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Abstract

:

This paper presents an application of a novel machine-learning framework on MODIS (moderate-resolution imaging spectroradiometer) data to map burned areas over tropical forests of South America and South-east Asia. The RAPT (RAre Class Prediction in the absence of True labels) framework is able to build data adaptive classification models using noisy training labels. It is particularly suitable when expert annotated training samples are difficult to obtain as in the case of wild fires in the tropics. This framework has been used to build burned area maps from MODIS surface reflectance data as features and Active Fire hotspots as training labels that are known to have high commission and omission errors due to the prevalence of cloud cover and smoke, especially in the tropics. Using the RAPT framework we report burned areas for 16 MODIS tiles from 2001 to 2014. The total burned area detected in the tropical forests of South America and South-east Asia during these years is 2,071,378 MODIS (500 m) pixels (approximately 520 K sq. km.), which is almost three times compared to the estimates from collection 5 MODIS MCD64A1 (783,468 MODIS pixels). An evaluation using Landsat-based reference burned area maps indicates that our product has an average user’s accuracy of 53% and producer’s accuracy of 55% while collection 5 MCD64A1 burned area product has an average user’s accuracy of 61% and producer’s accuracy of 27%. Our analysis also indicates that the two products can be complimentary and a combination of the two approaches is likely to provide a more comprehensive assessment of tropical fires. Finally, we have created a publicly accessible web-based viewer that helps the community to visualize the burned area maps produced using RAPT and examine various validation sources corresponding to every detected MODIS pixel.
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1. Introduction


Forest fires are known to generate a significant flux of greenhouse gases and particulate matter into the atmosphere and also contribute to several ecological effects such as the loss of animal habitat and biodiversity [1]. In the tropical forests, fires are often associated with active deforestation fronts and linked to illegal establishment of industrial timber, oil palm, soy, and tea and coffee plantations [2]. Forest fire mapping from satellite data offers opportunities for providing timely information on the implementation of sustainable forest management, which is critical for making sound policy decisions for protecting forests. Furthermore, multi-annual burned area products are also needed to improve the understanding of the relationship between climate, vegetation and fires [3]. As a result, there has been an increase in demand for automated and reliable tools to monitor forest fires from earth observing satellite data [4].



Existing satellite-based techniques for burn area assessment can be grouped into two broad categories-active fire (hotspot) detection and post-fire burned area mapping. Hotspot detection approaches use thermal energy associated with burning of biomass to map active (ongoing) fires with the purpose of real-time fire management. A number of papers have used active fire data as a proxy to report the burned area estimates [5,6,7]. However, hotspot detection methods are known to have a high omission error rate because they tend to miss burned pixels due to obstruction by clouds and smoke as well as due to limited satellite diurnal sampling (i.e., satellite overpass occurred when the fires were not burning) [8]. Moreover, active fire often overestimates burned area in regions with a large proportion of small, sub-pixel fires [9]. In contrast, post-fire burned area mapping techniques consider satellite observations of the land surface over a longer temporal interval around the burn date to create more reliable historical maps of burned areas [8,10,11,12,13,14]. Note that post-fire mapping techniques are relatively more robust to issues due to cloud cover or smoke from fires because often burn scars remain detectable in the spectral observations for several months after the burn date. This paper presents a new post-fire burned area product that is particularly relevant for tropical forests where both of these issues are very common.



Satellite-based post-fire burned area mapping algorithms face two key challenges. First, the relationship between the explanatory variables (spectral features) and target variable (burned/unburned) changes with spatial regions and land cover [8]. Therefore, training a single classification model to distinguish burned pixels from unburned pixels and applying it across different land cover classes and geographies can result in poor performance. To address this issue, existing approaches train separate customized models for each land cover and spatial region. However, this requires annotated training samples in each land cover and geographical region, which is infeasible due to the considerable human effort involved in collecting training samples using ground and aerial surveys. To address the challenge of lack of annotated training data for different spatial regions and land classes, previous approaches such as [8,9] have used Active Fire hotspots for selecting training samples. However, active fire hotspots are only imperfect surrogates for burned areas; therefore, these previous studies also used hand-crafted “cleaning” rules while selecting training pixels from active fire hotspots to ensure that the training samples are accurate. While such “cleaning heuristics” are helpful in improving the performance of classification models, the spectral diversity of burned pixels can make such “cleaning heuristics” very brittle in some regions and land classes.



The second challenge is that the unburned locations considerably outnumber the burned locations. Hence even with a small false positive rate, a traditional classification algorithm can result in a significant number of spurious burned areas. This issue has been addressed by previous approaches using the concept of identifying confident burns by using co-occurrence of active fire hotspots and burn scars in spectral observations [8]. Moreover, since landcover changes can occur due to other reasons such as logging, requiring the presence of active fire hotspots ensure that landcover changes other than fire are excluded.



This paper presents an application of a novel machine-learning framework to map burned areas over tropical forests of South America and South-east Asia. This 3-stage framework RAPT (RAre Class Prediction in the absence of True labels) [15] is able to build data adaptive classification models using noisy training labels (See Section 3.1 for details). The RAPT framework was used to build a burned area product derived from MODIS Surface Reflectance 8-day composite product MOD09A1 [16] and MODIS active fire product MOD14A2 [17] for the tropical forests in Amazon and South-east Asia. An evaluation was performed using Landsat-based reference burned area maps that were constructed by following the procedure in [18] (see Section 3.2 for details).



Finally, we have created a publicly accessible web-based viewer for visualizing our burned area product http://z.umn.edu/fireviewer/. The viewer shows the RAPT events corresponding to a user-selected MODIS tile and year as event polygons. For each polygon, the Landsat composites before and after the date of event can be queried. Polygon-level statistics such as total number of MODIS pixels, number of pixels with an active fire hotspot, and the number of pixels identified by collection 5 MCD64A1 are reported. The MODIS pixels belonging to a particular event polygon can also be viewed by selecting the polygon. In addition, relevant information about these MODIS pixels (such as their Enhanced Vegetation index series, Normalized Burn Ratio index series, and MODIS land cover classification labels) can be queried by selecting (clicking) one of the pixels.




2. Material: Study Area and Input Data


This study considers the burned areas in forests located in tropical regions in South America and South-east Asia. We do not consider the African tropics in this study since the forest fires in that region mainly occur at a subpixel level in forested pixels that border other landcover classes such as grasslands and savannas, making it difficult to build a high accuracy classifier for them using 500 m MODIS data. The burned area detection algorithm uses the 500 m MODIS Surface Reflectance 8-day composite product MOD09A1 [16,19], MODIS active fire product MOD14A2 [17,19], and MODIS MOD12Q1 land cover classification product [19,20]. The MODIS products are defined on global sinusoidal grids in fixed geolocated tiles approximately 10 degree by 10 degree in size and are publicly available from Land Processes Distributed Active Archive Center. The MODIS products used in this study are from the MODIS 5 collection. Moreover, collection 5 MODIS MCD64A1 [8,19] is used as an existing state-of-art burned area product for comparative study. Here we always refer to collection 5 MODIS MCD64A1 as MCD64 product.



