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Abstract: Compensating for distortions in pushbroom satellite imagery has a bearing on subsequent
earth observation applications. Traditional distortion correction methods usually depend on ground
control points (GCPs) acquired from a high-accuracy geometric calibration field (GCF). Due to the
high construction costs and site constraints of GCF, it is difficult to perform distortion detection
regularly. To solve this problem, distortion detection methods without using GCPs have been
proposed, but their application is restricted by rigorous conditions, such as demanding a large
amount of calculation or good satellite agility which are not met by most remote sensing satellites.
This paper proposes a novel method to correct interior distortions of satellite imagery independent
of GCPs. First, a classic geometric calibration method for pushbroom satellite is built and at least
three images with overlapping areas are collected, then the forward intersection residual between
corresponding points in the images are used to calculate interior distortions. Experiments using
the Gaofen-1 (GF-1) wide-field view-1 (WFV-1) sensor demonstrate that the proposed method can
increase the level of orientation accuracy from several pixels to within one pixel, thereby almost
eliminating interior distortions. Compared with the orientation accuracy by classic GCF method,
there exists maximum difference of approximately 0.4 pixel, and the reasons for this discrepancy
are analyzed. Generally, this method could be a supplementary method to conventional methods to
detect and correct the interior distortion.

Keywords: distortion detection; forward intersection residual; Gaofen-1; ground control points;
satellite image

1. Introduction

Interior distortions of pushbroom satellite images are mostly caused by camera lens aberrations,
and results in nonlinear geo-positioning errors that are difficult to eliminate in practical applications
with few ground control points (GCPs). Obtaining higher geo-positioning accuracy through the
detection and compensation of interior distortions is crucial for improving the performance and
potential of satellite images. This also has a bearing on subsequent earth observation applications,
such as ortho-rectification, digital elevation model (DEM) generation [1,2], or surface change detection.
Consequently, it is critical to detect and correct interior distortion of satellite images.

Several methods have been proposed to correct interior distortions in pushbroom satellite images.
With its high accuracy and computational stability, the classical method using a geometric calibration
field (GCF) to calibrate image distortion is undoubtedly the most common method [3–5]. GCF is
composed of a sub-meter or sub-decimeter digital orthophoto map (DOM) and DEM model that are
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obtained from aerial photogrammetry and cover a certain area. Every pixel in the GCF can be regarded
as a high-precision GCP. When a satellite passes over the GCF, numerous GCPs can be acquired from
the GCF in order to detect and correct image distortion [6]. The core problem of this classical method
is the high-precision registration between the acquired image and the DOM. Bouillon [4] proposed a
simulation-registration strategy to acquire a large number of GCPs, which is successfully used in the
calibration of SPOT-5. Leprince et al. [3,7] improved the method by creating a high-precision phase
correlation algorithm to obtain GCPs pixel by pixel. To reduce the calculation burden, Zhang [8] and
Jiang et al. [9] recommended extracting feature points before high-precision registration.

Although the classical method is easy and stable, it requires a costly update of aerial imagery
and there is a lot of geometric work such as acquiring high-precision GCPs and performing aerial
triangulation of all aerial images for establishing new GCF. On one hand, the presence of temporary
objects such as new construction sites, as well as other changes in the environment that occur between
obtaining the satellite image and GCF images—caused by long acquisition intervals—affects the
effectiveness of the GCF method. On the other hand, restricted by the revisit period of satellite and
bad weather, the satellite images of GCF sometimes cannot be acquired timely to perform geometric
calibration. Furthermore, as image swaths become wider than current GCF, it is difficult to implement
conventional GCF. In other words, it is difficult to obtain sufficient GCPs from current GCFs to solve
the calibration parameters of all rows in one image of wide swath. Take the GF-1 WFV camera as an
example, hereunder Table 1 shows currently available GCFs in China that fail to cover all rows in one
GF-1 WFV image which spans 200 km. To address this problem, a multi-calibration image strategy
and a modified calibration model have been proposed [6], whereby calibration images are collected
at different times, and their different rows are covered by the GCF. GCPs covering all rows can then
be obtained, and a modified calibration model can be applied to detect distortions. Nevertheless,
this method depends heavily on the distribution of images and GCF, and mosaicking between images
should be handled carefully in the modified classic GCF model. Consequently, it is difficult for imagery
vendors to perform regularly distortion detection. Distortion detection methods independent of GCPs
have thus been explored.

