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Abstract: The continued development of algorithms using multitemporal Landsat data creates
opportunities to develop and adapt imputation algorithms to improve the quality of that data
as part of preprocessing. One example is de-striping Enhanced Thematic Mapper Plus (ETM+,
Landsat 7) images acquired after the Scan Line Corrector failure in 2003. In this study, we apply
window regression, an algorithm that was originally designed to impute low-quality Moderate
Resolution Imaging Spectroradiometer (MODIS) data, to Landsat Analysis Ready Data from
2014-2016. We mask Operational Land Imager (OLL; Landsat 8) image stacks from five study
areas with corresponding ETM+ missing data layers, using these modified OLI stacks as inputs.
We explored the algorithm’s parameter space, particularly window size in the spatial and temporal
dimensions. Window regression yielded the best accuracy (and moderately long computation time)
with a large spatial radius (a 7 x 7 pixel window) and a moderate temporal radius (here, five layers).
In this case, root mean square error for deviations from the observed reflectance ranged from 3.7-7.6%
over all study areas, depending on the band. Second-order response surface analysis suggested that a
15 x 15 pixel window, in conjunction with a 9-layer temporal window, may produce the best accuracy.
Compared to the neighborhood similar pixel interpolator gap-filling algorithm, window regression
yielded slightly better accuracy on average. Because it relies on no ancillary data, window regression
may be used to conveniently preprocess stacks for other data-intensive algorithms.

Keywords: Landsat; gap-filling; imputation; Landsat 7; optimization

1. Introduction

As interest in large-scale multi-temporal analysis of Landsat data continues to increase [1-4],
there is a continued need to extract as much information as possible from every available image.
This is particularly relevant in the case of the Enhanced Thematic Mapper Plus (ETM+) data from
Landsat 7, as the permanent failure of the scan line corrector (SLC) on 31 May 2003 resulted in
missing data “stripes” inherent to all subsequent ETM+ acquisitions. Accordingly, many gap-filling
approaches have been developed to alleviate this problem. Yin et al. [5] grouped these approaches
into three categories. In the first, single-image approaches, missing data in an image is imputed
from nonmissing pixels in the same image. For example, kriging [6] imputes missing pixels based
on the values of nearby pixels and their distance from the target. The second category of gap-filling
approaches uses multiple images of ETM+ data. One example in this category is local linear histogram
matching [7], which applies corrective gains and biases based on local non-missing pixels. Object-based
segmentation [8-10] also falls into this category because it partitions images into objects and uses
the properties of the objects at two time points to impute specific pixels within one object, based on
information from the other time. Other examples of multiple-image algorithms include co-kriging [11],
which is fundamentally similar to kriging but uses additional images and leverages the correlations
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between them; the Neighborhood Similar Pixel Interpolator [12] and Geostatistical Neighborhood
Similar Pixel Interpolator [13], which classify each image and impute based on the relationships
between pixels sharing a class; and the Profile-Based Interpolator [14], which leverages multitemporal
trajectories and geospatial similarities to impute. The third category of gap-filling algorithms, wherein
the source images include non-ETM+ data, includes the algorithms from the second category when
they employ additional data from other Landsat platforms. Fusion with other sensor platforms such
as the Moderate Resolution Imaging Spectroradiometer (MODIS) [15] falls into this category as well.
Additionally, Wijedasa [16] used post-classification mosaics to generate a seamless map of peat swamp
disturbance based on ETM+ data, though this process required supervised classification. A complete
review of these algorithms is beyond the scope of this study, but each of them has advantages and
disadvantages, the latter typically centering around the tradeoff of slow computation times against
per-pixel interpolation accuracy.

However, since the Landsat archive was made freely available to the public [17], it has become
common to incorporate the full history, from the Thematic Mapper era to the present day, in time
series research [18-20]. Many of these studies rely on algorithms that leverage the temporal richness
of the Landsat archive to predict image data in other dates (i.e., between-images interpolation),
but they do not necessarily perform well at imputing missing data for dates already acquired
(i.e., within-images imputation). For example, harmonic regression approaches (e.g., [21-23]) use
superimposed sinusoidals of varying frequencies to fit phenological and spectral trajectories to
multitemporal bands and/or indices, but they are sensitive to ETM+ striping and often translate
such stripes into their outputs. Additionally, since corresponding residual-based change detection
algorithms (e.g., [24,25]) rely on harmonic predictions to build a baseline, imputing the missing data
using harmonic regression artificially confounds change detection in the imputed areas. For example,
the Exponentially Weighted Moving Average Change Detection algorithm [24] signals the pixel
disturbance by comparing the observed pixel values with predictions from a harmonic curve. If a pixel
with missing data is imputed via harmonic regression, the “observed” value for that pixel will match
the prediction, and prompt false negatives in the change detection. Thus, what is needed is a method
to impute within-image gaps in a fundamentally independent way.

