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Abstract: The mobile laser scanning (MLS) technique has attracted considerable attention
for providing high-density, high-accuracy, unstructured, three-dimensional (3D) geo-referenced
point-cloud coverage of the road environment. Recently, there has been an increasing number of
applications of MLS in the detection and extraction of urban objects. This paper presents a systematic
review of existing MLS related literature. This paper consists of three parts. Part 1 presents a brief
overview of the state-of-the-art commercial MLS systems. Part 2 provides a detailed analysis of
on-road and off-road information inventory methods, including the detection and extraction of
on-road objects (e.g., road surface, road markings, driving lines, and road crack) and off-road objects
(e.g., pole-like objects and power lines). Part 3 presents a refined integrated analysis of challenges and
future trends. Our review shows that MLS technology is well proven in urban object detection and
extraction, since the improvement of hardware and software accelerate the efficiency and accuracy of
data collection and processing. When compared to other review papers focusing on MLS applications,
we review the state-of-the-art road object detection and extraction methods using MLS data and
discuss their performance and applicability. The main contribution of this review demonstrates
that the MLS systems are suitable for supporting road asset inventory, ITS-related applications,
high-definition maps, and other highly accurate localization services.

Keywords: mobile laser scanning (MLS); point cloud; road surface; road marking; driving line;
road crack; traffic sign; street light; tree; power line; deep learning

1. Introduction

The advancement in mobile laser scanning (MLS) technology, integrated with laser scanners,
location and navigation sensors (e.g., Global Navigation Satellite Systems (GNSS), and Inertial
Measurement Unit (IMU)), and imagery data acquisition sensors (e.g., panoramic and digital cameras)
on moving platforms has enhanced the performance of MLS in static urban objects detection, extraction,
and modeling [1]. These tasks using various geospatial point cloud data with different geometric

Remote Sens. 2018, 10, 1531; doi:10.3390/rs10101531 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-8893-9693
http://dx.doi.org/10.3390/rs10101531
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/10/10/1531?type=check_update&version=2


Remote Sens. 2018, 10, 1531 2 of 33

attributes, complex structure, and variable intensities, have become one of the popular topics in
disciplines, such as photogrammetry, remote sensing, and computer vision [1]. From Figure 1a,
imagery-based methods occupy the largest portion in the application for urban objects for the past
ten years. MLS and airborne laser scanning (ALS) technologies are only dedicated to one fifth of the
proportion. However, the MLS technology developed quickly in the past ten years. As can be seen
from Figure 1b, publications related to MLS increased rapidly since 2008. Most state-of-art surveys
for static urban objects are related to the data from imagery [2–4] and few are associated with point
cloud data [4]. In Ref. [5], the review focuses mainly on existing urban reconstruction algorithms using
different types of point clouds (e.g., MLS, ALS, and terrestrial laser scanning (TLS)).

This review provides a detailed and rigorous clarification for researchers who are interested in
static urban object extraction, classification, and modeling using MLS technologies. In this paper,
we review the state-of-the-art traditional and learning-based road object detection and extraction
methods and discuss their performance and applicability. Such methods are classified into different
categories according to targeted urban object types. A typical urban road environment consists of
static road objects including road pavements, road-side trees, traffic signs, light poles, and road
markings. We review object detection and extraction algorithms for these urban objects based on MLS
data. This work includes three parts. First, the latest technologies of MLS are analyzed by listing the
attributes and functions of these devices. Then, we review the latest extraction algorithm for on-road
static urban objects, which includes road surfaces, road markings, driving lines, road cracks, and road
manholes. Meanwhile, emerging off-road object detection and extraction methods are analyzed in
detail. Similar methods are associated together and are grouped into the same categories. Finally,
challenges and future research are discussed and a conclusion is presented.

Figure 1. (a) Ratio of publications related to ‘road object’, using airborne laser scanning (ALS) point
cloud, imagery, and mobile laser scanning (MLS) point cloud, respectively, from 2008 to 2018. Source:
MDPI; and, (b) Number of publications related to ‘mobile laser scanning’ from 2010 to 2018.

2. Mobile Laser Scanning: The State-of-the-Art

Since the GNSS techniques have been publicly accessible services in the past several decades,
MLS technologies have indicated the huge commercial potentials as advanced surveying and
mapping techniques for effective and rapid geospatial data collection [6]. In comparison with
TLS systems, ALS systems, and digital satellite imaging technologies, MLS systems have the
flexible mobility and proven ability to collect highly dense point cloud data with cost-saving and
time-efficiency measurements.

In general terms, an MLS platform is a vehicle-mounted mobile mapping system that is integrated
with multiple onboard sensors, including light detection and ranging (LiDAR) sensors, GNSS units
(e.g., GNSS antenna, an IMU, and a distance measurement indicator (DMI)), advanced digital cameras,
and a centralized computing system for data synchronization and management [7]. Additionally,
the GNSS, the IMU, and the DMI constitute a Position and Orientation System (POS) for mobile
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mapping applications. By using profiling scanning techniques and detecting laser pulse intensity
reflected from the target surfaces, MLS systems can directly support the localization, navigation,
object detection, accurate perception, object tracking, and three-dimensional (3D) urban digital
modeling missions. Depending on the speed of light and flying time of laser pulses, the precise
measurement range is calculated. Accordingly, highly accurate and geo-referenced 3D coordinates for
MLS point clouds are ascertained depending on angular measurement, range measurement, position
and orientation information [8]. In addition, MLS data acquisition rate is determined according to
the scanning sensor-deflecting pattern and laser pulse repetition rate. Currently, the most high-end
commercial MLS systems (e.g., RIEGL VMX-2HA MLS system) provide 500 scan lines and two million
measurements per second, which can collect high-density 3D point clouds for an extended range
of applications, including city modeling, tunnel surveying, intelligent transportation systems (ITS),
architecture and façade measurement, and civil engineering.

In order to fully describe the feasibility of MLS systems for urban object detection and extraction,
this part details (1) the components of MLS systems, (2) direct geo-referencing, and (3) error analysis.

2.1. Components of MLS System

MLS systems are applied to point clouds data acquisition of urban road networks and any
objects on both roadsides using multiple sensors onboard moving vehicles. Figure 2 presents crucial
subsystems of a Trimble MX-9 MLS system and a RIEGL VMX-2HA MLS system, respectively.
Additionally, the GNSS, the IMU, and the DMI constitute a POS for mobile mapping applications.

(a) (b)

Figure 2. Components of MLS systems: (a) Trimble MX-9, and (b) RIEGL VMX-2HA.

(1) Laser scanner

These laser scanners continuously emit laser pulses with a near-infrared wavelength to the
surfaces of specified targets and digitize the backscattered signals. Then, based on light travel
time, the scanning distances between the scanners and scanning targets can be calculated to obtain
coordinates and intensity information. Currently, two state-of-the-art techniques are applied to range
measurements in the plurality of MLS systems: time of flight (TOF) and phase shift [9].

In a certain medium, laser pulses move at a finite and constant velocity [9]. Therefore,
the scanning range between the laser sensors and the target can be determined by calculating
time-of-flight (also known as time delays) between light pulse transmission and return when these
pulses are backscattered from the target [10]. Most commercial MLS systems are equipped with TOF
scanners, since such scanners provide a farther measurement range than phase-based scanners [11].
When compared to TOF scanners, phase-based scanners emit continuous amplitude-modulated waves
using phase differences. Thus, the distance between the MLS system and the target is calculated
depending on the phase shift from light beam transmission and reception.

(2) Digital camera
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Advances in the development of digital cameras have driven the applicability of MLS systems [12].
In order to provide visual coverage, most commercial MLS systems are integrated with high-end
digital cameras, so that point clouds are realistically rendered using optical color imagery data.
Additionally, stable image geometry provides detailed information to enhance the reliability and
applicability of point clouds data [13]. Therefore, most optical camera manufacturers focus on the
research and development of customized digital cameras to meet any application specifics of MLS
systems. For instance, RIEGL VMX-2HA MLS systems are equipped with nine digital cameras to
capture rich geometry information (e.g., color and texture information) of targets. Since most laser
scanners provide the reflectivity at the laser wavelength as texture information, while color image
data is lack of coordinate reference, a combination of these two types of data can be applied to
generate colorized point clouds, which is widely applied in elaborated visualization and 3D city
model construction.