Table 1. Currently available GCFs in China.

Area GSD of
DOM (m)

Plane Accuracy of
DOM RMS (m)

Height Accuracy
of DEM RMS (m)

Range (km2) (Across
Track × Along Track)

Center (Latitude
and Longitude)

Shanxi 0.5 1 1.5 50 × 95 38.00◦N, 112.52◦E
Songshan 0.5 1 1.5 50 × 41 34.65◦N, 113.55◦E
Dengfeng 0.2 0.4 0.7 54 × 84 34.45◦N, 113.07◦E

Tianjin 0.2 0.4 0.7 72 × 54 39.17◦N, 117.35◦E
Northeast 0.5 1 1.5 100 × 600 45.50◦N, 125.63◦E

Self-calibration block adjustment [10–15] is one feasible method independent of GCF, and it
can be used to compensate for distortion. Self-calibration adjustment takes additional parameters
(such as distortion parameters), which are calculated together with the block adjustment parameters,
into consideration in the block adjustment. However, the process demands collection of a large
number of images, and it focuses on the calculation of block adjustment parameters. In addition,
it requires a large amount of calculation, and performs best with some GCPs to provide more reasonable
results. Pleiades-HR satellites provide another novel solution independent of GCF called geometric
auto-calibration that addresses limitations of other methods [16–18]. Relying on good satellite agility,
Pleiades can obtain two images with a crossing angle of about 90 degrees. In practice, one image
is re-sampled into the other with available accurate geometric models and DEM [19], by which the
two images are correlated. Then, statistical computation is applied on lines and columns to reflect
the distortion and attitude high frequency residues. The method can detect distortion and partly
compensates for the disadvantages of GCF-based methods. However, it can only be implemented with
satellites characterized by good agility and only if a corresponding DEM exists.
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In the computer vision (CV) field, Faugeras et al. [20] and Hartley [21] proposed an
auto-calibration technique and proved that it is possible to directly detect the distortion from multi
images. In addition, Malis [22,23] inherited the thought, and advised to conduct auto-calibration from
unknown planar structures of multi images, which achieves relatively good results in the experiments.
However, this method was only used in close-range photogrammetry or computer vision, and has not
been applied in the satellite photogrammetry yet, especially in the wide swath satellite image. When
the method is used in satellite photogrammetry, several problems should be resolved: it is impossible
to acquire planar structures for satellite imagery because of the influence of the earth’s curvature,
especially for the wide swath imagery; the method needs to solve nonlinear equations by massive
computations, and the process is often unstable.

Some conditions, such as an appropriate GCF, the number of images required, and calculation
burden, are difficult for imagery vendors to meet. Others, such as satellite agility, are hard to satisfy for
most remote sensing satellites. In this paper, a novel method is proposed to detect interior distortions
of a pushbroom satellite image independent of GCPs. This method uses at least three images with
overlapping areas, and takes advantage of the forward intersection residual between corresponding
points in these images to detect interior distortions. Compared with traditional methods implemented
by GCF or that depend on satellite agility, the proposed method is free from these constraints and it
can correct interior distortions of images of any terrain. We present experiments using the Gaofen-1
(GF-1) wide-field view-1 (WFV-1) sensor to verify the accuracy of the proposed method. Compared
with traditional methods that are implemented by GCF or that depend on satellite agility, the proposed
method is free from these constraints and can work for any terrain and improve the internal geometric
quality of satellite imagery.