Furthermore, Analysis Ready Data (ARD) offers end users tiles of Landsat data with the parent
sensors conveniently mixed (i.e., products seamlessly including data from Landsats 4, 5, 7, and 8).
There is need for a gap-filling algorithm which can take as its sole input a Landsat time series stack
of mixed sensors and output de-striped images at an efficient computational cost. Ideally, such an
algorithm would also be able to reasonably impute data that is masked out by cloud and shadow
detection algorithms such as FMask [26].

Window regression [27] was originally developed for use in MODIS time series as a means of
leveraging dense multitemporal data to impute or replace missing or low-quality pixels. Window
regression inputs an image stack, and for target pixels, it selects a pixel from the local spatial
neighborhood which best matches the target pixel in a local temporal neighborhood (for acquisition
dates in which the target pixel was available). It then uses simple linear regression to impute for the
target pixel and date. Window regression bears similarities to parts of other gap-filling algorithms
in the multiple-image sources category, in that it leverages both spatial and temporal data into a
best-linear-model framework. However, its simplicity, its need for only a self-contained image stack,
and its capability to make reiterative passes over the same image stack to “grow in” the missing areas,
all combine to make window regression potentially well-suited for de-striping large Landsat stacks.
In this study, we assess the utility of window regression for de-striping Landsat stacks by running it
on multispectral Operational Land Imager (OLI) data, masked by corresponding ETM+ data. We also
explore the algorithm’s parameter space to determine rules of thumb when using Landsat data. Finally,
we compare window regression with another gap-filing algorithm, the Neighborhood Similar Pixel
Interpolator (NSPI; [12]), in terms of accuracy.
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2. Materials and Methods

2.1. Study Area

We selected five study areas (Figure 1) from around the USA, where Landsat ARD products
are currently available, to better test window regression on a variety of land covers and vegetation
types. We chose areas representing a mixture of static and dynamic landscapes in terms of seasonality
(e.g., snow vs. arid), land use/land cover (e.g., rangeland, agricultural, forested), and vegetation types
(e.g., deciduous and evergreen). Additional details regarding the study areas are given in Tables 1
and Al (Appendix A).

180°00" 160°00"W 140°00"W

" " P
oW
1

40°0'0"W 20°0'0"W
N L L

T
60°0'0"N

50°0'0"N
L

40°00"N
A
T T
40°00°N  50°00"N

30°0'0"N
1

30°0'0"N

20°0'0"N
1

T
20°0'0"N

T T T T T T T
130°0'0"W  120°0'0"W 110°0'0"W 100°0'0"W 90°0'0"W  80°0'0"W  70°0'0"W

@ (b)

1624000
1414000

1618000
1408000

=3
=3
= b
2 .- r
2 302000 -296000 -290000 -1418000 -1412000 -1406000
N N
01 2 4 6 8 01 2 4 6 8
I N W Kometers A BN BN W Klometers A
(c) (@ (e)
=3
E
S g g
3 g g
g 5
=3
E
g g g
& S S
o o
= 2
>
E
g s s
g s g
o o N
= . =
664000 670000 814000 820000 1564000 1570000
012 4 6 8 N 012 4 6 8 N 012 4 6 8 N
BN W Clomcters A O . G lomcters A BN W < oncters k

Figure 1. Study areas, each represented by a 500 x 500 pixel raster, 24 layers deep. (a) Western Alaska,
(b) central Arizona, (c) east-central Illinois, (d) west-central Alabama, and (e) central Virginia. Images
are shown in false color, with R/G/B corresponding to Near Infrared /Red/Green spectral bands.
Coordinates are in meters for the Alaska Albers Equal Area Conic projection for (a) and US Geological
Survey Albers Equal Area projection for (b—e). Additional details are given in Tables 1 and A1l.
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For each study area, we obtained the ARD surface reflectance product from the US Geological
Survey (USGS) EarthExplorer [28] from the collection of Landsat 8 images with low cloud cover,
as well as a corresponding number of Landsat 7 images. For each Landsat 8 stack, we selected the
seven available spectral bands (Ultra Blue, Blue, Green, Red, Near Infrared, Shortwave Infrared 1,
and Shortwave Infrared 2, respectively), and for each, generated an input stack by masking the Landsat
8 stack with missing data from the Landsat 7 stack (Figure 2). In doing so, we attempted to select a
spatial subset that (1) had minimal missing data other than ETM+ striping (e.g., scene boundaries),
(2) represented a particular land cover type well (Table 1), and (3) remained computationally tractable
for a parameter space exploration. This selection process yielded masked stacks of 500 x 500 pixel
(225 km?) extent, each with 24 layers (acquisition dates, given in Table A1), for a date range starting
in 2014: one stack for each band for each study area, for a total of 35 masked stacks. We note that
although Landsat 8 images do not suffer from striping, they are not a replacement. Landsat 7 images
will continue to be acquired until the eventual launch of Landsat 9, offering a practical turnaround time
of eight days that facilitates multitemporal analyses. While there are radiometric differences between
the sensors, here we used only Landsat 8 reflectance values for the analysis. The only information we
used from the Landsat 7 data for this study was the missing data masks.

