not created at a coarse spatial scale. This was
necessary for calculating global FYI and MYI statistics regardless of whether objects originated in FYID
or MYID zones.
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Figure 4. Methods flow chart of RS-2 and GeoEye-1 image processing, segmentation, data aggregation,
and correlation and regression analyses. The calibrated, speckle filtered and georeferenced RS-2 SAR
image was segmented into image objects, with the objects used for further OBIA data aggregation.
The objects were also reduced in across-track width to 120 m to create hybrid objects.

Three different approaches for aggregating and deriving statistics of ice thickness, roughness,
and fp data were used (Figure 5). The first approach, object, used original image objects that intersected
the airborne track. The second approach, hybrid, used original image segmented objects intersecting
the flight line but also accounted for the across-track footprint of the airborne laser scanner (~105 m).
The hybrid objects were generated by reducing the extent of the original objects to an across-track
width of 120 m. The two approaches yielded a total of 61, 50 and 41 objects representative of MYI
floes from fine, medium, and coarse scale segmentation, respectively. Conversely, fine and medium scale
segmentation of FYI yielded 53 and 33 objects, respectively. Finally, the third approach involved the
overlay of grid-cells centered on the flight line. Two sets of grid-cell features were created for both
FYID and MYID zones, one with across-track widths of 120 m and along-track lengths of 120 m, and
one with across-track widths of 120 m and along-track lengths of 240 m. This yielded a total of 210
(120 × 120 m) and 103 (120 × 240 m) grid-cells features for the FYI zone, and 109 (120 × 120 m) and 56
(120 × 240 m) grid-cell features for the MYI zone. In order to avoid loss of data, grid-cells that were
dominated by FYI and located in the MYID zone were analyzed as FYI, and vice versa.

The average areas (and ranges) of FYI object segments at fine and medium spatial scales were
0.50 km2 (0.03–1.42 km2) and 1.35 km2 (0.25–5.08 km2), respectively, whereas the average areas of MYI
object segments at fine, medium and coarse scales were 0.29 km2 (0.03–0.92 km2), 0.44 km2 (0.04–1.19 km2)
and 0.63 km2 (0.04–1.97 km2), respectively. Hybrid objects were generated by decreasing across-track
extent of objects to 120 m. Thus, average areas of hybrid objects were smaller than the object segments,
with mean FYI segment areas of 0.05 km2 (0.002–0.16 km2) and 0.08 km2 (0.01–0.31 km2) for fine and
medium spatial scales, respectively. Average areas of MYI hybrid objects were 0.03 km2 (0.003–0.10 km2)
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at the fine scale, 0.04 km2 (0.01–0.14 km2) at the medium and 0.04 km2 (0.01–0.14 km2) at the coarse
spatial scales. The areas of individual grid-cells remained consistent at 0.014 km2 and 0.017 km2 for
120 m and 240 m kernels, respectively.

Remote Sens. 2018, 10, 37 8 of 21 

 

(0.01–0.14 km2) at the coarse spatial scales. The areas of individual grid-cells remained consistent at 
0.014 km2 and 0.017 km2 for 120 m and 240 m kernels, respectively. 

 

 

Figure 5. Example comparison of object (left), hybrid (middle) and grid-cell (right) data aggregation 
approaches. The left panel shows an example of a MYI object (outlined in red), which represents a 
homogeneous ice zone overlaid on the fp product. The fp product shows melt pond pixels in blue, and 
ice pixels in white. The gray line represents the track of thickness and roughness data, which intersects 
the object. Similarly, the middle panel shows a hybrid object (outlined in red) and the right panel 
shows 120 × 120 m grid-cells centered on the thickness/roughness track. The hybrid objects were 
created to account for the footprints of the thickness and roughness sensors. 