2. Materials and Methods

2.1. Fundamental Theory

The fundamental theory of interior distortion detection independent of GCPs is shown in
Figure 1. In Figure 1a, there are two images, and S1 and S2 are the projection centers of the two
images respectively. The thick solid lines a1b1 and a2b2 represent the focal planes of the two images.
The irregular curve represents the real ground surface, and point A is a ground point on the surface.
Without any error, point A projects to image S1 at a1, and projects to image S2 at a2. The forward
intersection point between S1 and S2 is A. a1 and a2 are the corresponding image points of A in images
S1 and S2. However, if image distortion exists, the image coordinate a1 is moved to b1, and a2 is moved
to b2. The dotted lines S1b1 and S2b2 are the new lines of sight, and the new forward intersection point
is B. In short, image distortions result in changes in image coordinates, and indirectly cause a change
in the ground point.
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Figure 1. Schematic diagram showing correction of distortion independent of (GCPs). (a) Two images 
are insufficient to detect image distortion; (b) three images can detect image distortion. 

Figure 1. Schematic diagram showing correction of distortion independent of (GCPs). (a) Two images
are insufficient to detect image distortion; (b) three images can detect image distortion.
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However, if the position of ground surface point A is unknown, Figure 1a can also conversely
be interpreted to show that the position error of the ground point leads to a change in the image
coordinate. Two images are insufficient to determine whether the change in image coordinate is
caused by image distortion or ground point error. Therefore, two images are insufficient to detect
image distortion.

A third image S3 is introduced to solve this problem, as shown in Figure 1b. Without any error,
point A projects to image S3 at a3. However, due to errors, the image coordinate a3 is moved to b3.
The dotted line S3b3 is the new line of sight, and the new forward intersection point is C with S1,
and D with S2. If the change in image coordinate is caused by ground point error, then the forward
intersection points B, C, and D should be exactly the same. If the change in image coordinate is caused
by image distortion, then the forward intersection values B, C, and D may be different. We call this
difference the forward intersection residual.

Through the above analysis, the forward intersection residual between the corresponding points of
three images can be used as a distortion evaluation criterion. Distortion can be detected by constraining
the forward intersection residual to the minimum, after it which the adjustment equation for distortion
parameters can be built and calculated.

2.2. Distortion Detection Method

2.2.1. Calibration Model

The calibration model for the linear sensor model is established based on Tang et al. [24] and
Xu et al. [25] as Equation (1): XS

YS
ZS

 =

 X(t)
Y(t)
Z(t)

+ m · R(t) · RU(t) ·

 x + ∆x
y + ∆y

1

 (1)

where [X(t), Y(t), Z(t)] indicates satellite position with respect to the geocentric Cartesian coordinate
system, and R(t) is the rotation matrix converting the body coordinate system to the geocentric
Cartesian coordinate system. Both these parameters are functions of time t. Here, [x + ∆x, y + ∆y, 1]
represents the ray direction, whose z-coordinate is a constant with a value of 1 in the body coordinate
system. Furthermore, m denotes the unknown scaling factor and [XS, YS, ZS] is the ground position of
the pixel in the geocentric Cartesian coordinate system. RU is the offset matrix that compensates for
exterior errors, and (∆x, ∆y) denotes interior distortions in the image space.

RU can be expanded by introducing variables [26–28]:

RU(t) =

 cos ϕ 0 sin ϕ

0 1 0
− sin ϕ 0 cos ϕ

 ·

 1 0 0
0 cos ω − sin ω

0 sin ω cos ω

 ·

 cos κ − sin κ 0
sin κ cos κ 0

0 0 1

 (2)

where ω, ϕ and κ are rotations about the X, Y, and Z axes of the satellite body coordinate, respectively,
and should be detected in order to eliminate exterior errors. With images collected at different times
having different exterior errors, it is noted that there is a corresponding RU for each image.

Considering that the highest order term of distortion is 5, a classic polynomial model to describe
distortions (∆x, ∆y) can be written as follows [9,25,29–31]:{

∆x = a0 + a1s + a2s2 + · · ·+ aisi

∆y = b0 + b1s + b2s2 + · · ·+ bisi , 0 ≤ i ≤ 5 (3)

where variables a0, a1, · · · , ai, and b0, b1, · · · , bi are parameters describing distortion, and s is the
image coordinate across track. Images collected at different times have the same distortion.
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Based on Equations (1)–(3), the calibration model can be written as Equation (4) for a specified
image:  XS

YS
ZS

 =

 X(t)
Y(t)
Z(t)