o o
8 g ((b)
o el
= = -
o o
3 5] —
3 S 7
o= .
o o ———
o o
o o
o o -
?_ E’ - _—
—
8 8
t=] o |
& & 7
~ ~ -
- - T T T T
1560000 1565000 1570000 1575000 1560000 1565000 1570000 1575000
8 ( )m_ﬁ = (d‘ -
2 -\C) s S G S T8 g -\
™ NN R N & - -
8 o SR oAt Y A Y ek 8 o
S w7 T T SR RS R Rl 3
= R i e T =
8 T R AR L T IR R T 4 S
o B o
o o
3 ] T T R A TR TR S
o i J—
= Fe VTR T TR YO k) =
8 5. \ ot Yoty B T UG 2 —
o o
o o
8 ST RN AR R W e RN A 2 -
= _._m'_ S
- - T T T T
1560000 1565000 1570000 1575000 1560000 1565000 1570000 1575000

Figure 2. Masking process for image stacks. (a) For a reference Landsat 8 stack (only one layer shown
here), (b) we used a missing data mask derived from a Landsat 7 stack of identical extents, and number
of layers to (c) obtain a stack to input into window regression. The remainder (d) can then be used as
reference data for validation. For this study, we only considered missing data caused by ETM+ striping.
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Table 1. Study areas: Analysis Ready Data (ARD) tile indices, associated WRS2 path/row indices,
nearby cities/towns, and dominant land covers. AK and CU reference the Alaska and Contiguous USA
Albers Equal Area Conic projections, respectively. More details are shown in Figure 1 and Table A1.

Study Area Subregion ARD Tile Exa;)r:tphl/eR‘(':IvfI{S2 Nearby City/Town Features
Alaska Western Alaska AK h3v5 77/15 Shaktoolik Snowy mountains
Arizona Central Arizona CU h7v12 37/36 Sedona Arid land
Illinois East Central Illinois CU h21v9 23/32 Villa Grove Agricultural land
Alabama West Central Alabama CU h22v14 21/37 Centreville Loblolly pine plantations
Virginia Central Virginia CU h27v10 16/34 Amelia Court House Deciduous forest

2.2. Window Regression

The complete description of window regression may be found in de Oliveira et al. [27]; a brief
summary follows here. Suppose we have a stack of images, such that each layer of the stack corresponds
to a different acquisition date L = {Iy, I, ..., I}, with associated values from a given spectral band
or index. For a given pixel py,, 4,1, we can view that pixel’s trajectory through time by indexing
through L. If for some layer ly, py,, .1, is missing, then for all pixels within a given spatial radius r
and temporal radius t, we fit simple linear regression models between each neighbor and the target
pixel (Figure 3). We compare the R? values for all such models, then we select the model with the
best fit to impute the missing value at py, ,, ,- To avoid fitting a trivial model, we require each model
to be fitted to at least m non-missing ordered pairs, with 2 < m < 2t + 1. In practice, we use the
absolute value of the Pearson correlation coefficient to compare neighbors to the target pixel; the linear
model is computed only for the pixel with greatest absolute correlation. Similarly, only pixels which
have nonmissing data at [y are considered for imputation, since pixels missing data at this time lack a
relevant input for the linear model. Once the missing value is imputed, it becomes available for further
iterations of the algorithm, allowing a complete image to be organically “grown” from small regions of
non-missing data, provided that other images in the stack have sufficient data to inform that growth.
By reiterating window regression until a desired convergence threshold is achieved, we may fully
(or near-fully) impute the within-images gaps in an image stack.

2 57—77—7 Legend
r —3
{ D Target Pixel
D Available Data

. Missing Data

[7] Candidate Pixel

m=35
(=5 nonmissing pairings)

(7 layers)

Figure 3. Window regression algorithm. Given an image stack L layers deep and a target pixel
(red border) with missing data (gray field) at layer Iy, consider a subset (or window) of the stackcentered
around the target with spatial radius r and temporal radius t. From the subset of these neighboring
pixels that have nonmissing data at /y, and at least m nonmissing pairings with the target pixel (orange
cross hatching; only shown on top layer), the pixel with the greatest absolute correlation is found.
A simple linear model relating this pixel to the target is fit, then this model is used to impute the
missing value at [j.
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2.3. Parameter Space Exploration

Three parameters drive the window regression algorithm. The spatial radius, r, determines
how extensively the algorithm searches for neighboring pixels. Since the choice of an imputing
pixel is based on maximal absolute correlation with the target pixels, larger values of r improve the
probability of a high-quality imputation, with the extreme case being where the entire image is used
as the pixel’s neighborhood. The obvious drawback to this is a reduction in computational efficiency.
Furthermore, recognizing that spatial autocorrelation is a common phenomenon, we hypothesize that
relatively small values of r result in sufficiently good imputation at a relatively low computational cost.
The temporal radius, ¢, determines how many layers the algorithm incorporates when computing the
correlation between pixels. Small values for ¢ generally confound the model comparison (e.g., in the
extreme example of t = 2, the absolute correlation between all available pixels is trivially 1). Greater
values for t generally lead to smaller absolute correlations between pixels but more meaningful
comparisons; however, they also increase the likelihood that pixels undergo different changes
(e.g., two forested pixels, one of which later is harvested) that disqualify an otherwise reasonable
comparison. The minimum-pairs parameter, m, is intended to prevent trivial model comparisons,
but as m approaches 2¢, the field of candidate pixels (which also may contain missing data) shrinks,
with deleterious effects on the imputation accuracy.