The three data aggregation approaches at varying spatial scales enabled the examination of 
relationships between winter sea ice thickness, roughness and fp, as well as the role of scale and 
aggregation approaches on those relationships. First, a 2000 point moving average was applied on 
the roughness data in an attempt to minimize the effects of snow roughness on the surface roughness 
measurements. 4000 points outside of both the FYID and MYID zones were used for the calculation 
of the moving average. Probability distributions of winter sea ice thickness, surface roughness, 
smoothed roughness, and spring fp were plotted for FYI and MYI, with fp values obtained using hybrid 
aggregation at the medium scale. For quantifying relationships, aggregated roughness and thickness 
metrics (minimum, maximum, mean, median and standard deviation (SD)) were each compared to 
fp within each aggregation feature. Spearman correlation coefficients were collected to assess the 
strength of relationships between thickness and roughness, thickness and fp, and roughness and fp for 
FYI and MYI. Spearman correlation was chosen because it is a non-parametric measure of association 
between two variables. An ordinary least squares (OLS) regression analysis was performed with 
roughness and thickness as independent variables, and fp as the dependent variable. For the OLS, a 
non-linear rational function was fitted to the thickness and fp data because it is more representative 
of the expected variation in fp. It is expected that fp will behave asymptotically when approaching 
values of 0 and 1, which will not be captured by a linear function. A rational function is beneficial for 
modelling physical processes because it allows for better fit of data with a relatively complex 
distribution, while retaining computational and structural simplicity associated with linear 
regression. A linear function was fitted to the roughness and fp data because of its representative fit 
and computational simplicity. 

3. Results 

3.1. Victoria Strait Thickness, Roughness and fp Distributions in 2015 

FYI was characterized by lower winter thickness and surface roughness, and higher spring fp 

compared to MYI (Figure 6). FYI winter sea ice thickness ranged between 1.6 and 5.5 m, with mean 
and median thicknesses of 2.1 and 1.9 m, respectively. Conversely, MYI thickness ranged between 

Figure 5. Example comparison of object (left), hybrid (middle) and grid-cell (right) data aggregation
approaches. The left panel shows an example of a MYI object (outlined in red), which represents a
homogeneous ice zone overlaid on the fp product. The fp product shows melt pond pixels in blue, and ice
pixels in white. The gray line represents the track of thickness and roughness data, which intersects the
object. Similarly, the middle panel shows a hybrid object (outlined in red) and the right panel shows
120 × 120 m grid-cells centered on the thickness/roughness track. The hybrid objects were created to
account for the footprints of the thickness and roughness sensors.

The three data aggregation approaches at varying spatial scales enabled the examination of
relationships between winter sea ice thickness, roughness and fp, as well as the role of scale and
aggregation approaches on those relationships. First, a 2000 point moving average was applied
on the roughness data in an attempt to minimize the effects of snow roughness on the surface
roughness measurements. 4000 points outside of both the FYID and MYID zones were used for
the calculation of the moving average. Probability distributions of winter sea ice thickness, surface
roughness, smoothed roughness, and spring fp were plotted for FYI and MYI, with fp values obtained
using hybrid aggregation at the medium scale. For quantifying relationships, aggregated roughness
and thickness metrics (minimum, maximum, mean, median and standard deviation (SD)) were each
compared to fp within each aggregation feature. Spearman correlation coefficients were collected to
assess the strength of relationships between thickness and roughness, thickness and fp, and roughness
and fp for FYI and MYI. Spearman correlation was chosen because it is a non-parametric measure
of association between two variables. An ordinary least squares (OLS) regression analysis was
performed with roughness and thickness as independent variables, and fp as the dependent variable.
For the OLS, a non-linear rational function was fitted to the thickness and fp data because it is more
representative of the expected variation in fp. It is expected that fp will behave asymptotically when
approaching values of 0 and 1, which will not be captured by a linear function. A rational function
is beneficial for modelling physical processes because it allows for better fit of data with a relatively
complex distribution, while retaining computational and structural simplicity associated with linear
regression. A linear function was fitted to the roughness and fp data because of its representative fit
and computational simplicity.

