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Abstract: Above-ground biomass (AGB) provides a vital link between solar energy consumption
and yield, so its correct estimation is crucial to accurately monitor crop growth and predict yield.
In this work, we estimate AGB by using 54 vegetation indexes (e.g., Normalized Difference Vegetation
Index, Soil-Adjusted Vegetation Index) and eight statistical regression techniques: artificial neural
network (ANN), multivariable linear regression (MLR), decision-tree regression (DT), boosted binary
regression tree (BBRT), partial least squares regression (PLSR), random forest regression (RF), support
vector machine regression (SVM), and principal component regression (PCR), which are used to
analyze hyperspectral data acquired by using a field spectrophotometer. The vegetation indexes
(VIs) determined from the spectra were first used to train regression techniques for modeling and
validation to select the best VI input, and then summed with white Gaussian noise to study how
remote sensing errors affect the regression techniques. Next, the VIs were divided into groups of
different sizes by using various sampling methods for modeling and validation to test the stability of
the techniques. Finally, the AGB was estimated by using a leave-one-out cross validation with these
powerful techniques. The results of the study demonstrate that, of the eight techniques investigated,
PLSR and MLR perform best in terms of stability and are most suitable when high-accuracy and
stable estimates are required from relatively few samples. In addition, RF is extremely robust
against noise and is best suited to deal with repeated observations involving remote-sensing data
(i.e., data affected by atmosphere, clouds, observation times, and/or sensor noise). Finally, the
leave-one-out cross-validation method indicates that PLSR provides the highest accuracy (R2 = 0.89,
RMSE = 1.20 t/ha, MAE = 0.90 t/ha, NRMSE = 0.07, CV (RMSE) = 0.18); thus, PLSR is best suited for
works requiring high-accuracy estimation models. The results indicate that all these techniques
provide impressive accuracy. The comparison and analysis provided herein thus reveals the
advantages and disadvantages of the ANN, MLR, DT, BBRT, PLSR, RF, SVM, and PCR techniques
and can help researchers to build efficient AGB-estimation models.
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1. Introduction

Accurate estimates of crop biophysical variables are crucial for monitoring vegetation growth
and for analyzing important physiological parameters during the crop growth cycle [1,2]. One such
variable, above-ground biomass (AGB), plays an important role in plant functioning because it reflects
the status of crop growth and is related to solar-energy consumption, yield, and grain quality [3,4].
Therefore, AGB is considered as one of the most important crop biophysical parameters, and its accurate
estimation can help improve crop monitoring and yield prediction [5]. Traditional AGB estimates
are based on destructive measurements, which are not only time and labor consuming, but more
importantly, are difficult to apply over large areas [6]. In recent years, Hyperspectral remote-sensing
data acquired from the ground [7,8], unmanned aerial vehicles [9], airborne platforms [10–12],
and satellite platforms [13] have been able to capture crop canopy spectra in narrow bands and
thereby provide information on the biochemical composition of the canopy. Crop physiology research
shows that spectral absorption by plant leaves is mainly due to the leaf pigments, especially chlorophyll
content (Chl) [14]. The reflectance is low in both the blue and red regions of the spectrum, due to
absorption by chlorophyll for photosynthesis; it has a peak at the green region which gives rise to
the green color of vegetation [15]. In the near-infrared region, the reflectance is much higher than
that in the visible band due to the cellular structure in the leaves [16]. Previous studies have shown
that near-infrared- and red-band vegetation indexes (VIs) are effective for estimating AGB [8,9,11].
However, during the reproductive growth of crops, with the senescence of leaves, the effectiveness of
photosynthesis is reduced [14,17]. With clear decreases in both photosynthesis and the near-infrared
reflectance, the correlation between AGB and the red- and near-infrared-based VIs reduced. Therefore,
hyperspectral remote sensing of AGB has received increasing attention as an efficient and precise
method for nondestructive monitoring in agricultural research [18].

Physically based models and empirical regression techniques are two essential approaches
for estimating vegetation characteristics from hyperspectral measurements [19]. Physically based
models were founded on physical principles. The two main examples of this approach are radiative
transfer (RT) models and geometric optical models [19]. Because vegetation canopy reflectance
depends on a number of factors [20] (e.g., leaf-area index, Chl, water content, matter content, soil
reflectance, and bidirectional reflectance distribution function), physically based models require
canopy biophysical parameters, soil parameters, and some external parameters to simulate canopy
reflectance, and these are often not readily available. In contrast, empirical regression techniques
require a large number of ground measurements, and offer a direct relationship between spectral
features and vegetation parameters. Previous research has used many powerful empirical regression
techniques that make full use of the narrow hyperspectral bands, VIs, and even different types of sensor
data [21]. These techniques essentially fall into two categories: (i) machine-learning techniques such
as artificial neural network (ANN) [22], decision tree regression (DT) [23], boosted binary regression
tree (BBRT) [24], random forest regression (RF) [25], support vector machine regression (SVM) [26],
and (ii) conventional regression techniques such as multivariable linear regression (MLR) [26,27],
partial least squares regression (PLSR) [7,8,22], and principal component regression (PCR) [7]. Many
studies have obtained promising results by using these techniques [8–11,26]. However, hyperspectral
data redundancy is a big problem because of the high spectral dimensions and large number of
bands [28]. In addition, the correlation between the spectral and AGB vary with the crop growth
period, which is related to the physiological state of the crop [17]. To address this problem, many
researchers have tried to extract features from narrow hyperspectral bands first, and many methods
to do this have been proposed; for example, correlation analysis, continuum removal [29], red-edge
position [30], gray relational analysis [31], and out-of-bag analysis [21]. Spectral vegetation indexes
(VIs) have been widely used for decades, and more than 60 VIs [32] have been proposed for estimating
biophysical variables [33].

Conventional regression techniques are more suitable for data that have a clear linear or
exponential relationship with a distinct estimation equation, whereas machine-learning techniques are
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typically better able to cope with the strong nonlinearity between the biophysical and biochemical
parameters and the reflection spectra [34]. However, many studies indicate that empirical regression
techniques are rarely transferable to other sites with different vegetation, or to data acquired from
other types of sensors or under different acquisition conditions. Despite this, empirical regression
techniques still have some advantages, such as fewer input variables, less computation, and ease of
application, which have resulted in their widespread use under many conditions.

Numerous studies have used hyperspectral remote-sensing data and empirical regression
techniques to estimate AGB [26], and some analyses of the performance of these techniques have also
been carried out, although they focus mostly on comparing the estimation accuracy. No comprehensive
study is available as yet that evaluates these regression techniques for estimating AGB, and no studies
have evaluated the different statistical techniques to better understand their respective advantages
and disadvantages.

The main objective of the present study is to evaluate the performance (in particular, data selection,
sampling methods, noise immunity) of eight regression techniques for estimating AGB. The following
four tests were applied:

(1) VIs were used to train regression models, which were validated to select best VI input (Section 4.1).
(2) The noise immunities of these techniques were compared by simulating remote-sensing errors by

adding white Gaussian noise (Section 4.2).
(3) The stability of these techniques was examined by using samples of varying sizes and different

sampling methods for modeling and validation (Section 4.3).
(4) Leave-one-out cross validation was used to evaluate the accuracy of the AGB estimation of these

techniques (Section 4.4).

We discuss the performance of eight AGB estimation techniques and the advantages and
disadvantages of each technique (Section 5), then summarize the optimal conditions for using
these techniques.