However, digital cameras play a secondary role that they are applied in visualization, while laser
scanners that are integrated into MLS systems are the primary source of precisely georeferenced
data [14]. Additionally, perspective distortions of images are caused by changes in imaging distances
and angles when the vehicle-based MLS system is moving. Moreover, for manufacturers of MLS
systems, it is challenging to ascertain a proper size format digital camera (e.g., medium format digital
camera) according to both point density and the driving speed of such systems.

(3) Global navigation satellite system & Orientation system

As mentioned before, the GNSS, the IMU, and the DMI (or odometer) constitute a POS
system, which can be utilized to ascertain localization information of the MLS system. The GNSS
provides highly precise positioning information up to centimeter accuracy and offers two additional
observations: velocity and time. However, the positioning accuracy would decline due to multipath
propagation issues caused by high-rise obstacles (e.g., tall trees, buildings and tunnels). For instance,
a GNSS receiver is surrounded by buildings or under tree canopies. To eliminate multipath effects and
to overcome the limitation of GNSS signal loss, an IMU is therefore used to provide the immediate
position, velocity, and attitude of an MLS system. Typically, an IMU can interpolate stable and
continuous positioning information in case of GNSS dropouts [11]. Additionally, three gyroscopes
and three accelerometers are installed in an IMU, which can be used to measure three-axis angular
rotations and three-axis accelerations. Since the positioning and orienting precision would decrease
with the increase of measurement time, the combination of GNSS/IMU can improve positioning
accuracy [8]. Consequently, the IMU provides relative position and orientation information in the
periods of weak satellite signals, while a GNSS presents detailed continuous positioning information
to the IMU. Furthermore, a DMI that is installed on the vehicle’s wheel using data transmission cable
is capable to offer the observation to constrain error drift, especially for urban areas with unstable
GNSS signals.

(4) Central control system

A highly integrated control system, as a sophisticated software unit, is designed to control all
sensors (e.g., laser scanners and digital cameras), synchronize data from such sensors, and store
trajectory information obtained from a POS system.

2.2. Direct Geo-Referencing

The mechanism of direct geo-referencing is elucidated in Figure 3. According to the scanning
angle α and the scanning range d of a certain point P, its position is thus determined in its coordinate
system. In addition, such a position in the coordinate system of mapping frame can be transformed
from the laser scanner system.
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Table 1 lists parameters that are involved in the direct geo-referencing transformation, and the
positioning information vector of target P is calculated using Equation (1) [14]: XP

YP
ZP

 = RIMU
M (ω, ϕ, κ)·


 lX

lY
lZ

+

 LX
LY
LZ

+ rS
P(α d)·RS

IMU(∆ω, ∆ϕ, ∆κ)

+

 XGNSS
YGNSS
ZGNSS

 (1)

As shown in Table 1, [XP, YP, ZP]T presents the positioning information of target P in the certain
mapping system; [XGNSS, YGNSS, ZGNSS]T shows the positioning information of the GNSS antenna in
the same mapping system; ω, φ, κ are roll, pitch and yaw details of IMU in the mapping coordinate
system; ∆ω, ∆φ, ∆κ are bore sight angles that bring the scanners into correspondence with the IMU;
α and d denote the incident angle and shooting range of laser pulses; and, other parameters are
identified via system calibration.

Figure 3. Principle of geo-referencing [14].

Table 1. Parameters used in the direct geo-referencing transformation.

Parameters Representation Source

(XP, YP, ZP) Coordinate of the laser point P in the mapping system Mapping frame

RIMU
M (ω, ϕ, κ) Rotation information align mapping frame with IMU IMU

RS
IMU(∆ω, ∆ϕ, ∆κ)

Transformation parameters from the laser scanner to IMU
coordinate system System calibration

rS
P(α d)

Relative position information of point P in the laser sensor
coordinate system Laser scanners

lX , lY , lZ The offsets between the IMU origin and the laser scanner origin System calibration

LX , LY , LZ The offsets between the GNSS origin and the IMU origin System calibration

(XGNSS, YGNSS, ZGNSS) Position of GNSS sensor in mapping frame GNSS antenna

2.3. Error Analysis for MLS Systems

As shown in Equation (1), the relationship among observation parameters is defined to generate
direct geo-referenced point clouds data. Thus, several typical errors of these parameters can result in
accuracy reduction for data acquisition and correction.

(1) Laser scanning errors

Based on Equation (1), the data acquisition accuracy is impacted by ranging error and incident
angle error. A ranging error is involved by the system errors and indeterminate intervals, which are
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utilized to measure the TOF and the width of output laser pulses. Moreover, an incident angle error is
involved because of the angular resolution and the uncertainty of laser pulses divergence [15].

(2) IMU errors

An IMU sensor in an MLS system indicates roll, pitch, and yaw details that define the rotation
matrix between the IMU and the mapping coordinate system. An IMU unit mainly includes two
components: (1) three orthogonal accelerometers that are employed to measure changes in position
along a specific axis; and, (2) three orthogonal gyroscopes that maintain an absolute angular reference
according to the principles of conservation of angular momentum. Typically, common errors of the
IMU contains accelerometer biases and gyroscope drifts, such as gravity misalignment, scale factor,
and random walk (sensor noises). Generally, the IMU accuracy is specified in the manufacturers’
technical specification. For instance, an Applanix POS LV 520, which is configured within a RIEGL
VMX-2HA MLS system, provides 0.005◦ in both roll and pitch angles and 0.015◦ in yaw angle within
one standard deviation.

(3) Localization errors

The localization accuracy of GNSS systems is mainly impacted through many reasons, including
multipath effects, atmospheric errors, receiver errors, and baseline length [16]. Thus, determining the
absolute localization accuracy for a GNSS measurement is always challenging. By using differential
GNSS and real-time kinematic (RTK) methods, the localization accuracy is often expected to be 1 cm
+ 1 ppm horizontally and 2 cm + 1 ppm vertically for a short kinematic baseline length with local
GNSS-reference stations.

(4) Lever-arm offset errors

Highly precise geo-referenced MLS data can be obtained if the lever-arm offsets are known.
Calibration and physical measurement methods are commonly applied to determine such offsets.
The first approach is not extensively applied because it is challenging to implement when compared to
the second method. However, physical measurement errors can evolve due to the assumption of the
alignment of two sensor’s axes [8].

Based on the discussion about error sources, it demonstrates that the overall performance of an
MLS system relies on the accuracy of resultant positions by laser scanners and a GNSS/IMU subsystem.
Lever-arm offset errors are effectively eliminated by appropriate system calibration and measurement.
Moreover, navigation solution can make an impact on the overall accuracy of MLS data collection.
Multipath propagation effects and GNSS-signal loss that are caused by trees and constructions along
the roadsides can decrease GNSS localization accuracy [16]. Accordingly, a postprocessing operation
of trajectory data is performed to increase the MLS data accuracy.

2.4. Introduction of Several Commercial MLS Systems

MLS systems are attacking worldwide attention with time. To date, based on the design and
development of MLS-related technologies (e.g., laser scanning, positioning devices, and digital
imaging), many MLS systems have hit the market. The worldwide manufacturers in the surveying and
digital mapping industries (e.g., Leica, RIEGL, and Velodyne) have been well-established as suppliers
of laser scanners or MLS systems. Table 2 summaries the several commercial-available MLS systems
and Figure 4 illustrates their configurations.

As illustrated in Table 2, Faro Focus3D laser scanner integrated within a Road-Scanner C MLS
system provides the most accurate mobile measurements by using phase shift measuring technique,
while the SICK LMS 291 laser scanners present the worst measurement accuracy with 35 mm absolute
measurement accuracy. Furthermore, RIEGL series and Trimble series laser scanners can achieve
measurement ranges over 420 m due to employing the TOF measuring technique. In particular,
the scanning range of a RIEGL VQ-450 scanner approximates 800 m.
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Table 2. Product specifications of several MLS systems.

Corporation Trimble RIEGL Teledy-Ne Optech 3D Laser Mapping
Ltd.& IGI mbH TOPCON Siteco

MLS System MX-9 VMX-450 VMX-2HA Lynx SG StreetMapperIV IP-S3 Compact+ ROAD
SCANNER-C

Laser scanner
component

Laser scanner - RIEGL
VQ-450 (2)

RIEGL
VUX-1HA (2)

Optech Lynx
HS-600 Dual RIEGL VUX-1HA (2) SICK LMS 291(5) Faro Focus3D (2)

Laser wavelength near infrared 1550 nm near infrared 905 nm 905 nm

Measuring principle TOF measurement.
Echo signal digitalization. TOF.