The RAPT framework is applied to the forested locations in 16 MODIS tiles in South America and South-east Asia from 2001 to 2014. Figure 1 shows the MODIS tiles covered in the region of study.




3. Methods: RAPT Framework and Validation Procedure


3.1. RAPT Framework


Our burned area detection framework makes use of the information in MODIS active fire hotspots and multispectral surface reflectance data for global-scale burned area detection. There are two key innovations used in our algorithm that distinguish it from previous approaches. First, the algorithm uses a new training procedure [15] that is robust to presence of noise in the labels of training samples, as a result of which our approach does not rely on “cleaning heuristics”. Second, the classifier used in our approach [21] takes into account the yearly context of the burn scar signature instead of just a per time step signature. The longer temporal context helps improve the user’s accuracy of the detected burned area while maintaining a higher coverage. The detection algorithm proceeds through the three stages described below (Figure 2 shows flowchart of the RAPT framework).



3.1.1. Stage 1: Identifying Burn-Scars from Spectral Data


In this step, a classification model is trained to identify the burned pixels using the 7-dimensional feature space consisting of all the seven bands of MODIS multispectral reflectance data. Active fire hotspots were used as training labels to learn the classification model. Specifically, 20,000 unburned (with no Active Fire) and 20,000 pixels with Active fire are used as training instances for the classifier (in case 20,000 pixels with Active Fire are not available, we take however many such samples are available). This classifier is then applied on all pixels to produce the initial classification for each 500 m pixel annually. Burned pixels identified by this classifier are treated as candidate burned pixels, which are then refined in the subsequent stages to give the final burned areas.



Selecting training pixels: We make use of the active fire hotspots to select the training samples for burned and unburned classes to train the scar classifier. In particular, we select positive training samples for burned class from pixels with an active fire hotspot, if they form a spatial cluster of size greater than 10 pixels. This spatial pruning is done to eliminate active fire pixels belonging to sub-pixel burns. Negative training samples (unburned class) are selected from pixels that do not have an active fire hotspot. Pixels with an active fire observation on a given date are more likely to show a burn scar than those without an active fire. However, active fire hotspots are only a weak surrogate for burn-scars and a training data set created using active fire observations is often contaminated with noise in the labels of the training samples.



Computing posterior class probabilities: We use a neural network model [21] as our classifier to model the probability that a given pixel belongs to the burned class. The model takes the spectral features corresponding to the 46 time steps present in a year as input and outputs a probability that the location belongs to the burned class for the year. The design of this neural network model is motivated by the following two characteristics of fire events. First, a burn event leads to a burn scar that is often distinguishable in the spectral features. Second, the burn events (and hence the scars) follow a temporal context and occur in a fire season that is specific to each geography and land cover. Our neural network model SeqRep makes use of these characteristics of fire events to identify burned pixels using multispectral observations.



Figure 3 shows the design of the neural network. The network assumes that the input data is observed over    T = 46    time steps and has    D = 7    dimensional feature vector corresponding to every time step. The input layer of the neural network takes has    T × ( D + 1 )    nodes in the first layer, corresponding to the D features and a bias term for each time step. The model has a hidden layer with T nodes    {  h 1  , ⋯ ,  h T  }   . Each one of these hidden nodes corresponds to a time step. Unlike a regular neural network with one hidden layer, the hidden layer nodes    h t    corresponding to time step t is connected only to input (first layer) nodes for that time step. Thus, there is a correspondence between every hidden layer node and a time step. Moreover, the weights    {  β 0  ,  β 1  , ⋯ ,  β D  }    connecting the input layer node at a time step to the corresponding hidden layer node are assumed to be shared across time steps. Finally, there is an output node O that is a function of all the per time step predictions captured in the T nodes in the hidden layer. Weights    {  w 0  ,  w 1  , ⋯  w T  }    connect the T hidden layer nodes along with a bias term to the output node O. Thus, the neural network has    ( T + D + 2 ) = 55    weights in all. The hidden layer nodes can be viewed as outputs from a classifier that maps the features at a time step (e.g., reflectance values) to the per time step predictions (e.g., How scarred does the location look on this time step?). The vector of these per time step predictions are then combined to output the prediction for the whole time series (e.g., does the location look scarred at the right time steps?). A back propagation algorithm is used to select the model parameters of the neural network model. The parameter update steps for training this model are provided in the Appendix A.



Note that since active fire typically precedes the date when burn scar is visible at a location, using it as training label only informs the classifier of the presence of a burn scar at the location at some time during the year (and not the exact date of it). SeqRep jointly learns the spectral signature of the burn scar and the timing of the fire season for the region using the MODIS multispectral data and the active fire label for the year provided as input. Thus, although the classifier models fire seasons, it does not require a prior knowledge of the timing of the fire season and hence, can be easily applied to new regions and landcovers.



Fixing decision threshold: The final classifier is written in the following form:


   y =     1    if   P [ y = 1 | x ; w ] ≥ γ       0   otherwise       








where   x   is the spectral feature vector,   w   is the classification model parameter and y is the target class (burned/unburned). The threshold   γ   determines the trade-off between the errors of omission and commission, which varies as   γ   is swept from 0 to 1. In case of burned area mapping a suitable classification objective is to jointly maximize the user’s accuracy and producer’s accuracy of the burned class. Therefore, in the RAPT framework we select   γ   to maximize the product of user’s accuracy and producer’s accuracy of the burned class. Note that selecting the decision threshold   γ   by maximizing the product of the user’s and producer’s accuracy ensures that the errors of omission and commission are relatively balanced. The selection of decision threshold   γ   is a challenge in our problem setting because the training data created using active fire hotspots is plagued with noise in training labels, therefore estimation of user’s and producer’s accuracy corresponding to different choices of   γ   is tricky. In particular, if we ignore the noise in labels of training samples, it may lead to incorrect estimation of user’s and producer’s accuracy resulting in selection of a sub-optimal threshold value, due to which the classification model will show higher rates of omission and commission compared to the optimal model. In our detection method, we use the algorithm developed in [15] that addresses the problem of training classification models when training samples suffer from label noise in the context of imbalanced class problems.




3.1.2. Stage 2: Identifying Confident Burned Pixels


In the second stage, the predictions of the scar classifier are combined with the active fire hotspots to assign either confident burn or unlabeled class to every pixel in each year. We use a conservative combination step that assigns a confident burn only if both the burn-scar and active fire hotspot are present at the pixel for the given year. This strict criterion ensures that the confident burn pixels have a smaller number of commission errors compared to both the scar classifier and active fire hotspots individually.




3.1.3. Stage 3: Spatial Growing and Final Classification


The confident burned areas, identified in the previous step, typically cover only a small fraction of the total burned pixels. This is especially true in the tropics where active fire hotspots have a low coverage due to poor data quality (e.g., obstruction by clouds) and limited frequency of satellite overpass. Therefore, in the third step of RAPT we improve the coverage of burned areas by leveraging the spatial context of confident burned pixels and candidate burned pixels. More specifically, a spatial growing method is used, which includes the pixels that show a burn-scar but are not detected as confident burns as part of final burned areas if they are spatially connected to some confident burned pixels within a spatial distance of 5 MODIS pixels. This is a manually selected threshold, but the performance is not very sensitive to it. In fact, our experimental results indicated that if we choose the distance threshold between 5 to 10 pixels, the results remained unchanged for most tiles and years. However, having this threshold as low as 5 is helpful in ensuring that large spatial regions incorrectly classified as burned in Stage 1 do not get classified as burned at the end of Stage 3 just due to a spurious active fire hotspot that coincides with the onset of event in Stage 1.