+ m · R(t) ·

 cos ϕ 0 sin ϕ

0 1 0
− sin ϕ 0 cos ϕ

 ·

 1 0 0
0 cos ω − sin ω

0 sin ω cos ω

· cos κ − sin κ 0
sin κ cos κ 0

0 0 1

 ·

 x + a0 + a1s + a2s2 + · · ·+ aisi

y + b0 + b1s + b2s2 + · · ·+ bisi

1

, 0 ≤ i ≤ 5

(4)

where ω, ϕ, K, a0, a1, · · · , ai, and b0, b1, · · · , bi are parameters. Unlike the classical method, variable
[Xs, Ys, Zs] in Equation (4) is the unknown ground position in the proposed method, which should be
adjusted by the distortion detection method.

Equation (4) can be rewritten in image form as Equation (5):

x = x(a0, · · · , ai, b0, · · · , bi, ω, ϕ, κ, XS, YS, ZS)

y = y(a0, · · · , ai, b0, · · · , bi, ω, ϕ, κ, XS, YS, ZS)
, 0 ≤ i ≤ 5 (5)

Equation (5) is the basic calibration model of the proposed method.

2.2.2. Distortion Detection Method

Taking the partial derivative of Equation (5) for a0, a1, · · · , ai, b0, b1, · · · , bi, ω, ϕ, K, and [Xs,
Ys, Zs], the linearized form of Equation (5) can be expressed as error Equation (6) for object point k
projected in image j:

vjk
x = ∂x

∂a0
da0 + · · ·+ ∂x

∂ai
dai +

∂x
∂b0

db0 + · · ·+ ∂x
∂bi

dbi +
∂x

∂ω j dω j+

∂x
∂ϕj dϕj + ∂x

∂κ j dκ j + ∂x
∂Xk

S
dXk

S +
∂x

∂Yk
S

dYk
S + ∂x

∂Zk
S

dZk
S − lx

vjk
y = ∂y

∂a0
da0 + · · ·+ ∂y

∂ai
dai +

∂y
∂b0

db0 + · · ·+ ∂y
∂bi

dbi +
∂y

∂ω j dω j+

∂y
∂ϕj dϕj + ∂y

∂κ j dκ j + ∂y
∂Xk

S
dXk

S +
∂y

∂Yk
S

dYk
S + ∂y

∂Zk
S

dZk
S − ly

, 0 ≤ i ≤ 5 (6)

where v is the discrepancy of error equation, l is the error vector calculated by current calibration
paramters, x is the number of image column and y is the number of image line.

As mentioned above, distortion can be detected by constraining the forward intersection residual
to a minimum. Equation (6) implicitly uses this condition by giving the same object value to
corresponding points in different images. For convenience, error Equation (6) can be simplified
into Equation (7):  vjk

x = ∂x
∂Aj dAj + ∂x

∂Bk dBk − l jk
x

vjk
y = ∂y

∂Aj dAj + ∂y
∂Bk dBk − l jk

y

, 0 ≤ i ≤ 5 (7)

where Aj =
[
da0, · · · , dai, db0, · · · , dbi, dωj, dϕj, dκj

]
is the correction to the calibration parameters of

image j, and Bk =
[
dXk

S, dYk
S , dZk

S

]
represents the correction to the object coordinates of object point k.

Considering different images and different object points, the error equation can be written as
Equation (8):
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

v1,1
x = ∂x

∂A1 dA1 + ∂x
∂B1 dB1 − l1,1

x

v1,1
y = ∂y

∂A1 dA1 + ∂y
∂B1 dB1 − l1,1

y

· · ·
v1,n

x = ∂x
∂A1 dA1 + ∂x

∂Bn dBn − l1,n
x

v1,n
y = ∂y

∂A1 dA1 + ∂y
∂Bn dBn − l1,n

y

v2,1
x = ∂x

∂A2 dA2 + ∂x
∂B1 dB1 − l2,1

x

v2,1
y = ∂y

∂A2 dA2 + ∂y
∂B1 dB1 − l2,1

y

· · ·
vm,n

x = ∂x
∂Am dAm + ∂x

∂Bn dBn − lm,n
x

vm,n
y = ∂y

∂Am dAm + ∂y
∂Bn dBn − lm,n

y

, 0 ≤ i ≤ 5 (8)

where m is the number of images (m > 2), and n represents the number of GCPs intersected by
corresponding points between images.