TOF.
Echo signal

digitalization.
TOF. Phase difference.

Maximum range 420 m 800 m 420 m 250 m 420 m 100 m 330 m

Minimum range 1.2 m 1.5 m 1.2 m - 1.2 m 0.7 m 0.6 m

Measurement
precision 3 mm 5 mm 3 mm 5 mm 3 mm 10 mm 2 mm

Absolute accuracy 5 mm 8 mm 5 mm 5 cm 5 mm 35 mm 10 mm

Scan frequency 500 scans/s Up to 200 Hz 500 scans/s Up to 600 scans/s 500 scans/s 75–100 Hz 96 Hz

Angle measurement
resolution 0.001◦ 0.001◦ 0.001◦ 0.001◦ 0.001◦ 0.667◦ H0.00076◦ V 0.009◦

Scanner field
of view 360◦ 360◦ 360◦ 360◦ 360◦ 180◦/90◦ H360◦V 320◦

GNSS component

GNSS types POS LV 520 POS LV-510 POS LV-520 POS LV 420 POS LV-510

40 channels, dual
constellation, dual
frequency GPS +

GLONASS L1/L2

Dual frequency GPS
+ GLONASS L1/L2

Roll & Pitch 0.005◦ 0.005◦ 0.005◦ 0.015◦ 0.005◦ 0.4◦ 0.020◦

Heading 0.015◦ 0.015◦ 0.015◦ 0.020◦ 0.015◦ 0.2◦ 0.015◦

Imagery
component

Camera types
Point Gray

Grasshopper®

GRAS-50S5C (4)
500 MP (6)

Nikon® D810
(up to 9) or FLIR

Ladybug® 5+

Up to four 5-MP
cameras and one

Ladybug® camera

Ladybug 3 &
Ladybug 5 (6) -

Ladybug 5
30-megapixel Spher.

camera

Lens size 2/3” CCD 2/3” CCD 2/3” CCD 1/1.8” or 2/3” CCD 2/3” 1/3” CCD -

Field of view - 80◦ × 65◦ 104◦ × 81◦ 57◦ × 47◦ - - 360◦

Exposure - 8 - 3 2 15 Max. 30

Reference [17] [18] [19] [20] - [21] -
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Additionally, RIEGL VMX-2HA, VQ-450, Trimble MX-9, and Lynx HS-600 scanners can operate
with a full 360◦ field of view, while SICK LMS 291 and Faro Focus 350 scanners provide less than 360◦

coverage. Besides, the system portability is an important factor when suppliers design and develop
their MLS systems, which enables customers to conduct the survey conveniently. An IP-S3 MLS
system is compact and highly integrated within a small case for easy installing on the roofs of various
motorized vehicles. Similarly, VMX-2HA, VMX-450, Trimble MX-9, and Lynx SG are relatively easily
moved despite that they have a portable control unit mounted inside the trunk. However, the system
portability of Road-Scanner C MLS system is hindered because of its large-sized control unit.

Moreover, point density is a significant attribute in many applications, including road information
inspection, landslide detection, deformation monitoring, and forest health inspection using MLS point
clouds. Additionally, point densities of different laser scanners are determined based on the scan rate
and driving speed of the specified MLS platform [11]. For instance, a RIEGL VQ-450 scanner is able
to acquire highly dense point clouds over 8000 points/m2 at a driving speed of 60 km/h. Moreover,
point density will increase with the shorter measurement range.

Figure 4. Current off-the-shelf commercial MLS systems: (a) Trimble MX-9; (b) RIEGL VMX-2HA;
(c) Lynx Mobile Mapper™ SG; (d) StreetMapperIV; (e) Topcon IP-S3; and, (f) FARO® and Siteco
Road-Scanner C. Source: [17–21].

As shown in Figure 4, all MLS systems can provide very high point cloud densities within short
measuring distances (e.g., the distance to roadside buildings). Accordingly, the RIEGL VQ-450 and
VUX-1HA, and Optech Lynx HS-600 Dual laser scanners can produce relatively large data volumes as
compared to SICK LMS 291 scanners integrated within Topcon’s IP-S3 Compact+ system.

Meanwhile, driving speed has a great impact on point density. For this reason, users are able
to determine the desired point density by adjusting the proper driving speed and incremental angle.
For instance, for a Trimble MX-9 MLS system, the scan rate can reach 500 profiles per second from a
moving vehicle at regular traffic speeds. When compared with other laser scanners that are listed in
Table 2, the RIEGL VQ-2HA and Trimble MX-9 system can provide the best specifications of point
density. Therefore, high-density point clouds enable a wide variety of applications of MLS systems for
monitoring and detecting road conditions, especially in complex urban road environments.

2.5. Open Access MLS Datasets

To further expand the applications of MLS technologies, more and more national governments,
research institutions, and universities are devoting to releasing and sharing their MLS datasets
free to the public. The Robotics laboratory (CAOR) at MINES ParisTech, France released the
Paris-rue-Madame dataset [22] that contains approximately 160 m long urban street MLS point clouds.
This dataset, which was obtained by the LARA2-3D MLS system, has been classified and segmented,
which makes the point-wise evaluation of MLS point-based detection, segmentation, and classification
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methods possible. More recently, MINES ParisTech also made Paris-Lille-3D dataset [23] publicly
available. Such a dataset has been entirely labeled with 50 types of object classes to assist the related
research communities on automated point cloud detection and classification methods. TUM City
Campus MLS point cloud dataset [24] was collected by Fraunhofer IOSB using two Velodyne HDL-64
laser scanners. Several classes have been assigned and labeled as: unlabeled, high vegetation,
low vegetation, natural terrain, artificial terrain, building, hardscape, artefact, and cars. This urban
street dataset contains 1.7 billion points over 62 GB of storage, which is suitable for the development of
methods for 3D object detection, SLAM-based navigation, and for transportation-related applications,
including ITS and city modeling.

Moreover, the Perceptual Robotics Lab (PeRL) at the University of Michigan provides the Ford
Campus Vision and LiDAR Data Set [25] obtained by a pickup truck-based autonomous vehicle
integrated high-end RIEGL LiDAR sensors around the Ford Research campus, as well as downtown
Dearborn, Michigan. This dataset approximates 100 GB with high-density point clouds to help
research on real-time perceptual sensing, autonomous navigation, and high-definition maps for
autonomous vehicles in prior unknown traffic environments. Furthermore, a 147.4 km long North
Campus Long-Term Vision and LiDAR Dataset [26] is publicly available collected by the PeRL to
facilitate research and development focusing on long-term autonomous driving function in dynamic
urban street environments.

Based on a wagon-based MLS with high-resolution color and grayscale video cameras and
Velodyne laser scanners, the KITTI Vision Benchmark Suite [27] project that was conducted by the
Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago released massive
images, point cloud datasets, and benchmarks. Such datasets were collected in urban areas, rural areas
and on highways around the city of Karlsruhe, which provided detailed road information (e.g., cars and
pedestrians) to support computed vision related missions, such as 3D tracking and 3D object detection.
Meanwhile, the Cityscapes Datasets [28] focusing on the semantic understanding of urban street
scene were publicly accessible with a diversity of 50 cities and 30 classes. More recently, Large-scale
Point Cloud Classification Benchmark dataset [29] that is a benchmark for classification with eight
class labels was released to boost the applications in robotics, augmented reality and urban planning.
Such datasets contain fine details of urban streets and provide labeled 3D point clouds with over
four-billion points in total. These publicly accessible MLS datasets boost the development of city
modeling, transportation engineering, autonomous driving, and high-definition navigation maps.

3. On-Road Information Extraction

The traffic information and inventory on the road, including road surfaces, road markings,
and manmade holes, are significant and necessary elements in the geometric design of roadways
to provide guidance, warning, and bans for all road users (e.g., drivers, cyclists, and pedestrians).
According to [8], MLS data can be utilized for accurately detecting and extracting various types of
on-road object inventory, which are mainly classified as five categories: road surfaces, road markings,
driving lines, road cracks, and road manholes. This section contains a systematic and comprehensive
literature review of backgrounds and studies that are related to urban on-road object detection and
extraction using MLS point clouds. Figure 5 indicates the applications and related experiment results
of on-road information extraction using MLS point clouds.