3.1.4. Generating Global Product: Additional Data Processing Considerations


To account for the spectral diversity of burn scars, we train multiple classification models, each focusing on a smaller, homogeneous partition of the data, grouped according to geographical region. Training a separate, customized classifier for each homogeneous group is known to improve the burned area detection performance, as it allows for automated adaptation of model parameters to the specifics of fire occurrence in the biome and spatial region of interest [8]. Specifically, in our detection framework, we create separate groups corresponding to each MODIS tile. Moreover, burned area results are reported for only stable forest pixels. A pixel is considered to belong to stable forest in a particular year if it is labeled as forest by MODIS land cover in the previous year as well as in the first 4 years (i.e., 2001–2004).





3.2. Validation Procedure


We evaluated the RAPT burned area product by comparing it against the reference validation maps produced from Landsat images using publicly available BAMS software developed by [10]. We used Landsat 5 images obtained from (https://earthexplorer.usgs.gov/) to generate reference maps used for validation. In this subsection, we present the sampling design used for selecting Landsat scenes for evaluation, the procedure for generating the reference maps for the selected Landsat scene and the accuracy measures used.



3.2.1. Sampling Design


Burned areas are only a small portion of the forested regions, and as a consequence a simple random sampling is not effective when the focus is on validating burned areas. Therefore, we used a proportional sampling scheme similar to the one used in [18], in which the probability of selecting a Landsat scene is proportional to the number of active fire hotspots in the forested regions around the date of that scene. This biases the sampling towards Landsat scenes with higher burned activity, and therefore is helpful in obtaining sufficient fire events in the reference maps generated to robustly estimate omission errors of the burned area products being evaluated.



Since the selection of Landsat scenes is driven by the number of active fire hotspots in the scene in a given year, if a region has seen multiple fires across years then the corresponding Landsat scene can get selected multiple time in our 15 year period. For example, in our set of reference maps in Table 1, scenes 118,062 and 213,070 were selected in multiple years.



Once a Landsat scene was sampled, the date of the fire event was estimated by computing the median of active fire hotspot dates observed in that scene for that year. Finally, pre-event and post-event images for this scene were selected around the date of the fire event according to the following criteria:




	
The images should have low scene level cloud cover fraction according to Landsat metadata (less than 25%).



	
Post-event image should be within 100 days of the date of burn. However, if the selected post-event Landsat image has more than 25% total cloud cover, then the Landsat scene was excluded for that year.



	
Pre-event image should be within 100 days of the date of burn. However, if the selected image has more than 25% cloud cover, then we looked for a clean image in the previous year in the same season. If a Landsat image with less than 25% cloud cover can still be not found, then we exclude the scene for this year.








Note that while comparing the burned area output from the algorithms with the reference maps, only the burned pixels reported between the dates of the pre-event and post-event images are considered as burned. For example, if an unburned pixel according to the reference map is identified by the algorithm outside these dates, it is not considered a commission error. Pre-event and post-event images corresponding to all the reference maps used in study have been added in the supplementary material. Along with these images, we also show pre-event images that are strictly within 100 days of the post image (although cloudy and hence are not suitable for creating reference maps) to provide visual verification that the post-images are within 100 days of the fire event.




3.2.2. Cloud Mask


We used an object based cloud detection method described in [22,23] to mask any pixels impacted by clouds and cloud shadows. For Landsat L1T images, Digital Number (DN) values were first converted to Top of Atmosphere (TOA) reflectance and Brightness Temperature (Celsius degree). Then, multispectral bands, Brightness Temperature and derived indices (NDVI, NDSI) were used to create a potential cloud layer and a potential cloud shadow layer by creating rules based on cloud and cloud shadow physical properties. Cloud layer is then segmented and the geometric relationships are used to match the potential cloud shadow layer, to create the final cloud and cloud shadow mask.




3.2.3. Reference Data


The pre-event and post-event images were first processed using BAMS to obtain a feature set for all pixels. BAMS uses known indices described in literature for burn scar detection. Specifically, BAMS code makes use of 10 spectral variables (the post-fire BAIM (Burned Area Index), NBR (Normalized Burned Ratio), MIRBI (Mid Infrared Burned Index), GEMI (Global Environment Monitoring Index), and NDVI (Normalized Difference Vegetation Index) indexes, plus the temporal differences of those five indexes) [10]. Then several burned pixels were selected by a manual annotator from the Landsat images that were used by BAMS software as training samples for building a classification model. BAMS then applied this classification model to generate the Landsat-based burned areas for the scene, which were used as fire polygons to serve as the reference maps. The performance of BAMS can get impacted by presence of clouds. Hence a cloud detection method described in Section 3.2.2 was used to remove pixels that are affected by clouds, cloud shadows and haze. After excluding invalid pixels, a reference map was considered only if it had sufficiently many valid pixels in order to ensure robust estimation of performance measures. In our experiment, we excluded reference maps that had less than 1000 valid pixels at MODIS scale (each Landsat image has approximately 130,000 MODIS pixels).



As MODIS and Landsat data are at different scales, a mapping between MODIS and Landsat pixels was derived, and then used to assign a fraction burned to each MODIS pixel based on the number of Landsat pixels in it that are reported as burned in the reference maps. The error matrix is completed using these fractions. In particular, for every MODIS pixel flagged as burned by our algorithm, we add the fraction of Landsat pixels belonging to this pixel that are assigned to burn class by BAMS to the true positives and the remaining fraction to the false positives. Similarly, for every MODIS pixel flagged as unburned by our algorithm, we add the fraction of Landsat pixels belonging to this pixel that are assigned to burn class by BAMS to the false negatives and the remaining fraction to the true negatives.




3.2.4. Accuracy Measures


Several measures have been used in previous studies to quantify accuracy of burned area products. The choice of the evaluation measure is guided by the objectives of the end user. In our study, we followed the commonly used approach that uses reference maps to generate pixel-level error matrices for the burned area product. A number of accuracy measures can be derived from error matrix. For skewed class problems such as burned area mapping, it is common to assess the quality of a classification product in terms of the user’s accuracy and producer’s accuracy. User’s accuracy indicates the probability that a pixel reported as burned is actually burned. Producer’s accuracy indicates the probability that an actually burned pixel is reported by the detection algorithm. Note that there is a trade-off between user’s and producer’s accuracy, as one measure can be made extremely high at the cost of the other. Therefore, often combined measures are used to combine information in user’s and producer’s accuracy into a single measure for comparing multiple burned area products. One of the commonly used measure is the Dice coefficient (DC). DC is defined as     2 ∗ T P   ( 2 ∗ T P + F P + F N )    , where TP is number of true positives, FP is number of false positives and FN is number of false negatives in the error matrix. In this study, we report the user’s accuracy, producer’s accuracy and Dice coefficient for RAPT and MCD64 computed over the study region using the Landsat-generated reference maps.