2. Materials

2.1. Study Area

The study area was situated in Changping District, which is located in the northwest part of
Beijing City, China (see Figure 1). Experiments were conducted at the National Precision Agriculture
Research Center of China (116◦26′36′ ′E, 40◦10′44′ ′N). Changping District has an average altitude of
36 m, its total area is about 1352 km2, and it has a warm temperate semi-humid continental monsoon
climate, with an average rainfall of 450 mm, an average low temperature of −10 to 7.5 ◦C and an
average high temperature of 35 to 40 ◦C.

The aim of the agronomy experiment was to increase the difference in AGB by using two crop
varieties, three water treatments, and four nitrogen treatments. The AGB was measured by using
ground-based techniques. The experiments involved two winter wheat cultivars, J9843 and ZM175,
which are the main winter wheat varieties grown in northern China. The irrigation treatment included
rainfall only (W0, see Figure 1), rainfall plus normal irrigation (W1, 100 mm), and rainfall plus double
the normal irrigation (W2, 200 mm). The nitrogen fertilizer treatment included no fertilizer (N0),
one-half the normal fertilization (N1, 195 kg/ha), normal fertilization (N2, 390 kg/ha), and twice the
normal fertilization (N3, 780 kg/ha).
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Figure 1. (a) Location of study area shown in red. (b) Map showing Changping District in Beijing City. 
(c) Design of treatments and an unmanned-aerial-vehicle image of the experimental field (acquired 
on 12 May 2015). Three plant groups are present with two winter wheat varieties (J9843 and ZM175), 
three water treatments (W0, W1, and W2), and four nitrogen treatments (N0, N1, N2, and N3). 

2.2. Measurement of Data 

A 5000 m2 square area was selected as the experimental field (see Figure 1) and divided into 48 
plots each of size 6 m × 8 m. In each plot, winter wheat near the center of the given plot was selected 
for spectral, physiological, and biochemical measurements and analyses. AGB, Chl and canopy 
spectral measurements were made at four growth stages: the winter wheat jointing stage (13 and 14 April 
2015), the flag leaf stage (26 and 27 April 2015), the flowering period (12 to 14 May 2015), and the 
filling period (25 to 27 May 2015). Four ground-based measurements allowed 192 sets of Chl, winter 
wheat biomass, and canopy hyperspectral data to be collected.  

2.2.1. Measurements of Winter Wheat Canopy Reflectance 

Canopy hyperspectral reflectance was acquired by using an ASD FieldSpec 3 spectrometer 
(FieldSpec 3 spectrometer, Analytical Spectral Devices, Boulder, Colorado, CO, USA) from 
10:00~14:00 (Beijing time, UTC/GMT+08:00) in windless and cloudless conditions. We calibrated the 
field spectrometer based on the reflectance from a 40 cm × 40 cm BaSO4 white board, and the vertical 
height from the canopy is 1.3 m. The winter wheat canopy reflectance was measured 10 times (the 
scanning time was 0.2 s) at the center of each plot, and the average reflectance was recorded. To 
reduce the influence of sky and field conditions on the spectral measurements, each plot was 
measured three times, and the mean value was used as the canopy reflectance for the given 
experimental plot. Figure 2a shows the average hyperspectral reflectance spectrum for the four 
growing stages. 

Figure 1. (a) Location of study area shown in red. (b) Map showing Changping District in Beijing City.
(c) Design of treatments and an unmanned-aerial-vehicle image of the experimental field (acquired
on 12 May 2015). Three plant groups are present with two winter wheat varieties (J9843 and ZM175),
three water treatments (W0, W1, and W2), and four nitrogen treatments (N0, N1, N2, and N3).

2.2. Measurement of Data

A 5000 m2 square area was selected as the experimental field (see Figure 1) and divided into
48 plots each of size 6 m × 8 m. In each plot, winter wheat near the center of the given plot was
selected for spectral, physiological, and biochemical measurements and analyses. AGB, Chl and
canopy spectral measurements were made at four growth stages: the winter wheat jointing stage
(13 and 14 April 2015), the flag leaf stage (26 and 27 April 2015), the flowering period (12 to 14 May
2015), and the filling period (25 to 27 May 2015). Four ground-based measurements allowed 192 sets of
Chl, winter wheat biomass, and canopy hyperspectral data to be collected.

2.2.1. Measurements of Winter Wheat Canopy Reflectance

Canopy hyperspectral reflectance was acquired by using an ASD FieldSpec 3 spectrometer
(FieldSpec 3 spectrometer, Analytical Spectral Devices, Boulder, Colorado, CO, USA) from 10:00~14:00
(Beijing time, UTC/GMT+08:00) in windless and cloudless conditions. We calibrated the field
spectrometer based on the reflectance from a 40 cm× 40 cm BaSO4 white board, and the vertical height
from the canopy is 1.3 m. The winter wheat canopy reflectance was measured 10 times (the scanning
time was 0.2 s) at the center of each plot, and the average reflectance was recorded. To reduce the
influence of sky and field conditions on the spectral measurements, each plot was measured three
times, and the mean value was used as the canopy reflectance for the given experimental plot. Figure 2a
shows the average hyperspectral reflectance spectrum for the four growing stages.
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Figure 2. (a) Average hyperspectral reflectance spectrum for the four growing stages. (b) Average Chl 
and above-ground biomass (AGB) for the four growing stages. 

2.2.2. Measurements of Winter Wheat Chlorophyll and Above-Ground Biomass 

During measurements, the planting density of winter wheat (row spacing 15 cm) was 
investigated, and 20 stems were collected near the center of each plot. Chl was measured from the 
first and second uppermost leaves by using a Dualex 4 (Dualex Scientific Portable Sensor for Leaf 
Measurements, Force-a, Université Paris Sud, Orsay, France) and the average values were processed 
(see Figure 2b). 

After ground measurements, the winter wheat organs were processed in the laboratory. They 
were first put into paper bags and dried at 80 °C to remove moisture, then, once the sample weight 
became constant (about 24 h), they were weighed by using a balance with an accuracy of 0.001 g. 
Finally, the biomass per unit area was calculated based on the measured planting density and sample 
dry weight. The winter wheat AGB was calculated by using 
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the row spacing. The statistics of the AGB measurement for different growing periods is shown in 
Table 1. 

Table 1. Statistics of AGB measurement in study area. 
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Coefficient of 
Variation (%) 

Jointing 48 1.201 4.526 2.569 0.685 26.664 
Flag 48 2.194 8.266 5.114 1.468 28.706 

Flowering 48 3.419 12.737 7.790 1.960 25.160 
Grain filling 48 5.456 17.599 10.993 2.793 25.407 

3. Methods 

Data selection, sampling methods, noise immunity, and prediction performance were analyzed 
by using a series of VIs and ground-based measurements of the AGB. The flowchart in Figure 3 
illustrates the process. 

Figure 2. (a) Average hyperspectral reflectance spectrum for the four growing stages. (b) Average Chl
and above-ground biomass (AGB) for the four growing stages.

2.2.2. Measurements of Winter Wheat Chlorophyll and Above-Ground Biomass

During measurements, the planting density of winter wheat (row spacing 15 cm) was investigated,
and 20 stems were collected near the center of each plot. Chl was measured from the first and second
uppermost leaves by using a Dualex 4 (Dualex Scientific Portable Sensor for Leaf Measurements,
Force-a, Université Paris Sud, Orsay, France) and the average values were processed (see Figure 2b).

After ground measurements, the winter wheat organs were processed in the laboratory. They were
first put into paper bags and dried at 80 ◦C to remove moisture, then, once the sample weight became
constant (about 24 h), they were weighed by using a balance with an accuracy of 0.001 g. Finally, the
biomass per unit area was calculated based on the measured planting density and sample dry weight.
The winter wheat AGB was calculated by using

AGB =
m× n
20× l

C (1)

where m is the dry weight of the sample, n is the number of winter wheat ears per unit area, and l is the
row spacing. The statistics of the AGB measurement for different growing periods is shown in Table 1.