3.1. Road Surface Extraction

Road surfaces, as an important urban road design structure, play an important role in ITS
development, urban planning, 3D digital city modeling, and high-definition roadmap generation [30].
The relatively large data volumes obtained by MLS systems in an urban environment consist of different
kinds of objects, including roads, buildings, pole-like objects (e.g., trees, traffic signs, and poles), cars,
and pedestrians. In general, efficient detection and accurate extraction of road surfaces are the
prerequisites for the extraction and classification of other on-road inventories (e.g., road manholes) [31].
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It aims to reduce the data volume and boost the subsequent process straightforward and reliably [7].
Furthermore, filtering out off-ground point clouds can minimize computational load and save memory
space. A variety of methods and algorithms have been developed for road surface detection and
extraction using MLS data. According to different data formats, such methods are mainly categorized
into three groups: 3D point-based extraction, two-dimensional (2D) feature image-based extraction,
and other data source based extraction [8]. Figure 6 presents several road surface extraction algorithms
and a few representative experiment results.

Figure 5. Applications and experimental results of on-road information extraction using MLS
point clouds.

Figure 6. Methods and experimental results for road surface extraction from MLS point clouds.

3.1.1. 3D Point-Based Extraction

Road surface extraction is conducted using either MLS point clouds directly or 2D feature imagery
derived from 3D point clouds. The majority of algorithms directly extracted pavement, while the others
first extracted road edges or road boundaries [32–34]. By applying the derivatives of the Gaussian
function to MLS point clouds, Kumar et al. [32] effectively extracted road edges. According to the
parametric active contour and snake model, they implemented a revised automated method for road
edge extraction from MLS data [33]. Additionally, Zai et al. [34] proposed a supervoxel generation
algorithm that automatically extracted road boundaries and pavement surfaces while using MLS
point clouds. Wang et al. [35] developed a computationally efficient approach integrating Hough
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forest framework with supervoxel to remove pavement from raw 3D mobile point clouds for further
object detection. By calculating angular distances to the ground normals, Hervieu and Soheilian [36]
effectively extracted road edges and road surfaces from MLS point clouds. Hata et al. [37] extracted
ground surfaces by employing various filters, including differential filter and regression filter, on 3D
MLS points. Guan et al. [38] proposed a curb-based road extraction method to separate pavement
surfaces from roadsides with the assumption that road curbstones can represent the boundaries of
pavement. Xu et al. [39] proposed an automated road curb extraction method using MLS point
clouds. First, candidates’ points of pavement curbs were extracted by an energy function. Then,
such candidate points were refined based on the proposed least cost path model. Riveiro et al. [40]
implemented the road segmentation using a curvature analysis that is directly derived from MLS point
clouds. Additionally, a voxel-based upward growing method was performed for direct ground point
segmentation from entire MLS point clouds [7].

In order to enhance computational efficiency, trajectory data were commonly used [31,38,41].
Wu et al. [42] proposed a step-wise method for off-ground point removal. Firstly, raw point clouds
were vertically partitioned along the vehicle’s trajectory. Then, the Random Sample Consensus
(RANSAC) method was employed for ground point extraction by determining the average height of
ground points.

As mentioned, MLS systems collect data by multiple scan lines. The spatial configuration of
the scan line relies on the user-defined parameters of a specific MLS system, such as driving speed,
sensor trajectory, and sensor orientation. Consequently, the high-density pavement points decrease the
computation complexity in pavement segmentation by processing scan lines [38,43–45]. According
to scan lines, Cabo et al. [43] proposed a method depending on line cloud grouping from MLS point
clouds. The input point clouds were first organized into lines covering pavements. Subsequently,
such lines were clustered based on a group of quasi-planar restrictions. Finally, road edges were
extracted from the end points of lines. The scan line related methods have been demonstrated to be
efficient, but they still have challenges in processing unordered MLS data that lack the characteristics
of the scan lines’ sequence [30].

Furthermore, some studies focus on directly extracting road surfaces from MLS data, according
to the data characteristics and road properties, including point intensity, road width, elevation,
and smoothness [32,46,47]. According to the MLS system mechanism, point density is negatively
correlated to the shooting range from the onboard laser scanners. Kumar et al. [32] filtered
out off-ground points from raw MLS point clouds by taking point densities into consideration.
Guo et al. [48] removed non-road surface points by combining road width and the elevation data.
Other valuable data characteristics and road properties include local point patterns, laser pulse
information, and height-related data (e.g., slope, height mean value, and height variance). In many
existing methods, certain characteristics of MLS point clouds and road properties were combined to
segment pavement points. Such methods extracted road surfaces using either local scales or global
scales, but they were computationally intensive and time-consuming.

Some studies concentrated on a unique road object, while the others performed the classification
which the whole 3D point-based scene was classified into different types of objects, including traffic
lights, roadside trees, building facades, and road pavement [41,46,49,50]. By considering shape, size,
orientation, and topotaxy, Pu et al. [41] were capable of automatically extracting road surfaces, ground
objects, and off-ground objects within a 3D point-based scene. Fan et al. [46] classified the point clouds
into six groups, including roads, cars, trees, traffic signs, poles, and buildings, based on point density,
height histogram, and fine geometric details. Moreover, Díaz-Vilariño et al. [50] proposed a method
using roughness descriptors to automatically segment and classify asphalt pavements while using
MLS point clouds. Although these studies indicated promising solutions for road surface extraction
from MLS point clouds, other data sources, including optical RGB imagery, are of vital importance in
the classification of more types of roads and defect detection on the pavements.
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3.1.2. 2D Feature Image-Based Extraction

Converting 3D MLS point clouds into 2D geo-referenced feature (GRF) images enables decreasing
computational complexity at the stage of road surface extraction. By using the existing computer
vision and image processing methods, road boundaries and pavements can be efficiently detected and
extracted [51]. Pavement segmentation of range scan lines was implemented in 2D, Cabo et al. [43]
conducted an experiment to differentiate road inventories (e.g., trees, high-rise buildings, and road
surfaces) based on the height deviation. In order to minimize the computational effort, Kumar et al. [52]
proposed a 2D approach by projecting the 3D point clouds onto the XOY plane and assigning to a lattice
of adjacent squares covering the whole 3D points scene. Subsequently, the generated 2D elevation
image was processed to detect the road curbs by using active contour models. Riveiro et al. [40] firstly
projected the entire MLS point clouds onto a 2D space. The principal component analysis (PCA) was
then employed to detect peaks (e.g., altitude and deflection angle) denoting the transversal limits of
the road. With the assumptions that road surfaces are large planes with a certain distance to trajectory
data of MLS systems and the normal vectors of road surfaces are approximately parallel to the Z-axis,
Yang et al. [53] segmented road surfaces by generating GRF images to filter out off-ground objects
from the raw MLS point clouds.

Although studies on road surface extraction using image processing algorithms from MLS point
clouds have been pursued for years, fully automated road surface extraction is still a huge challenge.
Additionally, it is still difficult to deal with the steep terrain environments from 2D GRF images.

3.1.3. Other Data-Based Extraction

To eliminate the limitations of MLS point clouds (e.g., data occlusion and unorganized data
distribution), other data sources, including high-resolution satellite imagery, unmanned aerial vehicle
(UAV) imagery, ALS data, and TLS data, were integrated with MLS point clouds. Choi et al. [54]
created detailed 3D geometric models of road surfaces based on the data fusion of MLS point
clouds, video data, and scanning profiles. Jaakkola et al. [49] employed image processing algorithms
to the intensity and height images for road curbstone segmentation, and the road surfaces were
modeled as triangulated irregular networks (TIN) using 3D point clouds. With the assistance of such
data, the extraction accuracy can be boosted by providing additional pavement texture information.
Boyko and Funkhouser [55] proposed a method to combine multiple aerial scans and TLS highly dense
point clouds of urban road environments together for completely extracting road surfaces. With the
assistance of ALS data, Zhou and Vosselman [56] implemented a sigmoid function to the 3D points
near the detected curbstone, then adapted for processing of MLS data. Accordingly, Cavegn and
Haala [57] proposed a method to efficiently extract pavement surfaces that are based on the TLS points,
images, and scaled numeric maps.