4. Results: Validation Using Landsat-Based Reference Maps and Comparison with MCD64 Product


In this section we validate the burned area maps generated using the RAPT algorithm. For reference, we also compare our detection with the MODIS product MCD64. The MCD64 product is the primary source of the Global Fire Emissions Database (GFED) Version 4 [24]. In [25], the authors did a comparative evaluation of 6 burned area products including MCD64 [8], MCD45 [26], Geoland2 [27] and 3 products from the European Space Agency’s (ESA) Climate Change Initiative (CCI) program [28]. They concluded that MCD64 was the most accurate burned area product. Hence, in this study, we provide a comparison against MCD64 product to establish the utility of our product.



For the ease of comparison we scaled RAPT and MCD64 to annual products, i.e., every year each 500 m pixel in the product was assigned to either burned or unburned class depending on whether it is flagged as burned in at least one of the dates in the corresponding year. On comparing the two products for a given year, each pixel belongs to one of the following categories-reported as burned by both products, reported as burned only by RAPT and unburned by MCD64, reported as burned only by MCD64 and unburned by RAPT, or reported as unburned by both products. Table 2 reports the number of burned pixels belonging to each of the three categories- RAPT (only), Common (i.e., both RAPT and MCD64), and MCD64 (only) aggregated over the 14 years. We observe that RAPT identifies about 60% of burned areas reported by MCD64. However, more importantly, RAPT identifies 2,071,378 MODIS pixels (approximately 520 K sq. km.), which is about three times as many burned areas compared to MCD64. We present the annual burned area reported by RAPT, MCD64 and Active fire for each MODIS tile in the supplementary section.



Results


Table 1 shows the user’s accuracy, producer’s accuracy and Dice coefficient for RAPT and MCD64 burned area products computed using the Landsat reference maps for 19 Landsat scenes. The average user’s accuracy for both RAPT and MCD64 product is greater than 50% (average for RAPT is 53% and for MCD64 is 61%). However, the average producer’s accuracy for RAPT is about 55%, while for MCD64 it is 27%. It is clear that RAPT has significantly higher producer’s accuracy compared with MCD64 for these scenes. A somewhat higher user’s accuracy for MCD64 suggests that MCD64 identifies strong burns while RAPT identifies weaker burn events as well. Note that both RAPT and MCD64 products have a producer’s accuracy of 0 for two scenes (ID 11 and ID 18), i.e., they did not identify any burned pixels in these scenes. This is because the aforementioned scenes have only a small number of burned pixels according to the Landsat reference maps. Also note that for these scenes, user’s accuracy is undefined because when a method does not detect any burned pixel, it has both 0 true positives as well as 0 false positives. In the following section, we examine the Landsat images and reference maps in context of the errors of omission and commission to understand the nature of errors made by RAPT algorithm.





5. Discussion of Results


5.1. Reasons for Higher Producer’s Accuracy of RAPT Compared to MCD64


The higher producer’s accuracy of RAPT relative to MCD64 can be due to the following differences between the two products in their algorithm characteristics-




	
MCD64 requires manual selection of parameters-MCD64 uses a number of hand-crafted rules and parameters during pre-processing to select good quality training samples (for example, an active fire hotspot is included as burned training sample only if the loss in vegetation exceeds a manually fixed threshold), and during classification to detect high quality (precise) burned area (for example, a manually fixed threshold on posterior probability is used to identify confident burned locations). Since the values of these thresholds are not selected in a data-adaptive fashion, the choice of these parameters can be too conservative for the tropics.



	
RAPT balances omission and commission errors-The RAPT framework does a principled selection of decision threshold on the class probability to maximize the product of producer’s and user’s accuracy of the burned area product. This improves the detection performance compared to the previous approaches that relied on a manually fixed threshold that (i) requires human effort and (ii) may not jointly optimize user’s and producer’s accuracy, i.e., increase one at the expense of the other.



	
RAPT makes use of a seasonality-aware classifier-The classifier used in RAPT approach takes into account the yearly context of the burn scar signature instead of just a per time step signature. The longer temporal context helps improve the precision of the detected burned area while maintaining a higher coverage. Moreover, use of a longer temporal context to identify fire scars makes RAPT more robust to poor data quality, as scars often remain detectable for multiple months. On the other hand, MCD64 misses burned locations due to lack of good quality reflectance data around the time of burn event. This problem is particularly relevant for tropical areas with high average percent cloud cover and where burning results in the release of large quantities of particulate matter into the atmosphere. MCD64 product declares some pixels on certain dates to be unburned because the data quality on those pixels in a 20 day neighborhood was too poor to make predictions. The product includes 5 bits of quality flags at monthly scale for each pixel in the MODIS scene. Specifically, when bit 1 takes a value of 1, it indicates that there was sufficient valid data in the reflectance time series for the grid cell to be processed by MCD64. We consider this bit in MCD64 for 3 time steps- the time step corresponding to the only RAPT burned event for the pixel and the next two time steps. In Table 3 we report the fraction of only RAPT burned pixels that have 0, 1, 2 or 3 time steps with good quality flags according to the bit 1 in MCD64 product in each MODIS tile. We observe that about 19% of only RAPT burned pixels have 0 good quality time step around the burn date, and about 20% of only RAPT burned pixels have only 1 good quality time step. Similarly, in Table 4 we report the fraction of MCD64 burned pixels that have 0, 1, 2 or 3 time steps with good quality flags according to the bit 1 in MCD64 product in each MODIS tile. We observe that about 88% of MCD64 burned pixels have 2 or more good quality time step around the burn date. Thus, overall, 39% of all locations detected by only the RAPT algorithm have poor quality data (0 or only 1 good quality time step). On the other hand, only 12% all the locations detected by MCD64 have poor quality data, which suggests that quality plays a role in the performance of MCD64.








To illustrate this further, Figure 4 shows a region in Indonesia where MCD64 missed several burned pixels due to poor data quality around burn date. Figure 4d shows a burned area map with only RAPT, common and only MCD64 detection. We notice that this small region has mostly only RAPT burned pixels (i.e., MCD64 has very little detection here). The burn scar corresponding to the region detected by RAPT can be seen from Landsat images in Figure 4b,c, thus suggesting presence of a burn event. Figure 4e shows a color coded map for quality bit according to MCD64 over these RAPT events, and it is clear from this figure that MCD64 considered the data quality to be bad around the date of these RAPT events.




5.2. Sources of Errors in the RAPT Product


5.2.1. Errors of Omission


	
For regions where RAPT is missing large patches of burned events that are present in the reference maps, the Landsat image composites often show a burn scar that is quite diffused and lighter in intensity (see Figure 5 and Figure 6). These lighter intensity burn scars are most likely due to burns for which the vegetation quickly recovered in a few months. The RAPT algorithm tends to miss fires that have a fast vegetation recovery, and therefore quick recovering fire events correspond to the major source of omission errors in the RAPT product.