3. Results

3.1. Victoria Strait Thickness, Roughness and fp Distributions in 2015

FYI was characterized by lower winter thickness and surface roughness, and higher spring fp
compared to MYI (Figure 6). FYI winter sea ice thickness ranged between 1.6 and 5.5 m, with mean
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and median thicknesses of 2.1 and 1.9 m, respectively. Conversely, MYI thickness ranged between 1.8
and 6.7 m, with mean and median values of 2.9 and 2.7 m, respectively. The surface roughness on
FYI ranged between 0.02 and 0.81 m, with mean and median roughness values of 0.11 and 0.09 m,
respectively. Conversely, MYI surface roughness measurements ranged between 0.02 and 0.65 m, with
mean and median values of 0.19 and 0.17 m, respectively. Smoothed surface roughness (2000 point
moving average) shows increased separability between FYI and MYI. FYI smoothed surface roughness
values ranged between 0.08 m and 0.12 m with mean and median values of 0.09 m, whereas MYI
smoothed surface roughness values between 0.12 m and 0.24 m were observed with mean and median
values of 0.19 m. Finally, spring fp values were between 0.19 and 0.71 for FYI, and 0.12 and 0.77 for
MYI with mean values of 0.43 and 0.29 for FYI and MYI, respectively.
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Figure 6. Winter sea ice surface roughness (top left), smoothed surface roughness (top right), winter
sea ice thickness (bottom left) and spring fp (bottom right) distributions. FYI is shown in blue and
MYI in red. Mean (µ) and standard deviations (σ) are given by ice type. fp distributions were calculated
using hybrid-object aggregation at the medium scale.

3.2. Relationship between Thickness and fp

FYI thickness exhibited statistically significant negative correlations (p < 0.05) with fp for all
analyzed scales and aggregation approaches (object, hybrid, grid-cell) (Table 2; Figure 7). Whereas all
metrics of MYI thickness showed statistically significant negative correlations at fine scales (object and
hybrid) and 120 m grid-cells. Overall, the hybrid-based aggregation approach yielded the strongest
statistically significant negative correlations between winter sea ice thickness and fp for both FYI and
MYI, particularly for mean thickness and fp. Furthermore, the distribution of mean thickness and
corresponding fp values showed less variability using the hybrid-based approach, compared to the
object and grid-cell-based approaches at the medium/240 m spatial scales (Figure 7). This affirms that
mean sea ice thickness is strongly related to fp, particularly within the range of the EM-bird footprint,
which is approximately 120 m, depending on the height of the instrument above the sea ice surface [25].
The dependence of fp on mean thickness can be explained by the presence or absence of deformation
features. Thin FYI that has not undergone dynamic forcing is very level/smooth and will experience
widespread flooding and higher fp. Conversely, FYI that has undergone ridging will constrain melt
water into deeper surface depressions.
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Table 2. Spearman correlation coefficients (rs) between metrics of winter sea ice thickness and spring fp for FYI and MYI at fine, medium (med) and coarse spatial
scales (object and hybrid) as well as 120 and 240 m grid-cells. Bolded values are statistically significant (p < 0.05).

FYI MYI FYI MYI FYI MYI

Fine Med Fine Med Coarse Fine Med Fine Med Coarse 120 m 240 m 120 m 240 m

Min

Objects

−0.66 −0.61 −0.37 −0.33 −0.31

Hybrid

−0.64 −0.67 −0.32 −0.27 −0.31

Grid-cell

−0.61 −0.65 −0.30 −0.11
Max −0.51 −0.67 −0.45 −0.33 −0.29 −0.40 −0.73 −0.43 −0.42 −0.40 −0.72 −0.75 −0.46 −0.38

Mean −0.72 −0.75 −0.59 −0.54 −0.56 −0.68 −0.85 −0.55 −0.56 −0.59 −0.71 −0.75 −0.47 −0.41
Med −0.75 −0.71 −0.60 −0.56 −0.58 −0.74 −0.81 −0.59 −0.60 −0.64 −0.69 −0.75 −0.45 −0.44
SD −0.38 −0.65 −0.36 −0.25 −0.25 −0.31 −0.72 −0.32 −0.32 −0.34 −0.60 −0.69 −0.47 −0.38
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Figure 7. Scatter plots of fp as a function of mean thickness at the medium scale using object (left),
hybrid object (middle) and 240 m grid-cell (right) aggregation approaches. Spearman correlation
coefficients (rs) and corresponding p-values are shown for pooled FYI and MYI data.