We implemented a parameter space exploration of choices for r, ¢, and m (Table 2). For each
parameter combination, we implemented window regression for all available bands and study
areas, letting the algorithm reiterate until no more than 0.1% of the stack was missing. We used
R [29] to implement the algorithm, specifically the raster package [30] for raster handling and the
rasterEngine function from the spatial tools package [31] to parallelize window-based processing.
Our implementation of the window regression algorithm in R is included with this article.

Table 2. Parameter combinations used in this study (18 total). We used these combinations across all
five study areas and all seven available spectral bands to generate 630 total imputed stacks.

Spatial Radius, r Temporal Radius, t (Window Minimum Pairings, m
(Window Size = 2r + 1) Depth = 2t + 1) 2<m<2t+1)

1 3

1 2 3,5
3 3,5,7
1 3

2 2 3,5
3 3,5,7
1 3

3 2 3,5
3 3,5,7

2.4. Analysis

Our approach produced a collection of image stacks, one for each treatment combination from
Table 2. Since we generated the initial image stacks by masking relatively cloud-free L8 data, the natural
reference dataset is the data excluded by the masks. For each pixel imputed by window regression,
we had a corresponding pixel of observed data. To obtain a single-number summary for a simplified
comparison of the parameter combinations, we computed the pixelwise mean absolute percentage
error (MAPE), where:

1 Imputed — Observed

n(Imputed Pixels) Imputed Pixels Observed

MAPE = 1)
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for each combination for each image stack, excluding nonmissing data, and trimming the upper
2.5% from the data to mitigate the effect of extremely high error percentages produced from dark
pixels. We also recorded the processing time associated with each treatment, controlling for variation
in computational capabilities by using the same machine for all implementations. In both cases,
our design was a slightly unbalanced factorial (since m is constrained by t), with the three window
regression parameters acting as factors along with the spectral band and the study area as covariates;
we assessed the main effects and interactions via a standard ANOVA approach, as well as the response
surface analysis using the rsm package [32] in R to determine the best parameter combinations.
We explored the results from the parameter combination with the optimal balance of MAPE and
processing time in more detail. In particular, we compared the predicted and observed pixel values
per band per study area in terms of the correlation and the root mean square error (RMSE).

Finally, we compared the MAPE scores for this optimal combination with MAPE scores from
running the NSPI algorithm ([12,33,34]) on the same image stacks. Like window regression, NSPI
gap-fills the ETM+ stripes by imputing values from local nonmissing pixels. Unlike window regression,
NSPI restricts its candidate pixels to a subset of “similar” pixels, determined by a k-means classification
made at the initiation of the algorithm. For full details, please refer to [12]. We downloaded the IDL
code to run NSPI from the Remote Sensing & Spatial Analysis Lab [35]. We computed MAPE scores for
the NSPI results exactly as we did for window regression. For our comparison, we used the parameter
values shown in Table 3.

Table 3. Parameter values used with the Neighborhood Similar Pixel Interpolator (NSPI; [12,33,34]).

Parameter Description Value
min_similar The minimum sample size of similar pixels 30
num_class The number of classes 4
num_band The number of spectral bands in each image stack 1
DN_min The minimum allowed spectral value 0

DN_max The maximum allowed spectral value 10,000

patch_long The size of the block in pixels (for processing) 500

3. Results

3.1. Overall Results

Window regression produced output stacks that imputed the missing data with varying degrees
of accuracy. Figure 4 shows the imputation quality through time for a sample pixel in the Virginia area
for spectral band 5 (Near Infrared). Using r = 3 gives a 7 x 7 window, making up 48 neighboring
pixels (49 — 1, small black dots) that are available as candidates for imputation. On the dates where the
target pixel (large black dots) was missing (green squares, based on reference data), window regression
compared the correlations between that pixel and the neighboring pixels over a five-date temporal
window (t = 2) centered on the dates for which the target pixel was missing. Considering only the
subset of these pixels which had at least five nonmissing pairings (m = 5), window regression then
fitted a linear model between the target pixel and the candidate with the highest absolute correlation,
using this model to impute the missing value (blue dots). In this example, window regression generally
imputed the missing data with high accuracy (the blue dots fall near or inside the green squares),
even in the case where the entire window was initially missing (the second date in October 2014).
However, the algorithm did a poor job for the date of September 2014. Further inspection revealed that
of the 48 neighboring pixels, only seven were available candidates at the outset. All of these candidates
were at the window edge, spatially as far as possible from the target pixel. Window regression thus
imputed poorly, rather than not imputing at all. The absolute percentage errors for each of the five
missing dates were 3.6%, 6.6%, 55.9%, 5.9%, and 2.7%, resulting in an overall MAPE of 11.2% for
the pixel.
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Figure 4. Window regression for an example pixel from the Virginia study area and the Near Infrared
spectral band, using the parameter combination r = 3, t = 2, and m = 5. The values of “missing” data
are known through the reference dataset.