Table 1. Statistics of AGB measurement in study area.

Period Sample Min (t/ha) Max (t/ha) Mean (t/ha) Standard
Deviation (t/ha)

Coefficient of
Variation (%)

Jointing 48 1.201 4.526 2.569 0.685 26.664
Flag 48 2.194 8.266 5.114 1.468 28.706

Flowering 48 3.419 12.737 7.790 1.960 25.160
Grain filling 48 5.456 17.599 10.993 2.793 25.407

3. Methods

Data selection, sampling methods, noise immunity, and prediction performance were analyzed by
using a series of VIs and ground-based measurements of the AGB. The flowchart in Figure 3 illustrates
the process.
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Cortes and Vapnik [36] in 1995 and offer many unique advantages for dealing with complex 
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regression method, maintaining all the main features that characterize the algorithm (i.e., maximal 
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regression method proposed by Friedman [24] in 2001. Boosted binary regression trees combine 
binary regression trees by using a gradient-boosting technique [39]. (5) Random forest regression is 
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and regression that operates by constructing a multitude of decision trees at training time and 
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Figure 3. Flowchart showing experiment methodology. Data selection, sampling methods, noise
immunity, and prediction accuracy were analyzed.

3.1. Regression Techniques

3.1.1. Machine Learning Techniques

(1) Artificial neural networks have represented a hot research topic in artificial intelligence since
the 1980s; this method is very powerful in dealing with nonlinear relationships [35]. An ANN is based
on a collection of connected units called artificial neurons, and each neuron can transmit a signal to
other neurons. ANN is composed of a large number of neurons, with each neuron representing a
particular output function. The connection between two neurons represents the weighted value of
the signal through the connection. The network outputs different weighted values and the incentive
function, according to the network connection mode. (2) Support vector machines were proposed
by Cortes and Vapnik [36] in 1995 and offer many unique advantages for dealing with complex
multidimensional data. A SVM constitutes a supervised learning model with associated learning
algorithms that analyze data used for classification and regression analysis. A SVM can be used as a
regression method, maintaining all the main features that characterize the algorithm (i.e., maximal
margin). Support vector regression (SVR) uses the same principles as a SVM for classification, with
only a few minor differences. Herein, we use LIBSVM (LIBSVM 3.1.2—A Library for Support Vector
Machines, Version 3.12 [37]) for the tests. (3) A decision tree is a tree structure in which each internal
node represents a test of an attribute, each branch represents a test output, and each leaf node represents
a category [38]. A decision node has two or more branches, each representing values for the attribute
tested. Breaking down a dataset into smaller and smaller subsets incrementally develops an associated
decision tree. The final result is a tree with decision nodes and leaf nodes. A leaf node represents
a decision for the numerical target. (4) A boosted binary regression tree is a powerful regression
method proposed by Friedman [24] in 2001. Boosted binary regression trees combine binary regression
trees by using a gradient-boosting technique [39]. (5) Random forest regression is a data analysis and
statistical method that is widely used in machine-learning research. It was proposed by Breiman and
Cutler [25] in 2001 and is an ensemble learning method for classification and regression that operates
by constructing a multitude of decision trees at training time and outputting the class that is the mode
of the classes (classification) or the mean prediction (regression) of the individual trees. RF has a higher
accuracy, better tolerance to outliers and noise, and makes excellent use of the full spectral information.
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3.1.2. Conventional Regression Techniques

(1) Multiple linear regression is a regression method in which two or more independent variables
are used to analyze a dependent variable. The regression equation is used to calculate the parameters
by using the least squares method in which the sum of the errors squared is minimized. (2) Partial
least squares regression is a data analysis method proposed by Wold [40] in 1966. PLSR has also
been widely used in studies of vegetation because it provides an efficient way to make full use of
hyperspectral information. Previous studies [8–10] indicate that PLSR makes excellent use of the full
spectral information and is a flexible method for monitoring agricultural crop parameters. (3) Principal
component analysis (PCA) is a technique to simplify data sets based on a linear transformation
of data into a new coordinate system. After that transformation, the largest variance in the data
projection appears in the first coordinate (called the first principal component), the second largest
variance appears in second coordinate (second principal component), and so on. PCA often reduces
the dimensionality of data sets. This method can reduce the dimensionality of hyperspectral data, thus
avoiding the problem of collinear variables that can occur in PLSR and MLR regression [7].

In the present work, we analyze the ANN, SVM, RF, BBRT, DT, MLR, PLSR, and PCR regression
by using Matlab2014a (Matrix Laboratory 2014a, MathWorks, Inc., Natick, MA, USA) on a Microsoft
Windows platform.

3.2. Selection of Vegetation Indexes

A VI is a combination of two or more characteristic spectra acquired by multispectral or
hyperspectral remote sensing. It is a simple, effective, and empirical measure of the surface vegetation
status. VIs are widely used to classify vegetation and environmental changes, determine crop and
forage yield, monitor droughts, etc. After many years of research on narrow-band hyperspectral
spectra, incomplete statistics show that dozens of VIs exist that can be used to estimate biophysical
parameters [13,36–74].

Data redundancy and multi-collinearity can seriously affect regression performance. By using
selected 54 VIs (Table 2) [32], the abilities of eight techniques to solve the multi-collinearity problem
can be analyzed. Section 4.1 gives the best input VIs (we set seven levels: 5, 10, 15, 20, 30, 40 and 54)
based on eight techniques by analyzing the modeling and validation as a function of the VIs used as
the input.

Table 2. Summary of VIs used in this study.

VIs Equation Reference VIs Equation Reference

ATSAVI a (R800 − a R670 − b)/[(a R800 + R670 − ab +
X(1 + a2)], where X = 0.08, a = 1.22, and b = 0.03 [41] MND680 (R800 − R680)/(R800 + R680 − 2R445) [42]

EVI 2.5(RNIR – RRed)/(RNIR + 6RRed − 7.5RBlue + 1) [43] MND705 (R750 − R705)/(R750 + R705 − 2R445) [42]

EVI2 2.5(RNIR − RRed)/(RNIR + 2.4RRed + 1) [44] MSR705 (R750 − R445)/(R705 − R445) [42]

GI R554/R677 [45] NPCI (R680 − R430)/(R680 + R430) [46]

LAIDI R1250/R1050 [47] NPQI (R415 − R435)/(R415 + R435) [48]

MSAVI 0.5[2R800 + 1 − ((2R800 + 1)2 − 8(R800 −
R670))1/2]

[49] PBI R810/R560 [50]

MSR (R800/R670 − 1)/(R800/R670 + 1)1/2 [51] PRI (R531 − R570)/(R531 + R570) [52]

MTVI1 1.2[1.2(R800 − R550) − 2.5(R670 − R550)] [53] PSSR R800/R500 [54]

MTVI2 {1.5[1.2(R800 − R550) − 2.5(R670 − R550)]}/
{(2R800 + 1)2 − [6R800 − 5(R670)1/2] − 0.5}1/2 [53] RARS R760/R500 [55]

NDVI (RNIR − RRed)/(RNIR + RRed) [56] RGR RRed/RGreen [57]

OSAVI 1.16(R800 − R670)/(R800 + R670 + 0.16) [58] SIPI (R800 − R445)/(R800 − R680) [59]

PSND (R800 − R470)/(R800 + R470) [54] TVI 0.5[120(R750 − R550) − 200(R670 − R550)] [16]

PVIhyp
(R1148 – a R807 − b)/(1 + a2)1/2,

where a = 1.17 and b = 3.37
[12] CAI 0.5(R2020 + R2220) − R2100 [60]
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Table 2. Cont.