The rational function OLS model used to determine the ability of winter FYI and MYI thickness
to explain the variability in spring fp is shown in Figure 8. Thickness and fp data aggregated at the
medium scale using the hybrid aggregation approach were used as inputs for the OLS model because
they showed the strongest associations for FYI and MYI in the correlation analysis and exhibited lower
variance than the object and grid-cell approaches. The model indicates that 47% of the variation in fp
can be explained using mean thickness according to Equation (2).

fp =
0.5478

mean thickness − 0.8561
(2)
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Figure 8. A rational function OLS model of fp as a function of mean thickness. The data were aggregated
using the hybrid-based approach at the medium scale. A rational function has been fitted to the data
(solid blue line), with a 95% confidence interval (dashed blue line).

3.3. Relationship between Roughness and fp

Surface roughness exhibited moderate negative correlations with fp for FYI using all three
aggregation approaches and at all analyzed spatial scales. Object and hybrid aggregation approaches
produced stronger associations compared to the grid-cell method (Table 3; Figure 9). For FYI, the standard
deviation of roughness showed the strongest negative association with fp, particularly at the medium
scale. This shows that variability in surface roughness is related to melt pond distribution at the
analyzed scale, i.e., greater surface roughness variability leads to lower fp. A high variability in surface
roughness on FYI can be due to the presence of compression ridges and snow sastrugi in areas of
otherwise smooth ice. Conversely, low variability in surface roughness on FYI is attributed to smooth,
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thermodynamically grown ice, which lacks deformation features and easily floods when melt ponds
form. Interestingly, metrics of surface roughness did not show any statistically significant correlations
with fp for MYI, except for a weak positive relationship between minimum roughness and fp at the fine
spatial scale using object-based aggregation. It is important to note that MYI exhibits greater spatial
variability in surface roughness than FYI (Figure 3). Quantifying surface roughness on MYI, compared
to relatively smooth FYI, and relating it to fp poses a unique challenge due to the lack of level ice in
MYI-dominated areas. Level ice is necessary for the calculation of the local level-ice surface used
in the calculation of surface roughness. The absence of level ice will lead to an overestimation of
the local level-ice surface, which will lead to an overall overestimation of surface roughness from
the 2D laser scanner [26]. Furthermore, areas of uniformly weathered MYI will have a low winter
surface roughness, corresponding to a low spring fp, whereas an area composed of both rough MYI
and smooth ice, such as a re-frozen melt pond from a previous melt season, will be characterized by a
high standard deviation of relative surface height (i.e., high winter roughness), which will correspond
to a high spring fp due to flooding on areas of smooth ice. Finally, the snow pack will likely be deeper
on MYI than FYI because MYI begins accumulating snow earlier than FYI and surface depression in
MYI act as catchments for wind-blown snow.

1 

 

 
Figure 9. Scatter plots of fp as a function of standard deviation of roughness at the medium scale using
object (left), hybrid object (middle) and 240 m grid-cell (right) aggregation approaches. Spearman
correlation coefficients (rs) and corresponding p-values are shown for pooled FYI and MYI data.

The linear OLS model used to assess the explanatory power of surface roughness for variations in
spring fp is shown in Figure 10. It was found that the SD of winter surface roughness explained 11%
of the variability in spring fp. However, surface roughness was a statistically significant dependent
variable, which suggests that it contains explanatory power for variability in fp.
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Table 3. Spearman correlation coefficients (rs) between metrics of winter sea ice roughness and spring fp for FYI and MYI at fine, medium (med) and coarse spatial
scales (object and hybrid) as well as 120 and 240 m grid-cells. Bolded values are statistically significant (p < 0.05).