Combining other data sources with MLS point clouds enables both accuracy and correctness
enhancement of road surface extraction. However, different input data might be collected by
different sensors at multiple times, under different weather conditions, with different densities and
resolutions, and under various illuminations, it makes the data registration, data calibration, and data
fusion challenging.

Table 3 is a summary of three categories of road surface extraction methods. Although the
existing image processing algorithms can be efficiently performed on 2D GRF imagery derived
from 3D MLS point clouds [44], it is challenging to deal with steep terrain environments. Thus,
the accuracy of pavement extraction results can be improved based on the additional detailed road
information supported by other data sources. When compared to 2D GRF image-based road surface
extraction, 3D point-based methods are capable of extracting road surfaces directly from MLS data,
and segmenting road surfaces in the local-global scales [35,38,58]. However, these methods are mostly
computationally intensive and time-consuming.



Remote Sens. 2018, 10, 1531 13 of 33

Table 3. Summary of several road surface extraction methods.

Method Information Description Performance Reference

Voxel-based upward growing method

• Connectivity in
vertical direction

• Elevation

First, split the original point cloud into grids with certain width in the XOY plane.
Second, use the octree data structure organizes the voxel in each grid. Third, the
voxel grows upward to its nine neighbors, then continues to search upward to their
corresponding neighbors and terminates when no more voxels can be searched.
Finally, the voxel with the highest elevation is compared with a threshold to label it
as ground or off-ground part.

• Adaptive to large scenes
with strong
ground fluctuations.

• May not function well for
data with a lot of noise.

[7,59–63]

Ground Segmentati-on • Height difference

First, voxelize the input data into blocks. Second, cluster neighboring voxels whose
vertical mean and variance differences are less than given thresholds and choose the
largest partition as the ground. Third, select ground seeds using the trajectory.
Finally, use K-Nearest Neighbor algorithm to determine the closest voxel for each
point in the trajectory.

• Making the region
growing process faster.

• Suitable for simple scenes
• Implement in global scale

[63,64]

Trajectory-based filter
• Trajectory data
• 2D geo-referenced image

First, using the trajectory data and the distance to filter original data. Second,
rasterize the filtered data onto the horizontal plane and then compute different
features of point cloud in each voxel. The raster data structure is visualized as an
intensity image. Finally, binary the image using different features. Run AND
operation between both binary images to filter the ground points.

• Fit for data with
high intensity.

• May cause over-segment
due to rasterization.

[41,65]

Terrain filter
• Point density
• Euclidean distance

First, partition the input data into grids along horizontal XY-plane. Second,
determine a representative point based on the given percentile. Then use it and its
neighboring cell’s representative points to estimate a local plane. Third, define a
rectangle box with a known distance to the estimated plane. Such points located
outside the box are labeled as “off-terrain” points. The box is partitioned into four
small groups. Repeat Step 1, 2, 3 until meet the termination condition. Finally,
Apply the Euclidean clustering to group the off-terrain points into clusters.

• Suitable for complex scene.
• Time-consuming
• Heavy

computational burden.

[66]

Voxel-based ground removal method
• Elevation
• Point density

Firstly, the point clouds are vertically segmented into voxels with equal length and
width on the XOY plane. Then, the ground points are removed by an elevation
threshold in each voxel.

• Fit for scenes with
small fluctuations.

• Simple and time-saving.
[67,68]

RANSAC-based filter
• Trajectory data
• Height deviation

First, divide the entire point clouds into partitions along the trajectory. Use plane
fitting to estimate the average height of ground. Second, iteratively apply RANSAC
algorithm to fit a plane. The iteration terminates when the elevation of one point is
higher than the mean elevation or the number of points in the plane generated by
RANSAC remains unchanged.

• Quick and effectively.
• Not suitable for

complex scene.
• Cannot work for scenes

with multiple planes.

[42]
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3.2. Road Marking Extraction and Classification

Road markings, including lane lines, center lines, zebra crossings, and arrows, provide necessary
road information (e.g., warning and guidance) for all road users. Identifying and extracting road
markings accurately is significant for advanced driver assistance systems (ADAS) and autonomous
driving systems to plan reliable navigation routes and prevent collisions in complex urban road
networks. When considering urban road condition and road topography, the availability and clarity of
road markings are critical elements in traffic management systems and accidents where road networks
themselves are the cause. For instance, the fatal accident rate is high due to the damage of clearly
painted road markings, especially in highly complex urban road and highway environments [59].

Road markings are highly retro-reflective materials painted on asphalt concrete pavements.
Thus, the relatively high-intensity value is considered to be a unique characteristic for road marking
extraction from using point clouds [40]. Accordingly, a variety of methods are mainly categorized into
two classes depending on semantic knowledge (e.g., shape) and MLS intensity properties: 2D GRF
image-driven extraction, and 3D point-driven extraction. Figure 7 shows several experiment results by
using different road marking extraction methods.

Figure 7. Methods and experimental results for road marking extraction from MLS point clouds.

3.2.1. 2D GRF Image-Driven Extraction

The majority of studies focused on the road marking extraction using 2D GRF images interpreted
from 3D points. According to semantic information (e.g., size, orientation, and shape) of road
markings, the existing image processing approaches were widely used, including Hough Transform,
multi-thresholding segmentation, morphology, and Multi-Scale Tensor Voting (MSTV) [13,69–71].
Toth [13] conducted a simplified intensity threshold segmentation for the extraction with regard
to intensity distribution in different searching windows. Accordingly, Li et al. [70] implemented a
global intensity filter to roughly segment road markings based on the generated density-based images.
In order to efficiently extract lane-shaped road markings (e.g., broken lane lines and continuous
edge lines), Yang et al. [71] performed a Hough Transform method in four connected regions of the
georeferenced intensity images. However, the applications of Hough transformation for road marking
extraction is limited by defining the quantity of road marking types to be segmented, especially in the
process of dealing with multiple types of road markings (e.g., arrows). In contrast, multi-thresholding
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segmentation methods were developed through exploiting the relationship between the intensity
values and scanning ranges, which were commonly applied to overcome intensity inconsistency
due to different scanning patterns and non-uniformity of point cloud distribution [69]. Accordingly,
Guan et al. [38] and Ma et al. [47] dynamically segmented road markings using multiple thresholds
regarding different scanning distances that are based on point densities, followed by a morphological
operation with a linear structuring feature. Kumar et al. [12] performed a scanning range dependent
thresholding algorithm to identify road markings from the georeferenced intensity and range imagery.
Furthermore, the MSTV approach can suppress high-level noises and preserve complete road markings.
In the study that was conducted by [14], road marking segmentation was improved by using weighted
neighboring difference histogram based dynamic thresholding and MSTV algorithms from the noisy
GRF images.

3.2.2. 3D Point-Driven Extraction

Meanwhile, most studies directly extracted road markings from MLS point clouds rather than the
generated GRF images. Chen et al. [72] and Kim et al. [73] performed a profile-based intensity analysis
algorithm to quickly segment pavement markings from 3D MLS points. Firstly, raw MLS point clouds
were partitioned into point cloud data slices based on the trajectory of vehicles. Then, pavements were
detected and extracted by considering the geometric properties of road edges, boundaries, and barriers.
Finally, line-shaped pavement marks were efficiently extracted by determining the peak value of
intensity in each scan line. Additionally, Yu et al. [74] directly derived road markings using MLS point
clouds and classified them into large-sized (e.g. stop line and centerline), small-sized (e.g., arrow),
and rectangular-shaped (e.g., zebra crossing) road markings. According to trajectory data and road
curb lines, large-sized road markings were firstly extracted by using multiple threshold segmentation
and spatial point density filtering methods, while the Otsu’s thresholding approach [75] was adopted
to select multiple optimal thresholds. Then, small-sized road markings were extracted and classified
according to Deep Boltzmann Machines (DBMs)-based neural networks. Finally, rectangular-shaped
markings were efficiently classified by performing a PCA-based method. Soilán et al. [76] computed
several discriminative features for individual road marking based on the geometric parameters and
pixel distribution. Subsequently, each road marking was defined as a Geometry Based Feature (GBF)
vector that was the input of a supervised neural network for road marking classification.