VIs Equation Reference VIs Equation Reference

RDVI (R800 − R670)/(R800 + R670)1/2 [61] NDLI [log(1/R1754) − log(1/R1680)]
/[log(1/R1754) + log(1/R1680)] [62]

SLAIDI S(R1050 − R1250)/(R1050 + R1250), where S = 5 [47] NDNI [log(1/R1510) − log(1/R1680)]
/[log(1/R1510) + log(1/R1680)] [62]

SPVI 0.4[3.7(R800 − R670) − 1.2|R530 − R670|] [63] DSWI (R802 + R547)/(R1657 + R682) [13]

TCARI 3[(R700 − R670) − 0.2(R700 − R550)(R700/R670)] [64] LWVI1 (R1094 − R893)/(R1094 + R893) [13]

SR RNIR /RRed [65] LWVI2 (R1094 − R1205)/(R1094 + R1205) [13]

VARIgreen (RGreen − RRed)/(RGreen + RRed) [66] MSI R1600/R819 [67]

WDRVI (0.1 RNIR − RRed)/(0.1 RNIR + RRed) [68] NDII (R819 − R1600)/(R819 + R1600) [69]

ARI (R550)−1 − (R700)−1 [70] NDWI (R860 − R1240)/(R860 + R1240) [71]

BGI R450/R550 [45] RVIhyp R1088/R1148 [12]

BRI R450/R690 [45] SIWSI (R860 − R1640)/(R860 + R1640) [72]

LCI (R850 − R710)/(R850 + R680) [15] SRWI R860/R1240 [73]

MCARI [(R701 − R671) − 0.2(R701 − R549)]/(R701/R671) [74] WI R900/R970 [75]

MCARI1 1.2[2.5(R800 − R670) − 1.3(R800 − R550)] [53] PSRI (R680 − R500)/R750 [76]

MCARI2 {1.5[2.5(R800 − R670) − 1.3(R800 − R550)]}
/{(2R800 + 1)2 − [6R800 − 5(R670)1/2] − 0.5}1/2 [53] RVSI [(R712 + R752)/2] − R732 [77]

Note: RGreen, RRed, and RNIR represent bands at 470, 670, and 800 nm of hyperspectral reflectance, respectively.
R470 and R800 represent bands at 470 and 800 nm of hyperspectral reflectance, etc.

3.3. Noise Simulation

Many error sources exist in remote-sensing imaging and sensor systems (see Figure 4), including
radiation errors caused by the atmosphere, topography, or other geometric errors and systematic
errors related to the charge-coupled device (CCD) sensor [78,79]. Although radiometric calibration and
radiometric correction are applied to correct for sensor degradation and atmospheric effects, the noise
cannot be completely removed. Noise such as shot noise due to the quantum properties of light and
readout noise generated by the output amplifier remain, and both follow a Poisson distribution [78].
In addition, the dark-current noise and thermal noise are present and are proportional to the CCD
temperature; these follow a Gaussian distribution [78,79].
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To evaluate how sensor noise and other uncertainty sources affect these data-analysis techniques,
we simulate the internal noise (dark current, random noise) of a CCD used for remote sensing. We add
random noise to the validation VIs to analyze how remote-sensing noise affects the stability of these
techniques with the help of white Gaussian noise [7]. These models to estimate the AGB use the
original VIs and are validated by using VIs with noise added. In these tests, the signal-to-noise ratio
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(SNR) is set to 5, 10, 15, 20, 30, and 50 (the noise increases with decreasing SNR). We also compare the
results to those obtained with noiseless VIs.

3.4. Modeling Parameters and Sampling Methods

Before the test, the ability to deal with multiple VIs (best input VIs) and to obtain the modeling
parameters must be analyzed. In this test, the optimal modeling parameters are determined according
to the accuracy of validation by using an exhaustive method within limits (Table 3). In the next
modeling test, these optimal parameters were selected for testing. Through thousands of rough
modeling and verification processes (Note in Table 3), we obtained the best optimal model parameters
under the optimal VIs input.

Table 3. Maximum, minimum, and step length (SL) of ANN, RF, and SVM parameters.

Method ANN RF SVM

Parameters Hidden layer 1 Hidden layer 2 SL ntree SL mtry SL c SL g SL

Min value 1 1
1

0
20

1
1

−10
0.5

−10
0.5Max value 20 20 2000 10 10 10

Note: Only parameters to be optimized appear in this table; other parameters were determined as per Refs. [34,80,81].
Number of modeling and verification: ANN, 20× 20× 7 = 2800; RF: 100× 10× 7 = 7000; SVM: 40 × 40 × 7 = 11,200.

Leave one sampling (LOS) was used to evaluate the performance of each technique, and global
random sampling (GRS) and growth-period sampling (GPS) were used to evaluate the performance
and stability of each technique with different sampling methods [81,82]. Global random sampling
represents random samples from all samples, with a total of three samplings taken and denoted
GRS1/3 (64 samples for modeling, the remaining 128 samples for validation), GRS1/2 (96 samples
for modeling, the remaining 96 samples for validation), and GRS2/3 (128 samples for modeling, the
remaining 64 samples for validation). Growth-period sampling uses random samples from each period
and ensures an equal number of samples per birth period. Therefore, all samples from the whole
growth period were divided into four layers, with each layer including one growth period. Again a
total of three samplings were taken and are likewise denoted GPS1/3, GPS1/2, and GPS2/3. Leave
one sampling represents leave-one-out cross-validation [83] in which only one sample is selected for
verification, with all other samples taken as training samples (191 samples for modeling, the remaining
one sample used for validation).

3.5. Precision Evaluation

We use the coefficient of determination R2, the root mean square error (RMSE), the mean absolute
error (MAE), and normalized root mean square error (NRMSE) and coefficient of variance of the
root mean square error [CV(RMSE)] to evaluate the accuracy of each technique. A larger R2 value
corresponds to a smaller RMSE, MAE, NRMSE, and CV(RMSE) and greater model accuracy. R2, RMSE,
MAE, NRMSE, and CV(RMSE) are calculated as follows:

R2 = 1− ∑n
i=1 (yi − xi)

2

∑n
i=1 (yi − y)2 (2)

RMSE =

√√√√√ n
∑

i=1
(xi − yi)

2

n
(3)

MAE =

n
∑

i=1
|xi − yi|

n
(4)
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NRMSE =

√
n
∑

i=1
(xi−yi)

2

n

ymax − ymin
(5)

CV(RMSE) =

√
n
∑

i=1
(xi−yi)

2

n

y
(6)

where xi and yi are the estimated and measured AGB values, respectively, ymax and ymin are the
maximum and minimum measured values, respectively, x and y are the average estimated and
measured values, respectively, and n is the sample number.

4. Results

The correlation coefficients r between the AGB and the VIs are shown in Table 4. The results show
that all the measured VIs are correlated with biomass to varying degrees. Of the 54 VIs investigated,
NPQI performs the best (r = 0.757). The correlation with AGB of the red-, green-, and blue-band-based
spectral VIs [e.g., NPQI (0.757), BGI (0.555), TCARI (0.188), NPCI (0.474), BRI (0.519), and MCARI
(0.237)] is greater than that of red- and near-infrared-band-based spectral VIs [e.g., MND680(0.193),
MND705(0.086), NDVI (0.039), SR (0.029), EVI2 (0.182), OSAVI (0.088), and EVI (0.149)].

Table 4. Correlation coefficients r between AGB and VIs (n = 192).