FYI MYI FYI MYI FYI MYI

Fine Med Fine Med Coarse Fine Med Fine Med Coarse 120 m 240 m 120 m 240 m

Min

Objects

−0.34 −0.32 0.30 0.21 0.16

Hybrid

−0.35 −0.31 0.25 0.27 0.19

Grid-cell

−0.25 −0.26 −0.05 −0.01
Max −0.29 −0.57 0.01 0.05 0.07 −0.20 −0.53 0.02 0.04 0.01 −0.40 −0.55 −0.10 −0.12

Mean −0.32 −0.53 0.02 0.03 −0.02 −0.25 −0.52 0.04 0.09 0.00 −0.35 −0.42 −0.09 −0.11
Med −0.22 −0.41 −0.03 0.00 −0.07 −0.14 −0.36 0.03 0.06 −0.03 −0.30 −0.37 −0.07 −0.11
SD −0.35 −0.59 −0.07 −0.03 −0.02 −0.29 −0.63 0.00 −0.01 −0.06 −0.39 −0.54 −0.10 −0.17
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3.4. Relationship between Smoothed Surface Roughness and fp

Snow on sea ice will likely affect surface roughness estimates by masking the signal associated with
sea ice surface roughness with snow redistribution features such as dunes and snow roughness features
such as sastrugi, which are wavelike features that occur on the surface of hard snow that have been
redistributed by wind action. A 2000 point (~2400 m) moving average was used to effectively average
out footprint-scale variability likely associated with snow roughness and snow redistribution features.
A significantly stronger correlation was found between metrics of FYI roughness and fp, with highest
associations observed at the medium spatial scale (Figure 11; Table 4). Moderate statistically significant
correlations can be observed between metrics of MYI roughness and fp, particularly using the object
aggregation approach at the fine spatial scale. It is important to note that smoothing the surface
roughness data allows for an increased separability between FYI and MYI (Figure 6, top right)
compared to unsmoothed data (Figure 6, top left). This result suggests that small-scale uncertainties
associated with surface roughness measurements are removed when investigating these relationships
at regional scales appropriate for studies utilizing satellite observations. However, this approach
warrants caution as it introduces increased spatial dependency or spatial autocorrelation between
individual measurements.

1 

 

 
Figure 11. Scatter plots of fp as a function of smoothed minimum surface roughness at the medium
scale using object (left), hybrid object (middle) and 240 m grid-cell (right) aggregation approaches.
Spearman correlation coefficients (rs) and corresponding p-values are shown for pooled FYI and
MYI data.

3.5. Relationship between Thickness and Roughness

Areas of thick ice are coincident with areas of high surface roughness, particularly for FYID as
illustrated in Figure 3. Quantitatively, maximum roughness and maximum thickness show a significant
positive association for both FYI and MYI using the object aggregation approach (Table 5; Figure 12).
FYI shows a stronger relationship (rs = 0.65) than MYI (rs = 0.54) at medium spatial scale. The grid-
cell-based aggregation approach yields statistically significant correlations between all metrics of
roughness and thickness for FYI, and no significant associations for MYI. The variance in FYI and MYI
observations is lower using object-based aggregation, compared to 240 m grid-cells (Figure 12). Finally,
it can be seen that variance begins to increase for ice with thickness of greater than approximately
3.75 m. It is expected that thicker ice has undergone more dynamic thickening when compared to
thin ice, which would increase both the thickness and the surface roughness. The EM instrument
measures the bottom roughness of the ice, which would also be roughened during ridging and rafting.
This would lead to an increase in the strength of association between ice thickness and surface roughness.
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Table 4. Spearman correlation coefficients (rs) between metrics of smoothed winter sea ice roughness and fp for FYI and MYI at fine, medium (med) and coarse spatial
scales. The data were aggregated using the hybrid object aggregation approach. Bolded values are statistically significant (p < 0.05).