In the sense of the full images, window regression imputed missing data with variable accuracy.
This accuracy depended on both intrinsic features of the image stack (e.g., study area and spectral
band) and choice of window regression parameters. Figure 5 gives examples of good and poor
imputation results, based on the overall MAPE scores. ANOVA results pertaining to the main
effects and interactions for both the accuracy and processing time are given in Table 4. In general,
the distribution of MAPE scores was right-tailed (skewness was 1.59 over all of the runs, with similar
values when filtering by each covariate and parameter), which suggests that the main effect estimates
were generally biased toward larger values.

Table 4. ANOVA main effects and interactions for window regression accuracy and processing time,
with the mean absolute percentage error (MAPE) over the imputed stack and run times as the responses.
Statistically significant effects (5% level) are marked with an X.

Factor MAPE Run Time
Study Area X X*
Band X
r X X
t X
m X
r X Study Area X X*
r X Band
rxt X
rXm X
tXm

* Artifacts of extended processing time.
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Figure 5. Examples of window regression outputs. A poor fit (left) is shown in the Alaska study area,
Band 1 (Ultra Blue), with parameters r = 1, t = 3, and m = 5. A good fit (right) is shown in the Arizona
study area, Band 5 (Near Infrared), with parameters r = 3,t = 2, and m = 5.

The choice of study area significantly affected the accuracy (Figure 6), with the Alaska study
area in particular showing larger MAPE scores. The spectral band also significantly influenced
accuracy, with the infrared bands (Bands 5-7), showing smaller MAPE scores. The spatial radius, r,
also significantly, though less drastically, influenced the accuracy, with the best accuracy resulting from
the largest spatial windows. The choice of the temporal radius, ¢, had a slight effect on the accuracy,
with the best accuracy resulting from the moderate choice of t = 5, while the choice of m had a similar
but less prominent effect. In terms of interactions (Figure 7), the Alaska study area benefitted most
from an increase in the spatial radius. In contrast, when the temporal radius was small, the benefit
from increasing the spatial radius was negligible.
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Figure 6. Main effects with respect to the imputation accuracy, measured by the per-stack mean
absolute percentage error (MAPE). Error bars represent 95% confidence intervals for the estimated
effects. Please refer to Figure 1 and Table 1 for a description of the study areas.
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Figure 7. Statistically significant (5% level) interaction effects with respect to the imputation accuracy,
measured by per-stack mean absolute percentage error (MAPE). Please refer to Figure 1 and Table 1 for
a description of the study areas.

With respect to the processing time (Figure 8), we used the recorded processing time divided
by the shortest processing time of all the combinations: in this case, the stack from Band 1 in Alaska,
with a parameter combination of r = 1, t = 3, and m = 5. Parallelizing on eight logical processors,
this run took 321 s (~5.4 min) to complete. We observed an increase in the run time over iterations of
study area, despite each study area being chosen to have the same extent and layer count. The slowest
run resulted from using the Band 1 stack in Virginia with a parameter combination of r = 3, t = 3,
and m = 7; this run took 1983 s (~33.1 min) to complete. This suggests computer fatigue from the
processing. Accounting for this, we still observed that the run time increased exponentially both with
the choice of » and with choice of m, while the run time decreased as f increased. There was one
statistically significant interaction effect between r and m (Figure 9), showing a slight increase in the
processing time as both the spatial radius and the minimum required pairs increased.

T T T T T T T T T

i :
Alaska  Arizona Illinois Alabama Virginia 1 2 3 4 5 6 7

Study Area Band

Run Time (=~ Minimum Run Time)

T T T T T T

r t m

Figure 8. Main effects with respect to run time, denoted by multipliers of the minimum observed
processing time. Error bars represent 95% confidence intervals for the estimated effects. Please refer to
Figure 1 and Table 1 for a description of the study areas.
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Figure 9. Interaction of the spatial radius, 7, and the minimum-pairs parameter, m, with respect to the
run time, as denoted by multipliers of the minimum observed processing time. Please refer to Figure 1
and Table 1 for a description of the study areas.

3.2. Optimization

Although the study area and the spectral band each had significant impacts on the imputation
accuracy, for general application, we were most interested in the parameter combinations that yielded
an optimal tradeoff between the accuracy and the processing time. Figure 10 shows the second-order
response surfaces based on our exploration for both MAPE and run time, with respect to r and t.
(We chose t instead of m because m is constrained by the choice of t.) The influence of r was obvious,
with a clear indication that greater accuracy might be achieved with greater values of r than those
tested here, at the cost of longer run times. The choice of t was not as great an influence, but the
surfaces suggested a “sweet spot” when t was 2 or 3. In terms of the canonical paths of steepest descent,
the response surfaces pointed toward conflicting minima: a minimum MAPE whenr =7 and t = 4,
and a minimum run time whenr = 1and ¢t = 2.