Number VI r Number VI r Number VI r

1 NPQI 0.757 ** 19 MCARI1 0.226 ** 37 NDLI 0.106 n.s.

2 BGI 0.555 ** 20 MTVI1 0.226 ** 38 PSSR 0.102 n.s.

3 BRI 0.519 ** 21 MND680 0.193 ** 39 ATSAVI 0.092 n.s.

4 RVIhyp 0.490 ** 22 TCARI 0.188 ** 40 OSAVI 0.088 n.s.

5 NPCI 0.474 ** 23 EVI2 0.182 * 41 MND705 0.086 n.s.

6 CAI 0.442 ** 24 PSND 0.180 * 42 RARS 0.079 n.s.

7 PVIhyp 0.370 ** 25 MSAVI 0.180 * 43 SIWSI 0.075 n.s.

8 LWVI2 0.352 ** 26 TVI 0.177 * 44 NDWI 0.075 n.s.

9 LWVI1 0.337 ** 27 GI 0.176 * 45 PBI 0.067 n.s.

10 SLAIDI 0.304 ** 28 PRI 0.176 * 46 MSR705 0.061 n.s.

11 SRWI 0.300 ** 29 VARIgreen 0.165 * 47 NDVI 0.039 n.s.

12 LAIDI 0.397 ** 30 SIPI 0.157 * 48 LCI 0.034 n.s.

13 RVSI 0.299 ** 31 MCARI2 0.149 * 49 MSR 0.032 n.s.

14 WI 0.260 ** 32 PSRI 0.149 * 50 WDRVI 0.031 n.s.

15 SPVI 0.251 ** 33 RDVI 0.146 * 51 SR 0.029 n.s.

16 ARI 0.241 ** 34 RGR 0.142 * 52 MSI 0.029 n.s.

17 MCARI 0.237 ** 35 EVI 0.149 * 53 DSWI 0.027 n.s.

18 NDNI 0.228 ** 36 MTVI2 0.121 * 54 NDII 0.012 n.s.

Note: Probability levels are indicated by n.s., *, and ** for “not significant” (up to 0.119), 0.05 (greater than 0.141),
and 0.01 (greater than 0.185), respectively. ** r (0.01, 192) = 0.185; * r (0.05, 192) = 0.141.

The correlation coefficients r among the 54 VIs are shown in Figure 5. For each VI, there are
53 colors that represent different correlation coefficient values. The results (Figure 5) show that complex
correlations exist among these 54 VIs. NPQI (first), BGI (second), ARI (16th) and TCARI (22nd) are
low correlated with other VIs. Among the top 22 VIs, a low correlation (zone a) was observed, but the
remaining 32 VIs have a high correlation (zone b). The VIs analysis results of total explained variance
and variance inflation factor (VIF) values are shown in Tables A1 and A2 (in Appendix A).
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Figure 5. Correlation coefficients r among 54 VIs. NPQI (first), BGI (second), ARI (16th) and TCARI 
(22nd) are weakly correlated with other VIs. Zone a (orange and light blue), low correlation zone; 
Zone b (red and dark blue), high correlation zone. VIs are ordered according to corr. coeff to AGB. 

4.1. Selection of Vegetation Indexes 

The best AGB models and the associated validation accuracy of the eight techniques are shown 
in Figure 6. After a different number of VIs (Table 5) were incorporated into the modeling, the 
validation accuracy of ANN, BBRT, DT, and RF (Figure 6a–c,g) flattens out. BBRT and DT performed 
well when using the top five VIs as the input, although the validation accuracy decreases slightly 
after using lower-correlation VIs as the input for modeling (Figure 6b,c). The performance of ANN, 
PCR, and SVM becomes complex (Figure 6a,f,h) after using lower-correlation VIs as the input for 
modeling. 

 

Figure 6. Best AGB modeling and validation accuracy for eight techniques with different input VIs: 
(a) ANN, (b) BBRT, (c) DT, (d) MLR, (e) PLSR, (f) PCR, (g) RF, (h) SVM. Note: R2 (M) and R2 (V) 
indicate R2 for modeling and validation, respectively. The same notation is used for MAE (M) and 
MAE (V), RMSE (M), and RMSE (V). 
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(22nd) are weakly correlated with other VIs. Zone a (orange and light blue), low correlation zone;
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4.1. Selection of Vegetation Indexes

The best AGB models and the associated validation accuracy of the eight techniques are shown in
Figure 6. After a different number of VIs (Table 5) were incorporated into the modeling, the validation
accuracy of ANN, BBRT, DT, and RF (Figure 6a–c,g) flattens out. BBRT and DT performed well when
using the top five VIs as the input, although the validation accuracy decreases slightly after using
lower-correlation VIs as the input for modeling (Figure 6b,c). The performance of ANN, PCR, and SVM
becomes complex (Figure 6a,f,h) after using lower-correlation VIs as the input for modeling.
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Table 5. Optimal number of input VIs for the eight analytical techniques.

Technique ANN BBRT DT MLR PLSR PCR RF SVM

Number of input VIs 30 5 5 20 15 5 30 30

Note: the number of input VIs (n) represents the top n VIs in Table 4.

The results, given in Table 5, are the optimum numbers of input VIs determined by the change of
validation accuracy (Figure 6). The numbers were confirmed when the best estimation accuracy was
obtained. For example, with the input modeling of the top 30 VIs, the highest accuracy was acquired
(Figure 6a). Accordingly, for RF, the parameters ntree = 520 and mtry = 8, the ANN hidden layer is 10
and 2; c = 10 and g = −2.5 for LIBSVM. In PCR modeling, we use 85% as the threshold to determine
the principal component, and when we use the top five VIs as the input, the cumulative variance of
the top two principal components is 89.136%.

Considering that the correlation coefficients r among VIs were high (Figure 5), multi-collinearity
may be a problem when using so many VIs for modeling. The VIs analysis results of total explained
variance (Table A1) and VIF values (Table A2) also support this view. The results in Figure 6 show
that different techniques have varying abilities in tackling multi-collinearity data. ANN, BBRT and
RF show a good performance when dealing with collinear data (Figure 6a,b,g), which performed
well in 30 VIs, 40 VIs and 54 VIs group modeling and validation. Greater modeling accuracy was
obtained with MLR after using more VIs as the input for modeling (Figure 6d), but validation accuracy
decreased, especially after more than 20 VIs were input (R2 (V), MAE (V) and RMSE (V) in Figure 6d).

4.2. Test with White Gaussian Noise

A comparative analysis of different estimation accuracies resulting from the eight selected
techniques with white Gaussian noise (different SNR values) is presented in Figure 7. For each
technique, the three figures (Figure 7) represent R2, RMSE and MAE with different SNR.
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Figure 7 shows the noise immunity for the eight analytical techniques. The results indicate RF >
SVM >DT > BBRT >ANN > PCR > PLSR > MLR. RF performs best in this test with a validation R2 near
0.2 and SNR = 5. For MLR, poor noise immunity was observed; its validation accuracy declined from
SNR = 30 (Figure 7). Meanwhile, the validation of MLR (R2 (<0.2), RMSE (about 8 t/ha) and MAE
(about 6 t/ha)) is the worst in eight techniques. As the noise increases (Figure 7, SNR <30), MLR, PCR
and PLSR are extremely sensitive to it, whereas ANN, SVM, DT, and BBRT are more robust against
noise; however, the latter techniques also show a poor performance with increased levels of noise
(Figure 7, SNR = 5).

4.3. Stability Test

Figure 8 shows the results for modeling and validation using GRS1/3, GRS1/2, and GRS2/3 with
the parameters given in Table 5. The calculated absolute difference of AGB − GRS modeling and the
validation accuracy (we use ∇R2, ∇RMSE and ∇MAE to show the difference) are given in Table 6.