	
The RAPT algorithm trains a separate classification model for each MODIS tile to account for the geographical variations in the spectral characteristics of burned and unburned pixels. However, for some MODIS tiles there may be considerable variability within a tile itself. In such cases, RAPT classifier in Stage 1 often learns to identify the dominant type of burn spectral signature, and as a consequence has a high omission error rate on the burned pixels of other non-dominant burn spectral signatures.



	
Another source of omission errors in RAPT is the dependence on Active Fire signal to identify confident burned pixels. We observe that some burn events, which are identified by Stage 1 classifier, get incorrectly eliminated by RAPT algorithm in Stage 2 because of complete absence of Active fire in the pixels of the burn event. Since none of the pixels belonging to these events have an Active fire presence, there are no confident burned pixels identified in Stage 2. As a result, the event cannot be recovered back in Stage 3 (spatial growing) and gets completely missed in RAPT output. This type of error typically impacts burn events of small spatial extent, as the probability of complete absence of Active fire signal is very small for large burn events.







5.2.2. Errors of Commission:


	
RAPT algorithm trains a classification model to distinguish between burned and unburned pixels in the forest land class. Therefore, when it is applied to MODIS pixels that are only partially forest and partially some other land class such as cropland, then it may spuriously detect the pixel as burned. We notice that some of the commission errors were present in such pixels of mixed land cover types.



	
The RAPT product is based on the ability of a statistical model to distinguish between burned and unburned pixels based on their spectral data. Soil, smoke and other atmospheric conditions add considerable variability to the spectral characteristics of burned pixels, and sometime result in spurious burn events if there is presence of Active Fire signal in the spatial vicinity.








5.3. Complementarity of RAPT and MCD64 Products


Although Dice coefficient (a widely used metric that takes into account both user’s and producer’s accuracy) is much higher for RAPT relative to MCD64 for most reference maps in Table 1, these two products should be considered complementary and used together to understand the complete picture. In particular, RAPT and MCD64 operate on different input data and use different algorithms as a result of which some kind of fires might be easier for one algorithm to detect in comparison to the other. For example, short lasting fires that recover in a few weeks might be hard for RAPT to detect (as it uses 8-day MODIS composites), but could still be detected by MCD64 since it relies on daily data. However, long lasting fires (occluded by smoke in the short run) can be difficult to detect for MCD64 as it needs to observe on high quality data in the vicinity of the fire date. Another major issue with MCD64 is that it uses a single set of parameters for the entire globe. Although these parameter choices work well for in areas like North America, they are not necessarily optimal for the tropics where the spectral characteristics of fires are significantly different and noise issues are more prevalent. Hence, a data adaptive scheme like RAPT could be used to compensate for the large number of such omissions of MCD64 in these regions.





6. Concluding Remarks


We presented results on a new MODIS-based burned area product that has comparable user’s accuracy but considerably better producer’s accuracy compared to the state-of-art MCD64 in the tropical forests in South America and South-east Asia. Though there is considerable uncertainty in translating burned area into carbon emissions, the significantly larger burned area identified by RAPT will help addressing the current uncertainties in tropical carbon budgets. Moreover, this product can be used to identify and mitigate practices such as slash-and-burn that are often used to illegally clear forested locations for plantations and other commercial activity.



Even though this paper presented the RAPT results only for the tropical forests of Amazon and South-east Asia, the algorithm offers opportunities for global-scale fire mapping. Since, the presented algorithm does not rely on hand-crafted rules or parameters, and automatically adjusts its model parameters to the specifics of different spatial regions and land cover classes, it can be adapted to identify burned areas in other land classes and geographical regions.



In the RAPT framework, the predictive model is trained on homogeneous land cover and geographical regions. The presented implementation of RAPT uses MODIS tile boundaries to address geographical heterogeneity and relies on the MODIS land classification for a good quality forest mask. However, there may be considerable variability within a MODIS tile, and the MODIS land cover labels are coarse (many sub-classes) and may also be incorrect. The ability of the RAPT framework to identify fires with high accuracy is impacted by these issues. Hence, further extensions of this framework are needed that can perform automated data-driven grouping of pixels, instead of relying on land classification products and MODIS tile boundaries.








Supplementary Materials


In the supplementary document, we present the annual burned area reported by RAPT, MCD64 and Active fire for each MODIS tile in our study area. In addition, composite images for Landsat scenes used for generating the reference maps are also provided.
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Appendix A. Details of the Classification Procedure


Appendix A.1. Data Pre-Processing


	
Level-2 multispectral data from MODIS (MOD09A1) along with Active Fire hotspot data (MOD14A2) and landcover data (MCD12Q1) is obtained for each MODIS tile from http://earthexplorer.usgs.gov/.



	
The multispectral reflectance data and Active Fire are available at a temporal resolution of per 8 day (46 time steps in a year). Landcover data is available as a yearly product from 2001 to 2012. Landcover map is used to determine the forested pixels each year. Since, burning might alter the signature of a pixel, we use the landcover map from the previous year to determine forested pixels. Landcover classes from 1 to 5 correspond to different kinds of forests, but we train a single model for all of them. Also, since the landcover maps are only available until 2012, for 2013 and 2014, landcover map from 2012 is used.



	
The multispectral reflectance data and landcover data are available at a spatial resolution of 500 m, while Active Fire data is available at a spatial resolution of 1 km. In our algorithm, since Active Fire is used as labels to train the classifier over features at 500 m resolution, we downscale Active Fire data from 1 km resolution to 500 m resolution i.e., at each of the 46 time steps in the year, a 500 m pixel gets an Active Fire if the corresponding 1 km pixel had an Active Fire at that time step.



	
To handle the errors of MODIS landcover product, we only consider pixels that the product has consistently masked forests for multiple years. We define a confident forest mask consisting of pixels that have been marked as forests in all of the first 4 years (2001-04). All maps are produced on the set of pixels that belong to this set of confident forests and were also marked forests in the year before the year of consideration.



	
Each of the 7 bands in the reflectance data are z-normalized i.e the mean and the standard deviation for each of the 7 bands is computed across all pixels (and time steps) in the tile and the reflectance values are transformed as    r = ( r − m ) / s   , where r is the reflectance value in a certain band and m and s are the mean and the standard deviation in the reflectance values in that band for all pixels in the scene across time.







Appendix A.2. Training the Classification Model


	
One model is trained for each MODIS tile. The classifier operates on the set of features corresponding to all 46 time steps of a year for a given pixel and outputs the probability that the pixel experienced a burn activity in that year.



	
The training set consists of equal number of samples of both kinds-Burned (positive class) and unburned (negative class). Every sample corresponds to data for a 500 m pixel for some year in the 14 year time window (2001-14). For each sample I in the training set, we provide the collection of reflectance data for all 46 time steps     X 1 I  , ⋯ ,  X  46  I     and a label    Y I    which is 1 if an Active Fire hotspot was observed at the pixel during that year and 0 otherwise.



	
To limit the effect of confusion from boundary pixels, while constructing the training set, we mask out pixels that are either at the boundary of a spatially coherent Active fire occurrence or that belong to an Active Fire patch that is too small (<10,500 m pixels in size).