Mean Absolute Percentage Error x100 Run Time (=~ Minimum Run Time)

1 2

w
—_
]
w

r r

Figure 10. Second-order response surfaces for accuracy (left) and run time (right) with respect to
choice of spatial radius, r, and temporal radius, f.
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Assuming that accuracy was more important than run time, we selected as “best” the case where
r=3,t =2,and m = 5, and we further explored the results for that combination. Figure 11 shows the
smoothed scatterplots by band and the associated RMSEs of the observed reflectance versus imputed
values from the window regression for this combination. Only pixels that were originally masked as
missing were used to make these scatterplots, with all five study areas being incorporated into each
scatterplot. Correlations between the observed and imputed values were very strong, ranging from
0.88 to 0.95 across the spectral bands, with the strongest correlations associated with Bands 1-5.
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Figure 11. Imputed reflectance versus observed reflectance for all study areas and each spectral band,
using the parameter combination r = 3, t = 2, and m = 5. The 1-1 line (dashed) bisects the dense
portion of each plot.

We also used the parameter combination of ¥ = 3, f = 2, and m = 5 in a comparison of MAPE
scores between window regression and NSPL Figure 12 shows the MAPE scores for both algorithms
for each combination of the study area and the spectral band. In general, both algorithms yielded
larger MAPE scores for shortwave bands (Bands 1-4) and smaller MAPE scores for the infrared bands
(Bands 5-7). Of the 35 pairings, window regression had a smaller MAPE score for 25 (Table 5). Window
regression had smaller MAPE scores for every band in the Arizona, Alabama, and Virginia study
areas. The mean difference in the MAPE scores across all of the study areas was 0.3%, in favor of
window regression. Excluding the Alaska study area, this mean difference grew to 1.4% in favor of
window regression.
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Figure 12. Overall mean absolute percentage error (MAPE) scores for all image stacks, for the
Neighborhood Similar Pixel Interpolator (NSPI) and window regression (using a parameter combination
of r = 3,t = 2, and m = 5). Symbols below the 1-1 line (dashed) represent the study area/band
combinations for which window regression had a smaller MAPE score than NSPL

Table 5. Combinations used when comparing window regression and the Neighborhood Similar Pixel
Interpolator (NSPI). Combinations for which the mean absolute percentage error (MAPE) scores for
window regression were less than those of NSPI are marked with an X.

Band  Alaska Arizona Illinois Alabama Virginia

1

N oG W N
> X X

XXX X XXX
XXX X X XX
XXX XX XX

4. Discussion

We assessed window regression along two responses: (1) overall accuracy, represented by the
mean absolute percentage error (MAPE), and (2) the processing time, as represented by multiples of the
shortest run made in this study. Most of the results conformed to our expectations. As the spatial radius
increased, the overall accuracy increased, but it came at the cost of exponentially longer run times.
The middle value for the temporal radius, corresponding to a window depth of five layers, produced
the best overall accuracy. The minimum-pairs parameter had no strong effect on accuracy but, like the
spatial radius, led to exponentially longer run times as it increased. Taken together, these results
suggest that large windows with a moderate timeframe produce the best overall imputation, provided
one is able to mitigate the computational costs.

Window regression imputes the missing data for a pixel by comparing that pixel with its spatial
neighbors for a temporal subset. The neighboring pixel with the maximum absolute correlation to the
target pixel is used to impute the pixel, but there is no inherent constraint on the quality of this match.
In our example pixel (Figure 4), one date was very poorly imputed. Of the original 48 neighboring
pixels to consider, only seven had values for this date. These pixels were all at the edge of the spatial
window, implying a weaker correlation and thus poorer imputation (which was borne out in the
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analysis). This is a disadvantage of window regression: it will impute data based on existing data,
even if that data is sparse. This issue makes it more difficult for window regression to impute broad
areas of missing data, since the quality of said imputations depends on how well the interior area
matches with the edge. One might rectify this by introducing a new parameter akin to the minimum
pairs parameter, m, but a simpler solution is to place a threshold on the correlation. If the absolute
correlation between the target pixel and all candidates falls below this threshold, then let the algorithm
ignore this pixel for the current iteration. As the neighboring pixels are imputed, the quality of matches
should generally increase (though there is propagation of error to consider) and provide additional,
better chances for imputing the target pixel at the cost of possibly not being able to impute all of the
pixels. Alternatively, one might use a raster of the correlations associated with the imputations as a
quality metric. We have implemented this adjustment by adding a minimum absolute correlation
threshold in the R code available with this article, though we did not employ it for the main study.