Remote Sens. 2018, 10, 66  13 of 24 

 

Figure 7 shows the noise immunity for the eight analytical techniques. The results indicate 
RF > SVM >DT > BBRT >ANN > PCR > PLSR > MLR. RF performs best in this test with a validation 
R2 near 0.2 and SNR = 5. For MLR, poor noise immunity was observed; its validation accuracy 
declined from SNR = 30 (Figure 7). Meanwhile, the validation of MLR (R2 (<0.2), RMSE (about 8 t/ha) 
and MAE (about 6 t/ha)) is the worst in eight techniques. As the noise increases (Figure 7, SNR <30), 
MLR, PCR and PLSR are extremely sensitive to it, whereas ANN, SVM, DT, and BBRT are more 
robust against noise; however, the latter techniques also show a poor performance with increased 
levels of noise (Figure 7, SNR = 5). 

4.3. Stability Test 

Figure 8 shows the results for modeling and validation using GRS1/3, GRS1/2, and GRS2/3 with 
the parameters given in Table 5. The calculated absolute difference of AGB − GRS modeling and the 
validation accuracy (we use ∇R2, ∇RMSE and ∇MAE to show the difference) are given in Table 6. 

 
Figure 8. Modeling and validation results for global random sampling (GRS). 

Table 6. Absolute difference of AGB − GRS modeling and accuracy of validation. 

Technique 
∇R2 ∇RMSE (t/ha) ∇MAE (t/ha) 

1/3 1/2 2/3 1/3 1/2 2/3 1/3 1/2 2/3
ANN 0.17 * 0.11 0.19 * 0.45 0.59 0.65 0.25 0.69 0.52 
MLR 0.06 0.01 0.08 0.21 0.02 0.10 0.11 0.03 0.10 
DT 0.18* 0.18* 0.31 * 1.12 * 0.83 * 0.66 0.56 0.70 0.91 * 

BBRT 0.23 * 0.19* 0.31 * 1.64 * 1.49 * 1.68 * 1.23 * 1.17 * 1.23 * 
PLSR 0.05 0.01 0.10 0.19 0.01 0.20 0.10 0.02 0.17 

RF 0.16* 0.14 0.24 * 0.85 * 0.85* 1.00 * 0.64 0.66 0.76 
SVM 0.02 0.09 0.19 * 0.14 0.30 0.43 0.06 0.38 0.41 
PCR 0.06 0.04 0.17 * 0.07 0.14 0.26 0.10 0.11 0.26 

Note: ∇R2 > 0.15, ∇RMSE and ∇MAE > 0.800 t/ha are marked with *. ∇R2, ∇RMSE, and ∇MAE show the 
absolute difference between modeling and validation R2, RMSE, MAE, respectively. The smaller the 
difference, the more stable and reliable the technique. 

The difference in the modeling and validation results with eight techniques for global random 
sampling varies (Figure 8). For MLR and PLSR, a stable performance was observed with three 
sampling methods (Table 6). SVM and PCR have a poorer performance than MLR and PLSR in this 
test (Figure 8 and Table 6). For ANN, RF, DT and BBRT, the difference in modeling and validation 
accuracy is huge (Figure 8 and Table 6). As the sampling method changes (1/3, 1/2, 2/3), these four 
techniques still show a poor performance in all investigated techniques. In addition, the validation 
accuracy of almost all techniques is lower than modeling accuracy (Figure 8). 

The modeling and validation results for GPS1/3, GPS1/2, and GPS2/3 are shown in Figure 9. The 
absolute difference of AGB − GRS between modeling and validation accuracy (we use ∇R2, ∇RMSE 
and ∇MAE to show the difference) appears in Table 7. 

Figure 8. Modeling and validation results for global random sampling (GRS).

Table 6. Absolute difference of AGB − GRS modeling and accuracy of validation.

Technique
∇R2 ∇RMSE (t/ha) ∇MAE (t/ha)

1/3 1/2 2/3 1/3 1/2 2/3 1/3 1/2 2/3

ANN 0.17 * 0.11 0.19 * 0.45 0.59 0.65 0.25 0.69 0.52
MLR 0.06 0.01 0.08 0.21 0.02 0.10 0.11 0.03 0.10
DT 0.18* 0.18* 0.31 * 1.12 * 0.83 * 0.66 0.56 0.70 0.91 *

BBRT 0.23 * 0.19* 0.31 * 1.64 * 1.49 * 1.68 * 1.23 * 1.17 * 1.23 *
PLSR 0.05 0.01 0.10 0.19 0.01 0.20 0.10 0.02 0.17

RF 0.16* 0.14 0.24 * 0.85 * 0.85* 1.00 * 0.64 0.66 0.76
SVM 0.02 0.09 0.19 * 0.14 0.30 0.43 0.06 0.38 0.41
PCR 0.06 0.04 0.17 * 0.07 0.14 0.26 0.10 0.11 0.26

Note: ∇R2 > 0.15, ∇RMSE and ∇MAE > 0.800 t/ha are marked with *. ∇R2, ∇RMSE, and ∇MAE show the
absolute difference between modeling and validation R2, RMSE, MAE, respectively. The smaller the difference, the
more stable and reliable the technique.

The difference in the modeling and validation results with eight techniques for global random
sampling varies (Figure 8). For MLR and PLSR, a stable performance was observed with three sampling
methods (Table 6). SVM and PCR have a poorer performance than MLR and PLSR in this test (Figure 8
and Table 6). For ANN, RF, DT and BBRT, the difference in modeling and validation accuracy is huge
(Figure 8 and Table 6). As the sampling method changes (1/3, 1/2, 2/3), these four techniques still
show a poor performance in all investigated techniques. In addition, the validation accuracy of almost
all techniques is lower than modeling accuracy (Figure 8).
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The modeling and validation results for GPS1/3, GPS1/2, and GPS2/3 are shown in Figure 9.
The absolute difference of AGB − GRS between modeling and validation accuracy (we use ∇R2,
∇RMSE and ∇MAE to show the difference) appears in Table 7.Remote Sens. 2018, 10, 66  14 of 24 
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Figure 9. Modeling and validation results for growth period sampling (GPS).

Table 7. Absolute difference AGB − GPS between modeling and validation accuracy.

Technique
∇R2 ∇RMSE (t/ha) ∇MAE (t/ha)

1/3 1/2 2/3 1/3 1/2 2/3 1/3 1/2 2/3

ANN 0.22 * 0.07 0.03 1.20 * 0.57 0.34 1.00 * 0.60 0.26
MLR 0.07 0.03 0.03 0.50 0.35 0.28 0.32 0.30 0.14
DT 0.14 0.17 * 0.17 * 1.37 * 1.20 * 0.50 0.78 1.00 * 0.77

BBRT 0.23 * 0.19 * 0.20 * 1.83 * 1.64 * 1.56 * 1.36 * 1.21 * 1.23 *
PLSR 0.04 0.04 0.00 0.23 0.46 0.07 0.22 0.40 0.02

RF 0.14 0.12 0.11 1.04 * 1.03 * 0.87 * 0.80 * 0.77 0.70
SVM 0.16 * 0.07 0.05 0.81 * 0.72 0.15 0.62 0.76 0.37
PCR 0.01 0.06 0.01 0.11 0.47 0.06 0.10 0.36 0.01

Note: ∇R2 > 0.15, ∇RMSE and ∇MAE > 0.800 t/ha are marked with *. ∇R2, ∇RMSE, and ∇MAE show the
absolute difference between modeling and validation R2, RMSE, MAE, respectively. The smaller the difference, the
more stable and reliable the technique.