FYI MYI FYI MYI FYI MYI

Fine Med Fine Med Coarse Fine Med Fine Med Coarse 120 m 240 m 120 m 240 m

Min

Objects

−0.81 −0.80 −0.31 −0.35 −0.34

Hybrid

−0.77 −0.84 −0.34 −0.29 −0.25

Grid-cell

−0.72 −0.77 −0.20 −0.23
Max −0.79 −0.81 −0.27 −0.26 −0.21 −0.72 −0.80 −0.24 −0.19 −0.09 −0.72 −0.77 −0.19 −0.22

Mean −0.80 −0.81 −0.29 −0.29 −0.27 −0.75 −0.83 −0.28 −0.23 −0.17 −0.72 −0.77 −0.19 −0.22
Med −0.80 −0.81 −0.29 −0.29 −0.26 −0.75 −0.82 −0.26 −0.22 −0.16 −0.72 −0.77 −0.19 −0.22
SD −0.14 −0.34 0.06 0.24 0.28 −0.04 −0.23 0.17 0.19 0.26 −0.45 −0.55 0.08 0.01
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Table 5. Spearman correlation coefficients (rs) between metrics of winter sea ice roughness and
thickness for FYI and MYI at fine, medium (med) and coarse spatial scales (object) as well as 120 and
240 m grid-cells. Bolded values are statistically significant (p < 0.05).

FYI MYI FYI MYI

Fine Med Fine Med Coarse 120 m 240 m 120 m 240 m

Min

Objects

0.39 0.36 0.07 0.21 0.27

Grid-cell

0.30 0.34 0.01 0.23
Max 0.56 0.65 0.41 0.54 0.57 0.44 0.53 0.11 0.13

Mean 0.36 0.49 0.20 0.20 0.23 0.41 0.44 0.07 0.07
Med 0.18 0.26 0.12 0.06 0.03 0.34 0.38 0.04 0.13
SD 0.52 0.68 0.40 0.47 0.47 0.35 0.45 0.05 0.07

1 

 

 

Figure 12. Scatter plots of maximum roughness as a function of maximum thickness at the medium
scale using object (left) and 240 m grid-cell (right) aggregation approaches. Spearman correlation
coefficients (rs) and corresponding p-values are shown for pooled FYI and MYI data.

4. Discussion

Previous studies have shown that FYI is characterized by a higher spring fp than MYI [7,11,13,34,35].
Our findings support these observations, with FYI exhibiting on average higher spring fp of 0.43
compared to 0.29 for MYI. However, we show that certain regions of MYI become flooded, with spring
fp reaching up to 0.77. Winter sea ice thickness and surface roughness values and probability
distributions are consistent with previous studies, showing FYI being thinner and smoother compared
to MYI. Numerical models indicate that pre-melt surface roughness is strongly related to fp, with fp
increasing more rapidly on a smoother ice than rougher ice [36]. Our results show that surface
roughness is related to fp for FYI, but we do not find a similar association for MYI. Previous work
has suggested that thin and smooth ice would be favorable for high fp during the melt season,
and rough/thick ice would limit melt pond expansion and result in low fp; however these relationships
have not been quantified to date [11,37]. For logistical reasons the majority of previous melt pond
evolution studies have been conducted on landfast FYI and drifting MYI. Our fp observations show
agreement with other landfast FYI studies and drifting FYI and MYI studies. Since our analyses are
concerned with one snapshot of melt fraction, and not melt pond evolution through time, it is not
necessary to account for ice mobility. However, when considering melt pond evolution, it is important
to note that thermodynamic and dynamic processes of landfast ice differ from those of drifting ice.
Landfast sea ice forms in areas of shallow bathymetry and is influenced by tides and nearshore
currents [38]. Furthermore, it exhibits a fixed orientation with the respect to the sun and is influenced
by dust and warm air from the nearby land [39].