	
The classification model has 2 parameters-  β   and w. Given the training set, we learn the parameters using the following procedure




	(a)

	
Initialize   β   to a 8 (7 dimensional feature space + bias term) dimensional vector drawn from a standard Gaussian distribution (mean = 0, std. deviation = 1). Similarly, initialize w to a 47 (46 time steps + bias term) dimensional vector drawn from a standard Gaussian distribution (mean = 0, std. deviation = 1).




	(b)

	
Until the change in the magnitude of   β   and w from the previous iteration is at less than 1%, repeat the following




	
   β = β + l e a r n i n g _ r a t e × g r a d i e n t 1   



	
   w = w + l e a r n i n g _ r a t e × g r a d i e n t 2   








   g r a d i e n t 1    is the gradient of the objective function O with respect to    β ≤  β 0  ,  β 1  , ⋯ ,  β 7  >    and is computed as,


     ∂ O   ∂  β d    =   ∑  I = 1  N    (  F I  −  Y I  )     ∑  t = 1  46    (  w t   f t I   ( 1 −  f t I  )   X t I   ( d )  )   − λ T  β d    








   g r a d i e n t 2    is the gradient of the objective function O with respect to    w ≤  w 0  ,  w 1  , ⋯ ,  w 46  >    and is computed as,


     ∂ O   ∂  w t    =   ∑  I = 1  N    (  F I  −  Y I  )   (  f t I  )  − λ  w t    

















In the above update equations,    F I    is the probability of the    I  t h     location in the training set being burned in the given year and    f t I    is the per time step score for the    I  t h     location at time step t. Given the values of   β   and w from the previous iteration, these can be computed as,


      f t I     =  1  1 +  e  −  ∑  d = 1  7   β d   X t I   ( d )  +  β 0            F I     =  1  1 +  e  −  ∑  t = 1  46   w t   f t I  +  w 0           








   l e a r n i n g _ r a t e    is a parameter and is fixed using cross-validation. For our analysis, we found 0.01 to work well. Similarly the regularization parameter   λ   is fixed using cross validation. For our analysis, we found 0.01 to work well.







Appendix A.3. Prediction


	
Once the model parameters have been learned, the probability that a pixel burned in a given year is given by    F I   .



	
For each forested pixel, we now have the probability that it burned during each of the 14 years from 2001-14.







Appendix A.4. Fixing the Threshold


	
The stage 1 classification maps for each year are a binary output obtained by thresholding the probability values at each pixel for that year. This threshold is chosen so as to optimize the product of user’s and producer’s accuracy on the training set.



	
For each threshold   γ   from a set of threshold choices 0.01, 0.02, …, 0.99, the product (scaled up to a constant) of user’s and producer’s accuracy is estimated to be,


      [ Pr  (  Y I  = 1 |  F I  > γ )    − n o i s e _ r a t e ]  2  Pr  (  F I  > γ )       








where, the three quantities    Pr (  Y I  = 1 |  F I  > γ )   ,    n o i s e _ r a t e    and    Pr (  F I  > γ )    are estimated as,


      Pr (  Y I  = 1 |  F I  > γ ) =      | { I | I ∈  { 1 , ⋯ , N }  ∧  Y I  = 1 ∧  F I  > γ } |   | { I | I ∈  { 1 , ⋯ , N }  ∧  F I  > γ } |        Pr (  F I  > γ ) =      | { I | I ∈  { 1 , ⋯ , N }  ∧  F I  > γ } |   | { I | I ∈ { 1 , ⋯ , N } |        n o i s e _ r a t e =         ∑   Y I  ∈ S    Y I     | S |        








where S is the set of all instances that lie in the bottom 5% in the training set in terms of their predictions    F I   .



	
The threshold that maximizes the product is used to binarize the probability maps to produce the stage 1 classification output.







Appendix A.5. Stage 2


The stage 2 maps is obtained by taking a logical AND of the stage 1 output and the Active Fire map for that year i.e., for each pixel, it is marked burned in stage 2 map only if it was marked burned in stage 1 and it had an Active Fire hotspot sometime in that year. If any of these two conditions is not met, the pixel is marked unburned.




Appendix A.6. Stage 3


The stage 2 output identifies the ‘seeds’ of the burn activity across the tile. Stage 3 uses these seeds to gather other burned pixels in their spatial proximity that have strong enough burned scar signature in the spectral space. For a given year, if stage 1 marked a pixel as burned as it was less than 5 pixel distance away from a seed pixel, it is marked burned in stage 3.
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Figure 1. Figure shows the MODIS tiles where we report burned areas. 
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Figure 2. Flowchart showing the steps of the RAPT framework. 
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Figure 3. SeqRep model. 
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Figure 4. Figure shows a region in Indonesia where RAPT identified several burned pixels missing in MCD64. Figure also shows the data quality as provided by MCD64 product around the burn date for the identified burned pixels. (a) Burned area (in yellow) in a region of SE Asia. The red rectangle is the focus area for this figure; (b) Before burn Landsat 5 image on 10 March 2006; (c) After burn Landsat 5 image on 5 November 2006; (d) Burned area comparison map (blue is only RAPT, red is common, yellow is only MCD64); (e) Color coded quality map according to MCD64 bit 1 flag (red is 0/3 time steps with good quality, purple is 1/3 time steps with good quality, yellow is 2/3 time steps with good quality, green is 3/3 time steps with good quality). 
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Figure 5. Figure shows an example of errors of commission based on Landsat-based validation maps. The top row shows before and after false color composites (using bands 7,4,2) of a region with detected burned area (WRS path-232, WRS row-070, MODIS tile name-h11v10, year 2010). The bottom row shows the burned area detected by RAPT and MCD64 relative to Landsat-based ground truth generated using the BAMS scheme. Each comparative image is color coded as yellow for true positives, orange for false positives, green for false negatives and light blue for true negatives. Masked regions (due to detectable cloud cover or non-forest landcovers) are colored dark blue in the comparative images. Note that the region shown has 1000 × 1600 Landsat pixels. 
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Figure 6. Figure shows an example of errors of omission based on Landsat-based validation maps. The top row shows before and after false color composites (using bands 7,4,2) of a region with detected burned area (WRS path-233, WRS row-068, MODIS tile name-h11v10, year 2010). The bottom row shows the burned area detected by RAPT and MCD64 relative to Landsat-based ground truth generated using the BAMS scheme. Each comparative image is color coded as yellow for true positives, orange for false positives, green for false negatives and light blue for true negatives. Masked regions (due to detectable cloud cover or non-forest landcovers) are colored dark blue in the comparative images. Note that the region shown has 900 × 1200 Landsat pixels. 
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Table 1. Landsat validation results for 19 Landsat-based reference maps. The number of burned and unburned pixels are at 500 m MODIS scale.
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ID

	
Tile

	
Landsat

	
Pre-Date

	
Post-Date

	
Cloud

	
User’s

	
Prod’s

	
Dice

	
Overall

	
User’s

	
Prod’s

	
Dice

	
Overall

	
Number of

	
Number of




	

	

	
Scene

	

	

	
Cover

	
Acc.

	
Acc.

	
Co-ef.

	
Acc.

	
Acc.

	
Acc.

	
Co-ef.

	
Acc.