The results showed that all techniques perform differently in different modeling and validation
sample sizes (Tables 6 and 7, from 1/3 to 1/2 and 2/3). We observed a stable performance in MLR,
PLSR and PCR (Figure 9 and Table 7) in the GPS sampling method. As modeling numbers increased
(1/3, 1/2, 2/3), MLR and PLSR performed more stably [such as MLR: (∇R2: 0.07, 0.03, 0.03; ∇RMSE:
0.50, 0.35, 0.28; ∇MAE: 0.32, 0.30, 0.14) in Table 7)]; ANN, PLSR, RF and SVM with GPS sampling
showed a clear growth in stability (Tables 6 and 7). The above results indicate that the GPS sampling
method is more effective than GRS for obtaining stable estimation models.

4.4. Estimation Accuracy with Leave One Sampling

The results for validation with LOS appear in Figure 10. PLSR provides the highest accuracy
for AGB−LOS modeling. The LOS validation results shown in Figure 10 suggest that all of these
techniques have impressive accuracy: the R2 values are at least 0.79 [PCR with RMSE = 1.63 t/ha,
MAE = 1.24 t/ha, NRMSE = 0.10, CV(RMSE) = 0.25], and PLSR [R2 = 0.89, RMSE = 1.20 t/ha,
MAE = 0.90 t/ha, NRMSE = 0.07, CV(RMSE) = 0.18] has the highest accuracy. The leave-one-out cross
validation indicates that the prediction performance of these techniques can be ranked as (Figure 10i)
PLSR > MLR > RF > SVM > BBRT > ANN > DT > PCR.
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Figure 10. Measured and estimated AGB using leave one sampling. (a): PLSR; (b): MLR; (c): RF;
(d): SVM; (e): BBRT; (f): ANN; (g): DT; (h): PCR; (i): R2, RMSE, MAE, NRMSE and CV(RMSE) of
all techniques.

5. Analysis and Discussion

5.1. Analysis and Selection of Vegetation Indexes

Our correlation analysis shows that VIs are correlated with AGB to varying degrees. The results
of the correlation analysis (Table 4) demonstrate that only the correlation of the top 20 VIs exceeds
0.2. Previous studies have shown that near-infrared- and red-band VIs are effective for estimating
AGB [8,9,11]. The correlation between AGB and red- and near-infrared-band VIs is low in this study
(Table 4). This may be because, during the reproductive stage, photosynthesis and the near-infrared
reflectance [84] both clearly decrease (Figure 2), reducing the correlation between AGB and the red- and
near-infrared-based VIs. This result is consistent with the results of a previous study [17]. By contrast,
the correlation between the entire growth stage of winter wheat AGB estimates and the red-, green-,
and blue-band spectral indexes is more promising (Table 4). Our study also demonstrated that these
vegetation indices are effective in estimating AGB (Figure 6, top five VIs input). Thus, red-, green-, and
blue-band spectral indexes are useful as they can be used to estimate AGB during vegetative growth
and reproductive growth stages.
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A serious multi-collinearity problem arises in the investigation of 54 VIs (Figure 5, Tables A1
and A2); our results (Figure 6) show that the verification accuracy of eight techniques differs when fed
multi-collinearity data (Figure 5) as the input. Previous studies have shown that machine learning
techniques (ANN [81], BBRT [24] and RF [21,85]) can make full use of the narrow hyperspectral bands
(strongly collinear data) and VIs. In the current study, ANN, BBRT and RF are almost unaffected
by using multi-collinearity data (Figure 6a,b,g), which may indicate that these techniques are robust
against noise, which may relate to the principles of these techniques. Garg et al. [86] indicated that the
machine learning technique is suitable for tackling the multi-collinearity problem; our results showed
that machine learning techniques have better abilities in tackling the multi-collinearity problem than
that of conventional regression techniques (Figure 6). In addition, the results show that MLR has a
poor performance when using multi-collinearity data to estimate AGB, which confirms the results of
a previous study [87]; PLSR performs best in three conventional regression techniques for tackling
the multi-collinearity problem, which confirms the results of a previous study [87]. Thus, PLSR is a
useful tool that can be used to estimate several response variables simultaneously, while accounting
for multi-collinearity variables [88].

5.2. Analysis of Noise Immunity

Our results show that machine learning techniques are more immune to powerful noise than
conventional regression techniques (Figure 7); RF performs best in this noise test. This may be
because the RF method randomly changes the input variable and validates the importance of the input
data, thus generating a large number of decision trees and reducing the impact of noise; this result
corresponds to the results of previous studies [25,89,90]. Our results (Figure 7) show that MLR is more
sensitive to noise than PLSR, which is consistent with the findings of Zhao et al. [91]. The results of
Atzberger et al. [7] indicate that the noise immunity of PCR, PLSR, and SMLR is ranked as PCR > PLSR
> MLR, which is exactly the same ranking as obtained in the present work (Figure 7). The present
noise immunity results (Figure 7) are important because repeated observations by remote-sensing
techniques occur at different times; so techniques with poor noise immunity may lead to low accuracy
because of data errors [26,78,79] (e.g., due to atmosphere, clouds, observation times, sensor noise).
Our noise immunity results may explain why different regression studies of vegetation parameters
based on remote sensing obtain significantly different results.

5.3. Analysis of Stability and Prediction Performance

PLSR and MLR both perform better in stability tests than machine learning techniques (Tables 6
and 7, from 1/3 to 1/2 and 2/3 sampling). Farifteh et al. [92] indicated that PLSR performs more stably
in soil salinity estimation than ANN (PLSR: R2: 0.6~0.98, RMSE% = 11.6~48%; ANN: R2 = 0.46~0.97,
RMSE% = 12.5~57%). Thus, PLSR and MLR may be suitable for works in which fewer samples are
available for modeling. BBRT and DT perform poorly in stability tests, and the AGB estimation model
seems to be over fit because R2 is close to unity in all tests (Figure 6b,c). However, the validation
accuracy of BBRT remains high, whereas that of DT is poor. Fewer studies evaluating DT for AGB
estimation are available, which may be because DT does not deliver high accuracy for AGB estimation
by remote sensing. Yuan et al. [81] indicated that the accuracy of the simple random sampling method
is lower than stratified sampling, and our results are in agreement with that study; our results also
indicate that all GPS models are more stable than GRS with 2/3 sampling (Table 6 GRS 2/3, and
Table 7 GPS 2/3). This may be because the inappropriate sample selection method affects modeling
and validation accuracy, which may indicate that GPS sampling is more suitable for these techniques.
A previous study showed that stratified sampling helps to generate a good calibration set [82]; this may
explain why GPS performed better than GRS in this study.

PLSR has the highest accuracy in leave-one-out cross validation (Figure 10a), while PCR has the
lowest precision (Figure 10h). This comparison between PLSR and PCR is consistent with the results of
Atzberger et al. [7], who estimated the aboveground-canopy Chl content (PLSR: R2 = 0.85, RMSE = 51;
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PCR: R2 = 0.57, RMSE = 82). In addition, the comparison herein between PLSR, ANN, and PCR is
consistent with that of Mirzaie et al. [22] in their estimate of the water content of vegetation (PLSR:
R2 = 0.93, RRMSE = 0.23; ANN: R2 = 0.83, RRMSE = 0.41; PCR: R2 = 0.78, RRMSE = 0.41). Thus, PLSR
is a useful tool that can be used to estimate AGB with high accuracy.