Table 4 summarizes road marking extraction and classification methods in terms of 2D
image-driven and 3D MLS point-driven extraction. Converting MLS point clouds into 2D GRF
images is effective to overcome intensity inconsistency and density variance issues due to different
scanning patterns. However, complex types of road markings (e.g., words) make the extraction
process via 2D feature image processing algorithms challenging. By comparison, MLS point-driven
extraction methods concentrating on directly segment road markings from raw MLS point clouds can
achieve both completeness and correctness improvement. In addition, detailed geospatial information
road markings can be preserved for further applications. However, automated road marking
extraction from the large-volume MLS point clouds especially with strong concavo-convex features
and unevenly distributed point clouds is still a very difficult task [75]. Accordingly, many studies were
conducted for automated road marking classification by using deep learning based neural networks
(e.g., PointNet [77] and PointCNN [78]), but such methods need massive labeled road markings for
training purposes and they have limitations in processing extra-large MLS data volume for urban
road networks.
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Table 4. Comparison of road marking extraction methods.

Categories Method Information Advantages Limitations

2D image-based
extraction

Multiple
thresholding
segmentation

[13,40]

# Intensity
# Scanning distance
# Semantic information

# Efficient to overcome point
permutation and intensity
inconsistency issues of
MLS point clouds.

# Straightforward

# Difficult to deal with complex
road environments.

Hough
Transform [71]

# Intensity # Computation efficiency
# Challenging to handle

complex road markings types
(e.g., arrows and words).

Multi-scale Tensor
Voting [14]

# Intensity values
# Scanning range

# Achieve
extraction improvement

# Suppress noises
# Preserve road markings

# Require rich prior
knowledge to set stop
iteration criteria.

# Difficult to filter out small
noisy fragments.

3D MLS-based
extraction

Deep learning
neural

network [74]

# Small-sized road
marking types

# Efficient for small size
road markings extraction.

# Geospatial information of
road markings
is preserved.

# Require lots of labeled
samples for training.

Profile-based
intensity

analysis [73]

# Intensity
# Scanning range
# Trajectory data

# Do not require
lane models.

# Computation efficiency.

# Difficult to handle complex
road marking types.

# Cannot work well in rural
area without curbstones.

3.3. Driving Line Generation

Driving lines, defined as the driving routes for motorized vehicles or autonomous vehicles, play a
critical role in the generation of high-definition roadmaps and fully autonomous driving systems [42].
When considering the turning speed limitation, driving lane departure, and vehicle-handling capability
issues, one of the most challenging tasks to achieve fully autonomous driving is to enable autonomous
vehicles to navigate and maneuver themselves at complex urban environments without direct
human intervention [79]. Therefore, generating highly accurate driving lines within centimeter-level
localization and navigation accuracy can boost the development of high-definition roadmaps and
autonomous vehicles.

Recently, many worldwide automotive manufacturers (e.g., BMW, Ford, and Mercedes-Benz)
and digital map suppliers (e.g., HERE, Civil Maps, Ushr, and nuTonomy) are generating driving
lines from MLS data. Ma et al. [47] proposed a three-step process to generate horizontally curved
driving lines. Firstly, with the assistance of the trajectory of the MLS system, the curb-based
road surface extraction algorithms were adopted to segment road surfaces from raw MLS point
clouds. Secondly, road markings were directly extracted by using the multi-threshold segmentation
method, followed by a statistical outlier removal (SOR) filtering algorithm for noise removal. Finally,
the conditional Euclidean clustering algorithm was performed, followed by a nonlinear least-squares
curve fitting algorithm. Consequently, the driving lines were efficiently generated with 15 cm-level
localization accuracy.

Additionally, Li et al. [80] firstly implemented a voxel-based upward growing algorithm to
extract the ground points from the entire MLS point clouds. Then, road markings were categorized
into two types (i.e., lane markings and textual road markings). Such road markings were separately
extracted based on the distance-to-road-edge thresholding algorithm and related road design standards.
Lastly, 3D high-definition roadmaps were generated with detailed road edge, road marking, and the
estimated lane centerline information. Furthermore, Li et al. [81] proposed a step-wise method for road
transition line generation while using MLS data. The region growing algorithm was first proposed to
enhance the curb-based road surface extraction performance. Subsequently, the multi-thresholding
segmentation and geometric feature filtering algorithms were conducted for lane marking extraction.
Finally, a node structure generation algorithm was developed to generate lane geometries and lane
centerlines, followed by a cubic Catmull-Rom spline approach for transition line generation. Figure 8
indicates the generated driving lines from MLS data for high-definition map generation.
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(a) (b) (c)

Figure 8. The generated driving lines using MLS point clouds: (a) the generated driving lines.
Source: [80]; (b) the generated transition lines. Source: [81]; and, (c) the generated transition lines.
Source: [81].

3.4. Road Crack Detection

Road cracks, as a common type of distress in asphalt concrete pavement, are caused by road
surface fractures due to overloaded heavy-duty trucks, thermal deformation, moisture corrosion,
and road slippage or contraction. Rapid and accurate perception of road cracks not only enables the
local transportation departments to perform monitoring and repair for traffic efficiency, but it also
provides necessary information to the ITS for the probabilities of potential road surface distresses and
traffic risks [82].

With the development of laser imaging techniques, MLS data are commonly utilized in road crack
detection applications. In addition to providing an efficient promising solution for road crack detection
using high-resolution digital imagery, MLS point clouds are valuable data sources for evaluating
road surface distresses. Morphological mathematics based algorithms were implemented for crack
extraction from pavement GRF images [83]. Tsai et al. [84] summarized the previous six commonly
used pavement crack extraction and classification methods: Canny edge detection, regression or
relaxation thresholding, crack seed verification, multi-scale wavelets, iterative clipping, and dynamic
optimized method. However, most methods are computationally intensive and time-consuming.
The intensity information of road cracks normally indicates lower values in comparison with their
neighbors, Yu et al. [85] employed the Otsu thresholding algorithm to extract crack candidates. Next,
a spatial density filtering algorithm was performed for outlier removal. Finally, crack points were
clustered into crack-lines, and crack skeletons were extracted by performing an L1-medial skeleton
extraction algorithm. However, due to either grayscale similarity or discontinuity, the correctness and
robustness of the thresholding-based segmentation algorithms mainly rely on road surface materials
and surrounding environments, which can cause unreliable crack extraction results.

Meanwhile, many studies focused on extracting road cracks using advanced data mining,
artificial intelligent (AI)-based, and neural network methods [86,87]. However, the training process
needs a lot of labeled data, and the selection of parameters mostly depends upon data quality and
crack variations. Accordingly, Guan et al. [14] developed a method framework, called ITVCrack,
to automatically extract pavement cracks by using the iterative tensor voting (ITV) method.
The curvilinear cracks were efficiently delineated based on the ITV-based extraction algorithm, and a
four-pass-per-iteration morphological thinning algorithm was afterward performed to remove noise.
Additionally, Chen et al. [82] proposed a method for detecting asphalt pavement cracks by generating
Digital Terrain Model (DTM) from MLS point clouds. Then, local height changes that may relate to
cracks were detected based on a high-pass filter. Finally, a two-step matched filter (i.e., Gaussian-shaped
kernel) was used to extract crack features.
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3.5. Road Manhole Detection

Road manholes, as a major road infrastructure on the urban environment, provide entry to
conduits that are utilized to perform drainage, steam, liquefied gas, communication cables, optical fiber,
and other underground utility networks. Typically, road manholes are covered using concrete-made
or metal-made materials to prevent road users from falling into the wells. Such manhole covers can
be detected while using MLS systems to achieve higher time-efficiency and better cost-savings than
human field surveying, in a safe and effective way. Based on the various data format, the majority of
existing methods for road manhole cover detection are classified into two types: 2D imagery-based
methods and 3D point-based methods.

Due to the complex background of pavement images, Cheng et al. [88] proposed an optimized
Hough transformation approach for the manhole cover detection. Firstly, all the contours were
determined by contour tracking from binary edge imagery. False detections were then filtered out
using contour filters. Finally, circular-shaped manhole covers were extracted using the revised Hough
transform algorithm. Additionally, in the study conducted by [89], the single view and multiple
view processing methods were performed for manhole cover detection from road surface images.
Subsequently, Niigaki et al. [90] developed a novel method to identify blurred manhole covers from
low-quality road surface images. By focusing on the uniformity and separability of the intensity
distribution, the Bhattacharyya coefficient was fine-tuned and three operators (i.e., uniformity operator,
oriented separability operator, and circular object operator) were defined to detect manhole covers.