For convenience, Equation (8) can be simplified to Equation (9):

V = At + BX − L (9)

where t = [da0, · · · , dai, db0, · · · , dbi, dω1, dϕ1, dκ1, · · · , dωm, dϕm, dκm] represents correction to the
image calibration parameters, and X =

[
dX1

S, dY1
S , dZ1

S, · · · , dXn
S , dYn

S , dZn
S
]

represents correction to
the object coordinates of the unknown object points. A and B are coefficient matrices in the error
equation, and L is the constant vector. Equation (9) is the basic error equation of our proposed method.

2.2.3. Solution of Error Equations

Equation (9) is the basic error equation, and the corresponding normal equation of (9) is
Equation (10): [

AT A AT B
BT A BT B

][
t
X

]
=

[
AT L
BT L

]
(10)

which can be simplified to Equation (11):[
N11 N12

NT
12 N22

][
t
X

]
=

[
L1

L2

]
(11)

If there are several unknown object points (because many corresponding points can be detected
between images by the proposed method), the number of error equations will be huge, and the rank of
Equation (11) will also be striking. In this case, calculation would be time-consuming. Moreover, it is
unnecessary to calculate the unknown correction to object coordinates X when the proposed method is
used. In order to solve this problem, the reduced normal equation yielded by eliminating one type
of parameter can be used. The reduced normal equation for correction to calibration parameters, t,
from normal Equation (11) is Equation (12):

t =
(

N11 − N12N−1
22 NT

12

)−1(
L1 − N12N−1

22 L2

)
= N−1

11

(
L1 − N12N−1

22 L2

) (12)

The reduced normal equation may be in a poor state, because of correlation between calibration
parameters. To solve this problem, we use iteration by correcting characteristic value (ICCV) [32],
which can be applied to many situations, such as morbidity or loss of rank, to calculate the equation.
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After correction to calibration parameters, t, is calculated, the calibration parameters can be
updated and the coordinates of the object points can be acquired by the forward intersection.

2.3. Processing Procedure

Figure 2 shows the processing procedure of the proposed method. The detailed procedure is
as follows:Remote Sens. 2018, 10, 98  8 of 16 
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Figure 2. Proposed processing procedure of distortion detection without using ground control points (GCPs). 

3. Results and Discussion 

The accuracy and reliability of the proposed method were verified by experiments using images 
captured by the GF-1 WFV-1 camera. Launched in April 2013, the GF-1 satellite is installed with a set 
of four WFV cameras with 16 m multispectral resolution and a total swath of 800 km [33–35]. Detailed 
information about the GF-1 WFV cameras is given in Table 2. To validate the proposed method, 
positioning accuracies before and after applying calibration parameters to images from GF-1 WFV-1 
were assessed by check points (CPs) that were obtained from GCF images by high-precision matching 
methods [3,6,7] or were manually extracted from Google Earth. To validate the effect of interior 
calibration parameters for compensating camera interior distortions, the affine model for images was 
adopted as the exterior orientation model to remove other errors caused by exterior elements [36,37] 
for the reason that images acquired in different times possess different exterior calibration 
parameters, and the orientation accuracies between and after correction were validated. Moreover, 
the proposed method and classic GCF were compared. 

Table 2. Characteristics of the WFV camera onboard GF-1. 

Items Values
Swath 200 km 

Resolution 16 m 
Change-coupled device (CCD) size 0.0065 mm 

Principle distance 270 mm 
Field of view (FOV) 16.44 degrees 

Image size 12,000 × 13,400 pixels 

Figure 2. Proposed processing procedure of distortion detection without using ground control points
(GCPs).

(1) Search for several corresponding points between images by high-accuracy match methods [3,7].
At least three images with overlapping areas are needed, and corresponding points are acquired
in the overlapping areas.

(2) Determine the initial value of the unknown parameters. Initial calibration parameters can be
assigned to laboratory calibration values acquired from the calibration work in the laboratory
before the satellite launch. Although laboratory calibration values have changed during the
launch process due to factors such as the release of stress, it can be still set as the initial value of
calibration parameters. On this basis, the correction of calibration parameters can be assigned to
zero. And the unknown object coordinates can be determined by forward intersection between
the corresponding points of the images.