Considering the role of different aggregation approaches for quantifying relationships, the benefit
of OBIA is that it is rooted in real world features such as ice floes, thus providing physically meaningful
extents for data aggregation and contextual information for the analyst. The hybrid approach aims
to compromise between the extents of real world features and the footprint of the sensor, in cases
where objects are being used to aggregate multi-sensor data. In this study, the extents of the objects
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were often much larger than the footprint of the thickness and roughness sensors, which means
that the corresponding thickness and roughness measurements may not have been representative
of certain regions of the object (Figure 5). The hybrid object approach yielded stronger associations
between thickness and fp for FYI and similar to slightly stronger relationships for MYI (Table 2).
The stronger relationships between FYI thickness and fp can be explained by spatial homogeneity
of FYI ice floes in terms of thickness, roughness and the SAR backscatter used to delineate objects.
Compared to MYI, FYI has a lower surface roughness, which allows it to have a low backscatter across
large areas. By reducing the width of the object-based features into hybrid objects, analyses become
more representative of the areas associated with the thickness and roughness measurements while
retaining the across-track boundaries of individual ice floes.

We have been able to show that winter sea ice thickness and surface roughness are related to
spring fp on landfast sea ice in the CAA; however, it is possible that sensor limitations impacted
the results. Laser altimeters do not penetrate through the snow cover to the snow/ice interface,
therefore the sea ice thickness measurements obtained using the EM-bird are in actuality snow plus ice
measurements. It is suggested that the accuracy of EM measurements over level ice is approximately
±0.15 m, whereas thickness of thick MYI ridges can be underestimated by as much as 24%. Areas of
thick ice, such as ridges in an otherwise smooth FYI zone can be underestimated if they are proximal
to areas of thin ice and occur with the footprint of the EM sensor. Unfortunately, it was not possible
to obtain co-located in situ snow depth observations in our study area and due to the uncertainties
associated with snow depth estimates in complex ice environments Operation IceBridge (OiB) and
CryoVex data were not included in the analyses [40]. We were able to obtain in situ snow depth
measurements, which were collected using a MagnaProbe near Eureka in the CAA between 8 and
15 April 2016 (Figure 2). 1792 and 1810 snow measurements were collected on FYI and MYI, respectively,
with transects covering areas of approximately 0.4 km2 each (~10 m spacing).

Figure 13 shows that the mean snow depth on FYI is 16.6 cm compared to 42.5 cm on MYI.
The variability in snow depth is also greater for MYI, with depths of up to 200 cm. In 2016, total October
to May snowfall at an Environment Canada station in Cambridge Bay was approximately 45 cm
compared to 65 cm at an Environment Canada station in Eureka. October to May in situ mean snow
depths on landfast FYI measured 8.4 ± 4.2 cm (Cambridge Bay) and 17.6 ± 5.8 cm (Eureka) between
1960 and 2014 [41]. The nearest snow depth and weather station data available indicate that Victoria
Strait will have less sea ice snow accumulation than Eureka. Further work or co-located snow depth
and EM sea ice thickness measurements would be required to more fully assess the effect of snow
depth on relationships with fp.
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The 2D laser scanner instrument operates in the near infrared part of the electromagnetic spectrum,
which means that it does not penetrate through the snow cover and thus measures variations in snow
topography. This could potentially lead to underestimation of surface roughness because the snow
cover may have a dampening effect on the sea ice surface, particularly due to accumulation of snow in
rough areas by wind redistribution. Snow sastrugi may also introduce erroneous surface roughness
values that are not associated with the sea ice topography. Quantifying surface roughness in the
natural environment remains a challenge, with the most widely used approach being the standard
deviation of relative surface elevation; however other statistical parameters such as skewness and
kurtosis have been proposed [42]. Furthermore, roughness measurements are highly scale-dependent
and large-scale variations in topography may introduce uniform and along flight line errors. Finally,
it is often assumed that distribution of sea ice features such as ridges and leads is random. However,
this assumption is often not valid because dominant orientations of features result from prevailing
ocean and atmospheric currents. Thus, it is possible to under or over represent the distribution of
extreme features, depending on the choice of flight direction [25].