Meanwhile, MLS point clouds have also been widely used for road manhole cover detection.
Guan et al. [91] proposed an MSTV algorithm to detect road manhole covers from MLS point clouds.
First, ground points were extracted and rasterized into 2D GRF images. Next, the manhole cover
candidates were determined based on distance-dependent intensity thresholding. Then, an MSTV
algorithm was implemented for noise suppression and manhole cover pixel preservation. Finally,
manhole covers were extracted through distance-based clustering and morphological operations.
Yu et al. [92] presented a novel method for automated road manhole cover detection using MLS data.
First, in order to improve the computational efficiency, off-ground points were filtered out through a
curb-based road surface segmentation algorithm and rasterized into GRF intensity images via inverse
distance weighted (IDW) interpolation approach. Then, a supervised deep learning neural network
was trained to build a multi-layer feature generation network to determine high-level features of local
image patches. Next, the relationships between the high-level patch features and the probabilities of
the presence of manhole covers were learned by training a random forest model. Finally, based on the
multi-layer feature generation network and random forest model, road manhole covers were efficiently
extracted from GRF intensity images.

4. Off-Road Information Extraction

In mobile LiDAR systems, laser scanners continually collect 3D points along the roads,
which produces complicated and multi-dimensional, large volume data that requires specific
processing. Thus, efficient storage and management of such data are necessary for complicated
archive, rapid data dissemination, and processing for multi-level application, including interrogation,
filtering, and product derivatization [93]. In the view of scanned MLS data, the ground points always
occupy the largest part; however, our focused objects are set on the ground. Thus, data preprocessing
that segment the raw data into different groups roughly, and then select the related information locally
to extract off-road objects is particularly challenging.

Most researchers usually segment the raw data into three groups: ground, on-ground and
off-ground points [42,61,94–96]. Table 3 lists six representative ground removal methods. Among these
methods, voxelization and segmentation along the trajectory are commonly used. Voxelization is
applied to simplify the huge amount and heterogeneous distribution of data. Thus, the computing
cost is reduced by mapping the whole data in a three-dimensional grid without suffering a significant
information loss by choosing correct scale, because the reduced version is stored and directly
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linked to the original data [97]. Trajectory data indicates precisely real-time positioning information
of the vehicle, which can provide localization and orientation information of MLS systems [98].
Such trajectory data is commonly used as a filter to remove points that are far away from the road in
the raw point clouds.

The remaining off-ground points will be reduced to a large extent when compared with the raw
data when the ground and the on-ground points are removed. Within the off-road parts, those objects
with various intensity values are still unorganized. A rough clustering is commonly performed to
group the points into different clusters. Euclidean clustering and DBSCAN are two main density-based
spatial clustering methods.

• Euclidean clustering. This method is based on Euclidean space to calculate the distances between
discrete points and their neighbors. Then the distances are compared with a threshold to group
nearest points together. This method is simple and efficient. However, some disadvantages include
no initial seeding system and no over- and under-segmentation control. In [2,97], Euclidean
clustering was applied to segment the off-terrain points into different clusters. Due to the lack of
under-segmentation control, Yu et al. [7,66,96] proposed an extended voxel-based normalized cut
segmentation method to split the outputs of Euclidean distance clustering, which are overlapped
or occlusive objects.

• DBSCAN. DBSCAN is the most commonly used clustering methods without a priori knowledge
of the number of clusters. Besides, the remaining data can be identified as noise or outliers by
the algorithm. Riveiro et al. [99] and Soilán et al. [64] used the DBSCAN algorithm to obtain
and cluster a down-sampled set of points. Before that, a Gaussian mixture model (GMM) was
presented to determine the distribution of those points that matched sign panels. For some points
which were not related to traffic signs, PCA was used to analyze the curvature to filter the noise.
Yan et al. [100] used the module that was provided by the Scikit-learn to perform DBSCAN.
The points with height-normalized above ground features were clustered and then identified and
classified as potential light poles and towers.

After acquiring the rough off-road objects clusters, more detailed extraction solutions are analyzed
in the following sections: pole-like object extraction, power line extraction, and multiple object
extraction. Attributes of off-road urban objects are listed in Figure 9. These features play important
roles in static urban object extraction in the following algorithms.

Figure 9. Off-road objects attributes, including geometric attributes and spatial attributes .
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4.1. Pole-Like Objects Extraction

4.1.1. Traffic Sign Detection

Accurate recognition and localization of traffic signs are significant in intelligent traffic-related
applications (e.g., autonomous driving [101] and driver-assisted systems), which help machines
to respond in a timely and accurate manner in different situations. The high accuracy of points
(about 1 cm) in the meter-level area along with imagery provides promising solutions for traffic
sign detection (TSD) and recognition (TSR) while using mobile laser scanning techniques. Accurate
geometry and localization information is provided by point clouds; whereas, detailed texture and
semantic information is contained in digital images [96]. Existing algorithms apply geometric
and spatial features of traffic signs [65,102,103] or learn these features automatically [95,104–106]
to achieve TSD. TSR is commonly achieved by integrating imagery data and 3D point clouds
together. These methods can be grouped into TSD using 3D point clouds and TSR using imagery
data [1,2,94,95,104], as follows:

1. TSD using point clouds

Traffic sign point clouds have obvious geometric and spatial features. Table 5 lists the attributes
of them, which are employed in the most of existing traffic sign detection methods using point
clouds [65,97,99,105,108]. The metallic material of traffic signs makes their surfaces have a strong
reflectance intensity, for laser pulses hitting the retroreflective surfaces and returning to the receivers
without much signal loss. Besides, traffic signs are commonly installed at a certain height along
the roadsides. The sizes of them are limited to a certain range and their shapes are regular, such as
rectangle, circle, and triangle.

Table 5. This table shows the attributes of traffic signs.

Attributes Geometric
Dimension Geometric Relations Geometric Shape Topology Intensity

Traffic signs Height: 1.2–10 m Perpendicular to ground;
parallel to pole-like objects

circle, rectangle,
triangle

planar
structures high

Wen et al. [65] set the minimum number of points in clusters (setting as 50) to remove small parts.
Besides, point intensities below 60,000 are also filtered as non-sign objects. Yu et al. [66] also used
intensity filter to extract traffic sign clusters. But, before that, an improved voxel-based normalized
cut segmentation method was applied to separate occlusive and overlapped objects when Euclidean
distance clustering failed. Ai et al. [94] used scanning distances and incidence angles to normalize
each clusters’ retro-intensity value. The comparison between the median value from the population
of the normalized retro-intensity and the selected threshold was conducted to assess the traffic sign
retro-reflectivity condition. In [63], traffic sign attributes, such as planar surfaces and an enclosed
range of heights, were used in detection solutions. A height filter was proposed to eliminate clusters
with heights that were smaller than 25 cm. Planar filters remove objects with reflective features that
are not planar or small. Huang et al. [61] used the two same attributes to remove irrelevant points,
then they applied a shape-based filtering to exclude the pole-like objects. Guan et al. [108] detected
traffic signs using the intensity that extracted objects with low intensity and geometrical structures
and removed non-planar parts.

2. TSD Using Point Clouds and Imagery

After finishing TSD tasks, TSR is commonly achieved by integrating point clouds and imagery
data together. The fusion of point clouds and imagery are composed of two steps: (1) transform the 3D
point clouds coordinate system from the world coordinate system to the camera coordinate system
and (2) map the 3D points from the camera coordinate system to the 2D image plane [65]. After that,
the TSR task is completed based on the projected area. One example of TSD and TSR is shown in
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Figure 10. Learning-based methods, such as machine learning methods and deep learning algorithms,
are commonly used techniques in the TSR process.

• Machine learning methods. Machine learning based TSR methods are most commonly used in
the imagery-based TSR tasks in the past years. Wen et al. [65] assigned traffic sign types by a
support vector machine (SVM) classifier trained by integral features composed of Histogram of
Gradients (HOG) and color descriptor. Tan et al. [109] developed a latent structural SVM-based
weakly supervised metric learning (WSMLR) method for the TSR and learned a distance metric
between the captured images and the corresponding sign templates. For each sign, recognition
was done via soft voting by the recognition results of its corresponding multi-view images.
However, machine learning methods need manually designed features that are subjective and
highly rely on the prior knowledge of researchers.