In terms of accuracy, we found that window regression was strongly sensitive to the study area
and the spectral band chosen (Figure 6), both of which imply that window regression performs better
(or worse) on different land covers and spectral ranges. With respect to the spectrum, we note that
because shorter-wavelength bands such as Ultra Blue and Blue (Bands 1 and 2, respectively) are
typically darker, our use of percentage error most likely exaggerated the imputation error for these
bands. This is supported by observing that the correlations between observed and imputed values for
the case of r = 3, t = 2, and m = 5 (Figure 11) are greatest for these bands. With respect to the study
area, the median MAPE score for the Alaska area was 23.30%, while the next greatest median MAPE
was 11.9% for the Alabama area. We postulate that in the Alaska area, the combination of saturated
pixels due to snow, along with the unfortunate coincidence that the ETM+ stripes appear to align
with much of the topography (Figure 13), prompted much of the poor performance. The timeframe
covered in each study area was at least one year, so it is possible that certain seasonal effects may
have contributed to poorer imputation in some areas. We note that the Arizona study area, which had
minimal vegetation and snow effects, was the area for which window regression yielded the smallest
MAPE scores. In general, gap-filling algorithms should perform better on a static landscape because
there is less variation between images and thus less room for error in imputation.

1624000

1618000

1612000

-302000

012 4 6 8 N
N B cioneters A

Figure 13. Hillshaded relief of the Alaska study area based on interferometric synthetic aperture radar
(IFSAR) data [36], with ETM+ missing data stripes from one acquisition date overlaid in red. Note the
tendency for the stripes to align with topographical features (black arrow).
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A related question is how well window regression can handle changes to land cover and/or
land use. For example, if the pixel being imputed undergoes an abrupt change, what effect might we
expect this to have on the imputation? Window regression considers only the neighboring pixel with
maximal absolute correlation, over a temporal window that reaches both before and after the change.
This pairwise correlation is computed without regard to the particular timing of values, so as long
as both pixels exhibit similar trajectories the correlation should remain strong. Thus, we expect that
if there is another pixel in the neighborhood that has undergone a similar change (e.g., if both pixels
underwent a common land use change), the algorithm would still impute effectively, possibly with
even more accuracy than other methods (aside from local linear histogram matching [7], which would
similarly be trajectory-invariant). Conversely, if there are no available neighboring pixels that undergo
a similar change (e.g., the only pixels with nonmissing data on the target date did not undergo any
changes), we expect window regression to perform poorly. Thus, if the area of typical land use changes
is generally larger than the area being imputed (e.g., if forested lots are typically larger than ETM+
stripes), window regression should perform well.

The MAPE scores for all bands and combinations ranged from 4.7% to 43.5%, with the interquartile
scores falling between 7.9% and 15.9%. In the case study of r = 3, t = 2, and m = 5, we found RMSE
values ranging from 3.7% to 7.6% reflectance by spectral band. These values are slightly higher than
those found by Yin et al. ([5]; Table 5) in their comparison of gap-filling algorithms for heterogeneous
areas, but they are within the same order of magnitude. In our comparison with the NSPI gap-filling
algorithm using the same image stacks, we found that window regression produced slightly smaller
MAPE scores over all study areas (Figure 12). Window regression produced smaller MAPE scores
for all bands in three of the five study areas. While the differences in MAPE scores between window
regression and NSPI were relatively small, the results taken together with Yin et al. [5] do suggest
that window regression performs at least as well as current gap-filling algorithms. In terms of general
performance, we can reasonably expect window regression to perform better in practice than in this
study, primarily because here, we effectively used a collection of data corresponding to an ETM+-only
scenario. Since window regression relies on having nonmissing data within a temporal radius of any
given layer, it may be expected to perform more poorly when the ETM+ stripes are geographically
consistent (i.e., in the off-nadir areas of the scene). We can assess the impact this might have had
in our study (Figure 14) by observing the density (e.g., consecutive run length) of missing data,
multiplied by the number of missing data runs and dividing by the number of layers to make an
index of striping intensity. In the extreme case, an intensity of 1 states that every instance of the target
pixel is missing; thus, it cannot be imputed. While this intensity is hardly the sole driver of window
regression’s performance (note the relatively low intensity in the Alaska area, which had the largest
overall MAPE scores) and we did not perform a full analysis of such intensity against imputation
error, we might expect that incorporating contemporary TM (Landsat 4-5) or OLI (Landsat 8) imagery
into an ETM+ stack will improve the overall performance, provided that within-band correlations
between the various sensors remain consistent. Similarly, we note that the maximum spatial radius
considered in this study resulted in a 7 x 7 pixel window. In this study, we observed ETM+ stripes
as wide as 13 pixels. Thus, even with our maximum spatial radius, window regression could not
impute an entire image stack in one iteration. Increasing the spatial radius to * = 7, the optimal
value suggested by the response surface analysis (Figure 10), would enable a single-iteration run in
this case. However, the greater (and potentially extreme) distance to the target pixel could reduce
the quality of the imputation, as in the example pixel shown in Figure 4. Employing a minimum
correlation threshold as suggested in this discussion could mitigate this effect and preserve accuracy
while improving computational speed.
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Figure 14. ETM+ stripe intensity, computed by taking mean consecutive run length of missing data,
multiplying by the number of missing data runs, and dividing it by the total number of layers in the
stack. Larger values indicate the areas where window regression may be reasonably expected to have
relatively poorer performance.