6. Conclusions

We have provided herein a series of machine learning and conventional regression techniques to
estimate hyperspectral winter wheat AGB and select input data for the sampling methods. We have
also analyzed the noise immunity and prediction accuracy. The results allow the following conclusions
to be drawn:

(1) Machine learning is the correct technique for tackling the multi-collinearity problem. ANN, BBRT
and RF are almost unaffected by the multi-collinearity problem (Figure 6a,b,g), while MLR and
PCR could not solve it.

(2) Machine learning techniques are much more immune to noise than conventional regression
techniques. In terms of noise immunity, the techniques are ranked as follows (Figure 7):
RF > SVM >DT > BBRT >ANN > PCR > PLSR > MLR. Thus, RF may be suitable for work that
requires repeated observations via remote sensing.

(3) The growth-period random sampling method performed better in stability tests. PLSR and MLR
perform well in all stability tests (Figures 8 and 9 and Tables 6 and 7); these techniques and
the sampling method may be suitable for work in which only a few samples are available for
high-accuracy and stability estimation modeling.

(4) This study demonstrated the potential application of VIs, machine learning and conventional
regression techniques in estimating winter wheat biomass. The experimental results indicated
that PLSR, MLR, and RF may be suitable for work that requires high-accuracy estimation models.
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Appendix A

Principal component analysis of the VIs was conducted by SPSS software (Statistical Product
and Service Solutions, IBM, Amon, New York, NY, USA). Total explained variance is shown in
Table A1. For each group of VIs, the different values represent the total explained variance with
different components.
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Table A1. Total explained variance of each group of VIs (%).

Component 54VIs 40VIs 30VIs 20VIs 15VIs 10VIs 5VIs

1 75.891 70.822 65.584 62.495 65.402 60.494 68.135
2 85.003 82.513 80.511 81.348 87.255 89.711 89.136
3 92.211 91.435 91.553 92.157 94.391 94.269 97.232
4 95.228 94.586 94.757 94.774 96.541 97.199 99.927
5 97.350 97.109 97.179 97.235 98.056 98.596 100.000
6 98.149 98.025 98.226 98.246 99.039 99.514 -
7 98.706 98.683 98.841 98.817 99.483 99.887 -
8 99.217 99.137 99.242 99.306 99.779 99.956 -
9 99.425 99.391 99.551 99.662 99.881 99.985 -

10 99.614 99.633 99.696 99.824 99.940 100.000 -
11 99.726 99.746 99.801 99.889 99.965 - -
12 99.817 99.829 99.870 99.927 99.986 - -
13 99.872 99.885 99.903 99.958 99.994 - -
14 99.902 99.914 99.931 99.974 100.000 - -
15 99.927 99.933 99.951 99.988 100.000 - -
16 99.942 99.950 99.967 99.994 - - -
17 99.956 99.963 99.979 99.998 - - -
18 99.966 99.975 99.985 100.000 - - -
19 99.974 99.984 99.989 100.000 - - -
20 99.980 99.989 99.994 100.000 - - -
21 99.985 99.992 99.996 - - - -
22 99.988 99.994 99.998 - - - -
23 99.991 99.996 99.998 - - - -
24 99.993 99.997 99.999 - - - -
25 99.994 99.998 100.000 - - - -
26 99.996 99.999 100.000 - - - -
27 99.996 99.999 100.000 - - - -
28 99.997 99.999 100.000 - - - -
29 99.998 100.000 100.000 - - - -
30 99.998 100.000 100.000 - - - -
31 99.999 100.000 - - - - -
32 99.999 100.000 - - - - -
33 99.999 100.000 - - - - -
34 99.999 100.000 - - - - -
35 100.000 100.000 - - - - -
36 100.000 100.000 - - - - -
37 100.000 100.000 - - - - -
38 100.000 100.000 - - - - -
39 100.000 100.000 - - - - -
40 100.000 100.000 - - - - -
41 100.000 - - - - - -
42 100.000 - - - - - -
43 100.000 - - - - - -
44 100.000 - - - - - -
45 100.000 - - - - - -
46 100.000 - - - - - -
47 100.000 - - - - - -
48 100.000 - - - - - -
49 100.000 - - - - - -
50 100.000 - - - - - -
51 100.000 - - - - - -
52 100.000 - - - - - -
53 100.000 - - - - - -
54 100.000 - - - - - -

Note: 54, 40, 30, 20, 15 and 5 represent each group of data; Components 1~54 represent the first to 54th component,
respectively. Symbol “-” stand for “None”.
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VIF (Table A2) provides an index that measures how much the variance of an estimated regression
coefficient is increased because of collinearity. VI 1~VI 54 represent different VIs in Table 4 which fed
into MLR modeling and validation.

Table A2. Variance inflation factor (VIF) of VIs.

VI 54VIs VI 40VIs VI 30VIs VI 20VIs VI 15VIs VI 10VIs VI 5VIs

1 121.3 1 84.0 1 46.6 1 35.0 1 20.7 1 13.7 1 7.1
2 793.8 2 400.9 2 323.2 2 28.3 2 7.2 2 6.0 2 3.3
3 1118.0 3 615.0 3 511.4 3 317.0 3 177.2 3 143.8 3 121.2
4 492.3 4 399.1 4 346.3 4 203.3 4 173.3 4 94.1 4 3.5
5 2673.3 5 2015.7 5 1492.1 5 471.6 5 258.9 5 215.0 5 150.6
6 16.2 6 14.0 6 13.9 6 11.7 6 9.1 6 6.5 - -
7 1122.8 7 1526.1 7 1190.1 7 395.0 7 326.8 7 19.9 - -
8 2441.3 8 1548.6 8 1290.8 8 1023.6 8 779.8 8 287.1 - -
9 172.7 9 114.8 9 79.4 9 41.8 9 32.8 9 7.7 - -

11 2138.9 11 1271.3 11 828.0 11 497.9 11 438.6 10 408.9 - -
12 1637.2 12 1188.4 12 1133.6 12 805.6 12 616.8 - - - -
13 358.1 13 1227.3 13 956.0 13 86.9 13 29.4 - - - -
14 175.4 14 156.0 14 148.3 14 111.3 14 72.1 - - - -
15 3285.7 15 3332.0 15 3899.8 15 1486.7 15 146.8 - - - -
16 191.9 16 101.7 16 85.5 16 39.2 - - - - - -
17 1130.6 17 1128.6 17 918.1 17 23.0 - - - - - -
18 156.2 18 118.5 18 79.0 18 18.7 - - - - - -
21 6258.6 21 3884.6 21 886.0 20 1280.1 - - - - - -
22 663.8 22 572.1 22 470.4 - - - - - - - -
24 996.9 24 706.2 24 207.5 - - - - - - - -
25 3304.2 26 8495.2 26 2382.6 - - - - - - - -
28 5845.4 27 2114.8 27 7627.7 - - - - - - - -
30 1939.9 28 3010.1 28 1554.9 - - - - - - - -
32 8499.5 30 1287.1 30 2371.2 - - - - - - - -
34 3063.2 32 6092.3 32 177.4 - - - - - - - -
37 59.0 37 42.0 - - - - - - - - -
38 2705.9 38 148.6 - - - - - - - - - -
41 4203.8 40 4259.2 - - - - - - - - - -
45 4723.4 - - - - - - - - - - - -
46 2086.8 - - - - - - - - - - - -
50 4010.9 - - - - - - - - - - - -
51 1151.1 - - - - - - - - - - - -
52 4666.7 - - - - - - - - - - - -
54 3874.4 - - - - - - - - - - - -

Note: 54VIs, 40VIs, 30VIs, 20VIs, 15VIs and 5VIs represent different VIF values of each VI in four groups of data.
Symbol “-” stand for “None”.
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