(3) Form the error equation point by point. The linearized calibration equation can be constructed
according to Equation (6). The process should be applied to every point to form the error equation
as in Equation (9).
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(4) Form the normal equation, then reduce it. The normal equation can be formed according to
Equation (11), and the reduced normal equation for the correction to calibration parameters from
the normal equation is Equation (12).

(5) Use the ICCV method to solve the reduced normal equation, and thereby acquire the correction
to the calibration parameters.

(6) Update calibration parameters by adding the corrections.
(7) Determine the coordinates of object points by forward intersection.
(8) Execute steps (3)–(7) iteratively until calibration parameters tend to be convergent and stable.

Otherwise, the procedure provides the updated calibration parameters and terminates. Here the
iterations and corrections can be set an empirical threshold respectively to terminate the iteration.

3. Results and Discussion

The accuracy and reliability of the proposed method were verified by experiments using images
captured by the GF-1 WFV-1 camera. Launched in April 2013, the GF-1 satellite is installed with a set
of four WFV cameras with 16 m multispectral resolution and a total swath of 800 km [33–35]. Detailed
information about the GF-1 WFV cameras is given in Table 2. To validate the proposed method,
positioning accuracies before and after applying calibration parameters to images from GF-1 WFV-1
were assessed by check points (CPs) that were obtained from GCF images by high-precision matching
methods [3,6,7] or were manually extracted from Google Earth. To validate the effect of interior
calibration parameters for compensating camera interior distortions, the affine model for images was
adopted as the exterior orientation model to remove other errors caused by exterior elements [36,37]
for the reason that images acquired in different times possess different exterior calibration parameters,
and the orientation accuracies between and after correction were validated. Moreover, the proposed
method and classic GCF were compared.

Table 2. Characteristics of the WFV camera onboard GF-1.

Items Values

Swath 200 km
Resolution 16 m

Change-coupled device (CCD) size 0.0065 mm
Principle distance 270 mm

Field of view (FOV) 16.44 degrees
Image size 12,000 × 13,400 pixels

3.1. Datasets

Several GF-1 WFV-1 images were collected in order to sufficiently detect and eliminate distortion.
Table 3 details the experimental images, which cover Shanxi and Henan provinces in China.
The experiment below assesses the orientation accuracy before and after applying the calibration
parameters acquired from the proposed method. The residual error of CPs reflects the compensation
for interior distortion in each WFV-1 image.

Scenes 068316, 108244, and 125565 were used to detect distortions by the proposed method
(Table 3). Then, scenes 068316, 108244, 125565, and 126740 were used to validate orientation accuracy
according to the GCPs acquired from the GCF. Finally, scenes 068316, 079476, 125567, and 132279 were
used to validate orientation accuracy according to the CPs acquired from Google Earth. To compare the
proposed method with the classical method, we also have compensated for distortion by calibration
parameters obtained by the classical method, and validated the orientation of scenes 068316, 079476,
125567, and 132279 according to CPs acquired from Google Earth.
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Table 3. GF-1 WFV-1 images used in method validation.

Scene ID Area Image Date No. of CPs Sample Range (Pixel) Function

068316 Shanxi 10 August 2013 15,800 6300–9000 Detection/Validation
108244 Shanxi 7 November 2013 18,057 10,200–12,000 Detection/Validation
125565 Shanxi 27 November 2013 19,459 3200–5700 Detection/Validation
126740 Shanxi 5 December 2013 14,551 500–2700 Validation
079476 Henan 3 September 2013 —— —— Validation
125567 Henan 27 November 2013 —— —— Validation
132279 Henan 13 December 2013 —— —— Validation

3.2. Distortion Detection

Calibration parameters were acquired from images of the Shanxi area (scenes 068316, 108244,
and 125565) by the proposed method. The range of scenes are shown in Figure 3. The three scenes
overlap each other in the mountainous area. In order to apply the proposed method to detect distortion,
19,193 evenly distributed corresponding points between these images were obtained from the overlap
area, as shown in Figure 4. After obtaining sufficient corresponding points, the calibration parameters
were acquired using the proposed method.
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To verify whether the calibration parameters could work, they were applied to scenes 108244,
068316, 125565, and 126740 to verify the orientation accuracy. CPs were acquired by the method
introduced in Huang et al. [6] using the Shanxi GCF, which includes a 1:5000 digital DOM and DEM
(Table 1). The sample range represents coverage of the GCF for the start and end rows of images across
the track (Figure 3). The orientation accuracy is presented in Table 4.