	
Burned

	
Unburned




	

	

	

	

	

	

	
RAPT

	
RAPT

	
RAPT

	
RAPT

	
MCD

	
MCD

	
MCD

	
MCD

	
Pixels

	
Pixels






	
1

	
h11v09

	
230066

	
18 June 2010

	
8 October 2010

	
2

	
0.63

	
0.63

	
0.63

	
0.99

	
0.86

	
0.37

	
0.52

	
0.99

	
359

	
34,408




	
2

	
h12v09

	
230066

	
18 June 2010

	
8 October 2010

	
2

	
0.63

	
0.44

	
0.52

	
0.99

	
0.77

	
0.02

	
0.03

	
0.99

	
855

	
103,964




	
3

	
h11v10

	
233068

	
7 June 2010

	
27 September 2010

	
28

	
0.61

	
0.29

	
0.4

	
0.93

	
0.91

	
0.16

	
0.27

	
0.93

	
5941

	
69,437




	
4

	
h12v09

	
227065

	
12 June 2004

	
2 October 2004

	
28

	
0.79

	
0.6

	
0.68

	
0.98

	
0.87

	
0

	
0.01

	
0.96

	
3646

	
92,248




	
5

	
h12v10

	
229070

	
26 June 2004

	
16 October 2004

	
12

	
0.78

	
0.26

	
0.39

	
0.95

	
0.83

	
0.35

	
0.49

	
0.95

	
3534

	
52,315




	
6

	
h11v10

	
232070

	
16 June 2010

	
6 October 2010

	
9

	
0.29

	
0.74

	
0.42

	
0.85

	
0.34

	
0.33

	
0.33

	
0.90

	
3606

	
46,017




	
7

	
h29v09

	
118062

	
17 June 2004

	
21 September 2004

	
26

	
0.35

	
0.57

	
0.44

	
0.97

	
0.41

	
0.63

	
0.5

	
0.97

	
1110

	
53,239




	
8

	
h29v09

	
118062

	
14 May 2009

	
18 August 2009

	
41

	
0.32

	
0.3

	
0.31

	
0.99

	
0.24

	
0.26

	
0.25

	
0.99

	
329

	
35,745




	
9

	
h11v10

	
231070

	
13 July 2005

	
1 October 2005

	
74

	
0.88

	
0.61

	
0.72

	
0.99

	
0.87

	
0.42

	
0.56

	
0.99

	
652

	
29,259




	
10

	
h11v10

	
231070

	
25 June 2010

	
2 December 2010

	
83

	
0.18

	
0.99

	
0.31

	
0.94

	
0.18

	
0.46

	
0.26

	
0.96

	
198

	
14,056




	
11

	
h12v09

	
228066

	
6 June 2005

	
12 October 2005

	
85

	
NaN

	
0

	
NaN

	
1

	
NaN

	
0

	
NaN

	
1

	
4

	
17,616




	
12

	
h11v10

	
002067

	
8 September 2004

	
13 October 2005

	
29

	
0.7

	
0.31

	
0.43

	
0.92

	
0.79

	
0.04

	
0.07

	
0.90

	
4391

	
38,524




	
13

	
h11v09

	
002067

	
8 September 2004

	
13 October 2005

	
4

	
0.58

	
0.41

	
0.48

	
0.89

	
0.78

	
0.12

	
0.2

	
0.88

	
5445

	
37,084




	
14

	
h11v10

	
232068

	
4 July 2005

	
9 November 2005

	
31

	
0.28

	
0.84

	
0.42

	
0.97

	
0.21

	
0.09

	
0.13

	
0.99

	
854

	
76,257




	
15

	
h11v09

	
002066

	
9 July 2005

	
13 October 2005

	
4

	
0.43

	
0.57

	
0.49

	
0.97

	
0.59

	
0.15

	
0.24

	
0.98

	
3368

	
129,531




	
16

	
h12v09

	
225066

	
28 April 2010

	
21 October 2010

	
20

	
0.56

	
0.68

	
0.62

	
0.98

	
0.54

	
0.49

	
0.52

	
0.98

	
2441

	
101,855




	
17

	
h30v09

	
110062

	
11 July 2001

	
18 October 2002

	
40

	
0.42

	
0.67

	
0.51

	
0.91

	
0.5

	
0.61

	
0.55

	
0.93

	
1245

	
16,808




	
18

	
h10v09

	
006066

	
31 May 2004

	
23 September 2005

	
74

	
NaN

	
0

	
NaN

	
1

	
NaN

	
0

	
NaN

	
1

	
93

	
31,097




	
19

	
h11v08

	
232058

	
4 April 2006

	
20 March 2007

	
13

	
0.49

	
0.41

	
0.45

	
0.95

	
0.62

	
0.06

	
0.1

	
0.95

	
2046

	
37,003
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Table 2. Table reports the number of burned pixels (at 500 m. spatial resolution) corresponding to RAPT (only), Common and MCD64 (only) for each tile in the region of study.






Table 2. Table reports the number of burned pixels (at 500 m. spatial resolution) corresponding to RAPT (only), Common and MCD64 (only) for each tile in the region of study.





	MODIS Tile
	RAPT Only
	Common
	MCD64 Only





	h10v08
	13,040
	326
	3344



	h11v08
	51,858
	7744
	6011



	h10v09
	23,686
	695
	1299



	h11v09
	194,456
	40,055
	16,976



	h12v09
	266,621
	107,571
	35,199



	h13v09
	85,442
	11,139
	5405



	h11v10
	342,575
	109,382
	50,166



	h12v10
	254,563
	116,862
	97,935



	h13v10
	6738
	4607
	2514



	h27v08
	12,170
	1373
	3256



	h28v08
	121,498
	20,450
	11,927



	h29v08
	38,930
	1749
	10,859



	h28v09
	76,559
	13,479
	22,401



	h29v09
	94,143
	39,015
	32,004



	h30v09
	11,532
	1493
	1155



	h31v09
	1469
	158
	6919



	Total
	1,595,280
	476,098
	307,370










[image: Table] 





Table 3. Table shows the fraction of Only RAPT burned pixels with 0, 1, 2 or 3 good quality time steps out of the 3 time steps from date of burn event set.






Table 3. Table shows the fraction of Only RAPT burned pixels with 0, 1, 2 or 3 good quality time steps out of the 3 time steps from date of burn event set.