There are numerous areas for future work and development for utilizing window regression
to gap-fill Landsat stacks. The most obvious area involves expanding the imputation target to
include cloud-covered or otherwise low-quality pixels, similar to how de Oliveira et al. [27] originally
implemented window regression. Another particularly interesting possibility with respect to ARD
is tile-filling: since ARD is constructed from multiple path/row passes, many of the images within
a tile stack are missing large areas, simply because no image was acquired for that location at that
time. Such broad-scale imputation would no doubt be time consuming, though, and it begins to
move window regression into the field of between-images interpolation. This in turn raises another,
more general question. With the availability and prevalence of synthetic images constructed from
multiple and often fragmented inputs ([21-23]), one might question whether the ETM+ data are
best put to use as input material for these approaches, rather than being used directly. Put another
way, is there value in retaining originally observed pixels where available, or does the inevitable
mismatch with any attempt at imputing the remainder make wholesale replacement with a synthetic
proxy more useful? The latter approach is appealing from the Bayesian perspective, acknowledging
even “observed” values as outputs from preprocessing models (e.g., top of atmosphere and surface
reflectance corrections), as measurements with latent variation. To this effect, we could compare
window regression outputs with those synthesized from harmonic regression approaches that use
the same input data. Such a comparison could also highlight the potential compatibility of window
regression and harmonic regression in a general two-step imputation/interpolation process.

5. Conclusions

In this study, we explored the parameter space associated with the window regression (WR)
algorithm to determine its suitability for de-striping ETM+ data. We found that window regression
had good overall accuracy and a typical tradeoff between accuracy and computation time, based on
varying combinations of spatial radius and temporal radius, such that larger windows took longer to
process but yielded higher accuracy. In terms of mean percentage error, window regression performed
better on bands and areas where the pixels had values toward the middle of the reflectance range
(e.g., in areas that had few unsaturated pixels). RMSEs for window regression on a selected case study
ranged from 3.7% to 7.6%, comparing well with those reported in studies of other gap-filling algorithms.
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We found that using larger spatial window sizes resulted in better accuracy, with an optimal spatial
radius of r = 7 suggested by response surface analysis. In a direct comparison between window
regression and another gap-filling algorithm, window regression yielded slightly better accuracy when
averaging over all spectral bands and study areas.

In general, window regression has the advantages of self-containment and simplicity: it inputs
a stack of images with missing data, and then it uses only that stack and a combination of linear
models to output an image stack with the missing values imputed. Window regression can be
reiterated, with each successive pass imputing more of the original stack, until the stack has little to
no missing data remaining. However, window regression can only impute based on available data.
If a missing pixel has only dissimilar pixels with which to compare, window regression risks a poor
imputation. Additionally, pixels imputed in successive iterations may suffer error propagation effects.
Increasing the spatial window size mitigates these effects and improves accuracy, at the cost of longer
computation time. Finally, window regression is a within-images gap-filling method, fundamentally
unlike harmonic regression and other between-images interpolation algorithms. Accordingly, window
regression has the potential to be improve the quality of inputs for such methods and their downstream
residual analyses.
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Appendix A

Additional details regarding the five study areas and Landsat images used in this study are
presented in Table Al.

Table Al. Image acquisition dates for each study area. AK and CU reference the Alaska and Contiguous
USA Albers Equal Area Conic projections, respectively. Note that candidate images for the 2014-2018
period were downloaded, but only the first 24 high-quality images from each stack were used in
the analysis.

Study Area ARD Tile Acquisition Year Acquisition Date
W 2014 2/21,3/9,3/16,3/25,4/1,4/10,4/26,5/19,8/23,9/8,9/24,10/3
ATStim AK h3v5 2015 3/12,3/19,4/4,4/20,4/29,5/6,5/31,6/16,6/23
aska 2016 3/5,3/21,3/30
Central 2014 1/12,3/17,5/4,5/20,6/5,6/21,7/23,8/8,10/11,10/27,11/12,
Ae'ntra CU h7vi2 11/28,12/14,12/30
fizona 2015 1/15,2/16,3/4,3/20,4/5,4/21,5/7,6/8,6/24,7/10
1/19,2/11,2/27,3/15,4/9,4/16,4/25,5/11,5/18,6/3,7/21,
Eai’flcer}tral CU h21v9 2014 7/30,10/25,11/3
mo1s 2015 1/13,2/7,2/23,3/11,4/28,5/5,8/2,8/25,9/3,10/21
West C | 2014 1/12,2/13,3/10,3/26,5/4,5/20,7/7,7/16,8/8,8/24,9/25,
esltbentra CU h22v14 10/4,10/27,11/21,11/28,12/7
Alabama 2015 1/8,1/31,4/21,4/30,5/7,5/23,6/17,7/10
Central 2014 1/9,1/18,3/14,4/24,5/17,5/26,6/2,6/11,6/18,6/27,7/4,
Virginia CU h27v10 7/29,8/14,8/21,9/6,9/22,10/8,10/17,12/11,12/27

2015 1/5,1/28,2/6,2/13
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