Table 4. Orientation accuracy before and after compensation for distortion (unit: pixel).

Scene
ID

No.
GCPs/CPs

Sample
Range (Pixel)

Line
(along the Track)

Sample
(across the Track) Max Min RMS

068316 4/15,796 6300–9000
Ori. 1 0.383 0.537 2.345 0.005 0.660

Com. 2 0.384 0.416 2.022 0.005 0.566

108244 4/18,053 10,200–12,000
Ori. 0.382 0.864 4.863 0.005 0.945

Com. 0.382 0.412 1.656 0.004 0.562

125565 4/19,455 3200–5700
Ori. 0.374 0.428 3.045 0.005 0.569

Com. 0.374 0.375 3.015 0.007 0.530

126740 4/14,547 500–2700
Ori. 0.432 0.813 3.973 0.009 0.920

Com. 0.432 0.439 3.117 0.008 0.616
1 Ori indicates accuracy after orientation without calibration parameters; 2 Com represents accuracy after orientation
with the calibration parameters obtained by the proposed method.

The accuracy level after orientation is less than 1 pixel for both the original and compensated
scenes, and the distortion error is mainly reflected across the track. The orientation accuracy of the
compensated scene is improved if compared to the original scene, especially for scenes 108244 and
126740. Moreover, GCPs of the two scenes are at the ends of the sample, illustrating that distortion is
more severe at the ends.

The exterior orientation absorbed some interior errors, because the sample range only covers a
part of the image. Therefore, it is difficult to observe any residual distortion from Table 4. To observe
residual distortion, residual errors before and after compensation are respectively shown in Figure 5a,b.Remote Sens. 2018, 10, 98  11 of 16 
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the image row across the track and vertical axis denotes residual errors after orientation).

Although the original scenes have an orientation accuracy as high as 1 pixel for residual errors
before compensation, they exhibit a systematic pattern, as shown in Figure 5a, especially at both ends.
Distortions that seriously affect application of the satellite images should be detected and corrected.

As shown in Figure 5b, after compensating for the distortions, residual errors are random and
are constrained within 0.6 pixel, meaning that all distortions have been corrected and the calibration
parameters acquired by the proposed method are effective.
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3.3. Accuracy Validation

After calculating the calibration parameters by the proposed method, it is important to verify
whether the calibration parameters can be used in other scenes.

As the GCF has a range restriction and the swath width of the GF1 WFV camera reaches 200 km,
CPs from the GCF can only cover some rows of each image. Thus, the exterior orientation will absorb
some interior errors, thereby influencing the orientation accuracy of the whole image. Many studies
have shown that the horizontal positioning accuracy of Google Earth is better than 3 m [38–40]. Given
that the resolution of GF-1 WFV is 16 m, the accuracy of Google Earth renders it appropriate for
validation and to illustrate the influence of compensation.

The conventional GCF method according to Huang et al. [6] was applied to acquire calibration
parameters compensating for distortion, thus permitting a comparison between the proposed method
and the classic GCF method.

The results are shown in Table 5. To observe the residual, the orientation errors of scenes 068316
and 125567 with four GCPs are shown in Figure 6.

As shown in Table 5, the maximum orientation errors without calibration parameters are about
5.5 pixels and the orientation accuracy is only 2 pixels. These errors result partly from the distortion
implied in the original scenes. Thus, when the original scenes are compensated by calibration
parameters acquired by the proposed method, the maximum orientation errors are reduced to less
than 2.6 pixels; in particular, the errors in scene 068316 are reduced to around 1.5 pixels.