Thermodynamic and dynamic processes are responsible for changes in sea ice thickness with FYI
increasing above modal thickness as a result of ridging. Thus, surface roughness and ice thickness
are expected to be closely related, particularly for thicker, more deformed FYI. This is supported by
comparing the spatial distribution of high thickness and roughness values for FYI in the study area
(Figure 3). Areas of high surface roughness (0.33–0.44 m) overlap with areas of thicker ice (2.7–3.1 m),
as well as with areas of higher backscatter. A similar relationship can be seen for MYI. Quantitatively,
we have shown that maximum thickness and maximum roughness have a stronger association for
FYI (rs = 0.65) than MYI (rs = 0.54). With MYI being ice that survived one or more melt season,
its surface roughness will be affected by melt, particularly by the presence of refrozen melt ponds
from previous melt seasons. An area that includes a melt pond from a previous melt season and
heavily deformed patch of ice may be associated with high surface roughness measurement. However,
this high roughness value may correspond to a high fp due to the presence of a relatively smooth patch
of ice, which was previously occupied by a melt pond.

5. Conclusions

The primary goal of this study was to quantitatively link winter sea ice thickness and surface
roughness to spring fp in order to better understand how the ice evolves from winter to spring
thermodynamic states and inform parameterizations of fp in climate models. This was achieved
by evaluating the utility of object-based image analysis, hybrid-object analysis, which takes into
account the footprints of the thickness and roughness sensors, as well as the traditional grid-cell data
aggregation approaches. It was found that winter sea ice thickness has a strong association with fp
for FYI (rs = −0.85) and MYI (rs = −0.64) using hybrid aggregation approach, as well as the object
approach for FYI (rs = −0.75) and MYI (rs = −0.60). Weaker relationships were observed for MYI using
the grid-cell approach (rs = −0.47); however a similar relationship was detected for FYI (rs = −0.75).
This shows that winter sea ice thickness is related to spring fp with thicker ice characterized by lower
spring fp and thin ice exhibiting a higher fp during the melt season. These results provide a quantitative
link between the two geophysical parameters and have important implications for understanding
spring fp evolution on Arctic sea ice. The stronger relationships observed using hybrid aggregation
indicate that accounting for ice morphology and sensor footprints allows for more representative
comparison between multisource datasets. A non-linear rational function OLS model shows that 47%
of variability in combined FYI and MYI spring fp can be explained by mean winter sea ice thickness
using the hybrid-based aggregation approach indicating a potential for spring fp prediction using
winter sea ice thickness.

FYI spring fp is related to winter surface roughness, with a stronger relationship observed
using the hybrid-based aggregation approach at the medium scale (rs = −0.63). However, MYI fp
is not significantly correlated with surface roughness. Surface roughness can be defined for scales
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ranging from meters to kilometers, with footprint-scale uncertainties such as snow roughness and
errors associated with sensor position during airborne measurement acquisition (yaw and pitch
angles, and slant range distortion) exhibiting a stronger effect on the measurements than at larger
spatial scales [26,40]. In order to minimize the influence of measurement uncertainty on surface
roughness measurements we performed a moving average on the surface roughness data (~2400 m)
and found stronger correlations between surface roughness and fp for both FYI (rs = −0.84) and MYI
(rs = −0.34). We propose that further work is conducted on assessing the effects of snow depth and
snow redistribution features on sea ice surface roughness estimates.

Winter sea ice thickness and surface roughness are strongly correlated for FYI (rs = 0.65) and MYI
(rs = 0.54) using the object aggregation approach. These relationships are lower in strength for FYI
(rs = 0.53) and are not present for MYI using the grid-cell data aggregation approach. This further
supports the use of object-based aggregation for spatial statistical analyses.

This study draws quantitative linkages between winter sea ice (snow plus ice) thickness and
spring fp at the macro scale, which can contribute to a body of work improving parametrizations of
spring fp in climate models. Further work includes contributing evaluations of the potential of winter
sea ice thickness, in addition to sea ice roughness, as well as radar backscatter signatures to predict
spring fp using satellite sensors such as CryoSat-2, Sentinel-1 and others. It is important to be able
to expand the analyses to larger spatial and temporal scales, which are necessary for initializing and
validating regional climate models.
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