	
Tile

	
RAPT Only

	
Fraction of Locations

	
Fraction of Locations

	
Fraction of Locations

	
Fraction of Locations




	
with 0 Good

	
with 1 Good

	
with 2 Good

	
with 3 Good




	
Quality Timesteps

	
Quality Timesteps

	
Quality Timesteps

	
Quality Timesteps






	
h10v08

	
13,040

	
0.46

	
0.26

	
0.10

	
0.18




	
h11v08

	
51,858

	
0.06

	
0.25

	
0.13

	
0.57




	
h10v09

	
23,686

	
0.21

	
0.23

	
0.17

	
0.39




	
h11v09

	
194,456

	
0.07

	
0.12

	
0.23

	
0.58




	
h12v09

	
266,621

	
0.26

	
0.34

	
0.22

	
0.19




	
h13v09

	
85,442

	
0.51

	
0.20

	
0.13

	
0.15




	
h11v10

	
342,575

	
0.19

	
0.25

	
0.15

	
0.41




	
h12v10

	
254,563

	
0.06

	
0.08

	
0.15

	
0.71




	
h13v10

	
6738

	
0.07

	
0.20

	
0.17

	
0.57




	
h27v08

	
12,170

	
0.06

	
0.08

	
0.13

	
0.73




	
h28v08

	
121,498

	
0.23

	
0.17

	
0.20

	
0.41




	
h29v08

	
38,930

	
0.11

	
0.12

	
0.18

	
0.59




	
h28v09

	
76,559

	
0.25

	
0.21

	
0.20

	
0.33




	
h29v09

	
94,143

	
0.31

	
0.25

	
0.17

	
0.27




	
h30v09

	
11,532

	
0.00

	
0.03

	
0.07

	
0.90




	
h31v09

	
1469

	
0.28

	
0.16

	
0.20

	
0.36




	
Total

	
1,595,280

	
0.1876

	
0.2045

	
0.1789

	
0.4290
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Table 4. Table shows the fraction of MCD64 burned pixels with 0, 1, 2 or 3 good quality time steps out of the 3 time steps from date of burn event set.






Table 4. Table shows the fraction of MCD64 burned pixels with 0, 1, 2 or 3 good quality time steps out of the 3 time steps from date of burn event set.





	
Tile

	
MCD64

	
Fraction of Locations

	
Fraction of Locations

	
Fraction of Locations

	
Fraction of Locations




	
with 0 Good

	
with 1 Good

	
with 2 Good

	
with 3 Good




	
Quality Timesteps

	
Quality Timesteps

	
Quality Timesteps

	
Quality Timesteps






	
h10v08

	
3670

	
0.00

	
0.20

	
0.25

	
0.55




	
h11v08

	
13,755

	
0.00

	
0.14

	
0.16

	
0.71




	
h10v09

	
1994

	
0.00

	
0.07

	
0.33

	
0.60




	
h11v09

	
57,031

	
0.00

	
0.07

	
0.24

	
0.69




	
h12v09

	
142,770

	
0.00

	
0.16

	
0.41

	
0.43




	
h13v09

	
16,544

	
0.00

	
0.18

	
0.29

	
0.54




	
h11v10

	
159,548

	
0.00

	
0.10

	
0.21

	
0.68




	
h12v10

	
214,797

	
0.00

	
0.07

	
0.17

	
0.76




	
h13v10

	
7121

	
0.00

	
0.23

	
0.12

	
0.66




	
h27v08

	
4629

	
0.00

	
0.10

	
0.17

	
0.74




	
h28v08

	
32,377

	
0.00

	
0.13

	
0.21

	
0.66




	
h29v08

	
12,608

	
0.00

	
0.05

	
0.11

	
0.84




	
h28v09

	
35,880

	
0.00

	
0.27

	
0.30

	
0.42




	
h29v09

	
71,019

	
0.00

	
0.20

	
0.23

	
0.56




	
h30v09

	
2648

	
0.00

	
0.05

	
0.12

	
0.82




	
h31v09

	
7077

	
0.00

	
0.05

	
0.14

	
0.81




	
Total

	
783,468

	
0

	
0.12

	
0.24

	
0.64












© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file13.jpg





media/file4.png
Confident forest filter mask consisting of
pixels marked forest in all years 2001-04

y

MODIS
/" oo
Reflectance

Selection of burned and
unburned training samples

Learn a scar classifier on previous year forested pixels to identify burn
scars based on surface reflectance.

Initial classification of pixels /

based on their surface reflectance
using the scar classifier /

Identify confident burned pixels using co-occurrence of
Active fire and burn scars

Spatial growing

|dentifying high confidence burned areas using duration of
burn scar visibility

ﬁnal classificatio/






nav.xhtml


  remotesensing-10-00069


  
    		
      remotesensing-10-00069
    


  




  





media/file11.png
2800

3000

3200

3400

3600

3800 P
g . - T \¥: S e MOEEe Lhe ?iu’ i
5000 5200 5400 5600 5800 6000 6200 6400 6600

(a) Before burn false color composite image on 16 June 2010

2800

3000

3200

3400

3600

3800

- 1

Be e S

5000 5200 5400 5600 5800 6000

h- -8

6200 6400 6600

(b) After burn false color composite image on 6 October 2010





media/file16.png
BA comparison

1000

1800 1g00 2000 2900 2200 2300 2A00 2RO0 2E00 2700 2BO0

(d) Comparison map: MCD64






media/file2.png
P

1
i

AF.

L~

.;!_.:.-r

21[22/23[24(25026(27/28(29/30(31/32/33[34)35

'

A

1

_'Fd:p'

T

__I_H"-11-‘,='-l‘—_ .z

—

Kii

B RN

| M.

—_

0 1]2/3[4/5[/6/7]8 910123 )14

12
13|
14

17|

15
16

T _...-:-"""PH






media/file10.jpg
S0 200 50 5600 500 600 6200 6400 6600

(©) Comparison map: RAPT

B4 comparison

500 520 5400 SO0 S0 6000 G200 6400 6600

(d) Comparison map: MCD64





media/file5.jpg





media/file3.jpg
‘Confidont forest fiter mask consising of
on ke oot 8 yous 200104

Sciecion of bumod and
nburmad aining sampes|

Voo
Surace
Ratecianco

—

Loarma scarcasiflor o provious year rested ixls o enily burm
"tars based on itace rolocance,

vl asicaton o s
onsod on o e hecance
i o s csr

denty confident bumed psels using co-occurence of
“Rcive o an bum s

spatal growing

1

oo e g donof






media/file14.jpg
BA comparison

(d) Comparison map: MCD64





media/file1.jpg
=] ) \% [
g ! \
&
.
n
HAY
: ¥
= T
~ FHHHEDY
: =/
EAVA AWV
1= 4
hl’.) -y =ESEEEE






media/file7.jpg





media/file15.png
Before 742

G000

Qoo

1000
1100

200
1300

1800 1900 2000 2100 2200 2300 2400 2500 26800 2700 2800

(a) Before burn false color composite image on 7 June 2010

After 742

800

900
1000
1100
1200

1300

1800 1600 2000 2100 2200 oF ] 2800

(b) After burn false color composite image on 27 September 2010

RAPT comparison

a00

BO0
900
1000
1100
1200

e UL

1300

1800 1800 2000 2100 2200 2300 2400 2800 2600 2700 2800

(c) Comparison map: RAPT





media/file12.png
RAPT comparison

5000 5200 5400 5600 5800 6000 6200 6400

(c) Comparison map: RAPT

BA comparison

5200 5400 5600 5800 6000 6200 6400

(d) Comparison map: MCD64

6600

6600






media/file9.jpg
500 500 500 S0 50 600 6200 6400 6600

(@) Before burn fase color composite image on 16 June 2010

el At

500 50 5400 S0 K0 600 6200 6400 6600

(b) After burn false color composite image on 6 October 2010





media/file0.png





media/file8.png





media/file6.png