The orientation errors of scenes 068316 and 125567 without calibration parameters are shown in
Figure 6a,b, respectively, and following treatment by the proposed method are shown in Figure 6c,d
respectively. The level of orientation accuracy of the compensated scenes obtained by the proposed
method is consistently around 1 pixel, illustrating that the proposed method can provide effective
compensation for distortions.

However, from Table 5 we can also observe that the orientation accuracy of the proposed method
is lower than that of the classical method, whether in line or sample. This can be seen in Figure 6c,e of
scene 068316, or Figure 6d,f of scene 125567.

Table 5. Orientation accuracy with four ground control points (GCPs) (unit: pixel).

Scene
ID

No.
GCPs/CPs

Line
(along the Track)

Sample
(across the Track) Max Min RMS

068316 4/16
Ori. 1 0.916 1.069 2.692 0.207 1.410
Pro. 2 0.701 0.701 1.529 0.215 0.991
Cla. 3 0.430 0.437 0.991 0.130 0.613

079476 4/24
Ori. 0.840 1.921 5.538 0.512 2.097
Pro. 0.846 0.780 2.543 0.119 1.164
Cla. 0.646 0.635 1.788 0.088 0.906

125567 4/22
Ori. 0.966 1.721 3.173 0.541 1.973
Pro. 0.760 0.748 1.803 0.305 1.067
Cla. 0.384 0.433 1.072 0.079 0.579

132279 4/22
Ori. 0.790 1.991 4.922 0.249 2.142
Pro. 0.798 0.779 2.050 0.145 1.115
Cla. 0.525 0.505 1.198 0.054 0.728

1 Ori indicates accuracy after orientation without calibration parameters; 2 Pro denotes accuracy after orientation
with calibration parameters acquired from the proposed method; 3 Cla represents accuracy after orientation with
calibration parameters obtained from the classic method.
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There are several reasons that may explain the lower accuracy of the proposed method. The first
is lack of absolute reference. Unlike the classical method, the proposed method is conducted without
the aid of absolute references:this is the key reason for the low accuracy obtained. Secondly, strong
correlation between calibration parameters results from the lack of absolute reference in the proposed
method. Although the ICCV method can partially resolve this problem, it will also influence the
result. Thirdly, over-parameterization of the calibration model may be a factor. In the calibration
model (Equation (3)), the highest order term of the polynomial is 5. However, Figure 5a shows that
the highest order term may not reach 5, especially in the line direction. Over-parameterization of the
calibration model will result in over-fitting, especially without absolute references, as in the proposed
method. Finally, the quality of the corresponding points may reduce accuracy. The proposed method
requires corresponding points from at least three overlapping images, so the registration accuracy,
distribution, and number of corresponding points will also influence the results.

4. Conclusions

In this study, a novel method was proposed to correct interior distortions of pushbroom satellite
imagery independent of ground control points (GCPs). The proposed method uses at least three
overlapping images, and takes advantage of the forward intersection residual between corresponding
points in the images to calculate interior distortions. Images captured by Gaofen-1 (GF-1) wide
field view-1 (WFV-1) camera were collected as experimental data. Several conclusions can be drawn
as follows:

1. The proposed method can compensate for interior distortions and effectively improve the internal
accuracy for pushbroom satellite imagery. After applying the calibration parameters acquired
by the proposed method, images orientation accuracies evaluated by Ground Control Field
(GCF) are within 0.6 pixel, with residual errors manifesting as random errors. Validation using
Google Earth CPs further validates that the proposed method can improve orientation accuracy
to within 1 pixel, and the entire scene is undistorted compared with that without calibration
parameters compensating.

2. In this paper, with the proposed method affected by unfavorable factors, such as lack of absolute
references, over-parameterization of the calibration model and original image quality, the result
is slightly inferior to the traditional GCF method and there exists maximum difference being
approximately 0.4 pixel finally.

We can conclude that the proposed method can correct the interior distortions and improve the
internal geometric quality for satellite imagery when there is no appropriate GCF to perform the classic
method. Despite the promising results achieved for GF-1 WFV-1 camera, only one of the four WFV
cameras onboard the satellite is considered. For the correction of four WFV cameras onboard GF-1
independent of GCPs simultaneously, further researche is required.
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