• Deep learning methods. Recently, deep learning methods are applied in MLS regions for their
powerful computation capacity and superior performance without human design features.
By learning multilevel feature representations, deep learning models are effective in TSR.
Yu et al. [96] applied the Gaussian–Bernoulli deep Boltzmann machine (GB-DBM) model for
TSR tasks. The detected traffic signs point clouds were projected into 2D images, which produced
a bounding box on the image. The TSR was achieved among the bounding box. To train a
TSR classifier, they arranged the normalized image into a feature vector and then input it into
to the hierarchical classifier. Then a GB-DBM model was constructed to classify traffic signs.
This model contains three hidden layers and one logistic regression layer, which contains quantity
activation units. These units were linked to the predefined class. Guan et al. [108] also conducted
TSR using GB-DBM model. Their method was proved for rapidly handling large-volume MLS
point clouds toward TSD and TSR. Arcos-García et al. [63] applied a DNN model to finish TSR
from the segmented RGB images. This DNN model combined several convolutional, spatial
transformers, non-linearity, contrast normalization, and max-pooling layers, which were proved
useful in the TSR stage. These deep learning methods are proven to generate good experimental
results. However, the point cloud traffic sign detection results have impacts on the recognition
results. If the traffic sign is missing in the first stage, the following TSR results will be inaccurate.

Figure 10. Traffic sign detection (TSD) and traffic sign recognition (TSR) using point clouds and imagery
data [91]. (a) Raw data, (b) off-road data after ground removal, (c) off-road objects clustering results,
(d) traffic signs, (e) projection, and (f) TSR results.
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4.1.2. Light Pole Detection

Street light poles, used to adjust illumination condition to help the pedestrians and drivers at night,
are cost-effectively monitored, maintained, and managed for the transportation agencies [110,111].
MLS techniques, which provide high-density and high-accuracy point clouds, are applied effectively
in the light pole detection [15]. Existing light poles detection algorithms can be grouped into the
following types: knowledge-driven and data-driven methods.

(1) Knowledge-driven

Knowledge-driven solutions have been widely used in the pole-like object extraction. Figure 11
lists different types of light poles, such as one-side light, two-side light, and beacon light, etc.
Knowledge of light attributes in Figure 11 can be used to recognize and model pole-like objects.
e.g., Li et al. [112] set two constraints to extract light poles: (1) poles are commonly installed near the
road curbs; and, (2) poles stand vertically to the ground within a certain height range. Knowledge-
driven methods can be classified into two types: matching-based extraction and rule-based extraction.

• Matching-based extraction. Matching-based extraction is one of the representative
knowledge-driven methods, which is achieved by matching the extracted objects with pre-selected
modules. Yu et al. [66] extracted light poles using a pairwise 3D shape context, where a shape
descriptor was designed to model the geometric structure of a 3D point-cloud object. One-by-one
matching, local dissimilarity, and global dissimilarity were calculated to extract light poles. In [7],
light poles were extracted by matching the segmented batch with the pre-selected point cloud
object prototype. The prototype was chosen based on prior knowledge. The feature points for
this voxel was chosen from the points nearest the centroid of the voxel. Then, the matching cost
for feature points between the prototype and individual grouped object was conducted via 3D
object matching framework. Finally, the extraction results derived from the filtered matching
costs from all segmented objects. Cabo et al. [97] spatially discretized the initial point clouds and
chose the initial 20–30% representative point clouds as the inputs. The reduction of the inputs
data kept model accessible without losing any information by linking each point to its voxel.
Then, they selected and clustered small 2D segments that are compatible with a component of a
target pole. Finally, the representative 3D voxel of the detected pole-like objects were determined
and the points from the initial point clouds linking to individual pole-like objects were derived.
Wang et al. [113] also introduced a similar matching method to recognize lamp poles and street
signs. First, the raw data within an octree was grouped into multi-levels via 3D SigVox descriptor.
Then, PCA was applied to calculate the eigenvalues of points in each voxel, which were projected
onto the suitable triangle of a sphere approximating icosahedron. This step was iterated within
multiple scales. Finally, street lights were identified via measuring the similarity of 3D SigVox
descriptors between candidate point clusters and training objects. However, these three algorithms
highly rely on the parameters and matching module selection. Thus, it is challenging to achieve
automatic extraction. One-by-one matching has high computation cost when compared with
other methods. These methods are not suitable for the large-volume data processing.

Figure 11. Street light types [114].
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• Rule-based extraction. Rule-based extraction is the other typical knowledge-driven method.
Geometric and spatial features of light poles are setting as rules in the process of extraction.
Teo et al. [114] applied several geometric features to remove the non-pole-like road objects.
This algorithm includes feature extraction for each object and non-pole-like objects removal using
geometric features (e.g., area of cross-section, position, size, orientation, and shape). Besides,
pole parameters (e.g., location, radius, and height) were computed to extract feature, as well
as hierarchical filtering was used to filter the non-pole- like objects. A height threshold (3 m)
was used to classify the data into two parts, and do segmentation in horizontal and vertical
directions. However, not all the pole-like objects are higher than 3 m, the parameter choosing
is subjective. Rodríguez-Cuenca et al. [115] utilized the specified characteristics of the poles
in the pole-like object extraction. Since poles stand vertically to the ground, this attribute is
employed by the Reed and Xiaoli (RX) anomaly detection method for a linear pole structure with
pre-organized point clouds. Finally, the vertical elements were detected as man-made poles or
trees using the clustering method. However, if pole-like objects are overlapped by other objects,
the disconnected upper parts are discarded as noise. Li et al. [116] used a slice-based method to
extract pole-like road objects. A set of common rules were constrained to split and merge the
groups. E.g., the connected components that contain vertical poles were analyzed for integrating
or separating; the detached components as well as their nearby components were checked for
further merging. Rule-based methods are rapid and efficient. But, the quantity of rules is hard to
determine. The data would be over-segmented with numerous rules or under-segmented with
insufficient rules. Especially, some true objects with poor data distribution are usually removed
by strict rules.

(2) Data-driven

Plenty data-driven methods have been proposed for light pole extraction using MLS techniques
in the past decade. A set of features can be designed and applied to train or learn a pole extraction
model that is based on massive labeled training data. Thus, these methods can also be regarded as
learning-based methods. Guan et al. [117] chose a set of 50 training datasets, which covered a road
patch of about 50 m separately, to construct a contextual visual vocabulary for depicting the features of
light poles. Based on the generated contextual visual vocabulary, a bag-of-contextual-visual-words was
constructed to detect pole-like objects from the filtered off-ground points. The extraction stage is similar
to Yu et al. [62] research. Wu et al. [42] proposed a localization method based on integration of 2D
images and point clouds. There are three main steps, i.e., raw localization map generation, “ball falling”,
and position detection. Then, the output of the three steps processing was viewed as prior information
for segmentation. Once the first segmentation was finished, several features were computed to describe
the pole: the height, the average height, the standard deviation of height, the estimated volume,
the number of pole points, and the number of the super-voxels whose area of the convex hull. Besides,
once the second segmentation was achieved, a set of features were computed to describe the global
objects: four kinds of height-related features, the pixel intensity related to the location map, the area of
the convex hull for whole mapped points, and the approximated volume, etc. These local and global
features were fed into SVM and random forests classifiers. Yan et al. [67] used the Ensemble of Shape
Functions (ESF) as well as geometric characters to describe the characteristics of light poles. The ESF
includes three shape functions (point distance, area, and angle) and a ratio function. Geometric features
of the objects, including linearity, planarity, scattering of the covariance matrix, ratio of the minor
axis, and the major axis of Oriented Bounding Box, etc. are considered. Then, these characteristics
were input into Random forest to train a pole-like objects classifier. Yan et al. [100] proposed an
unsupervised segmenting algorithm to group the above ground point clouds. Several decision rules
were defined to extract potential light poles. However, learning-based methods cannot interpret data
on their own, which means that human designed feature extraction is needed before training.
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4.1.3. Roadside Trees Detection

With the improvement of urban environments, a lot of landscape trees are planted along the urban
streets. Timely measurement and management of trees are required to ensure their healthy growth
without interference with traffic conditions. MLS point clouds have intensive sampling density and
rich information, which can provide a promising solution for single tree extraction and tree species
classification. Existing methods can be classified into two parts: rule-based and deep learning methods.
Figure 12 illustrates some of the tree classification methods.

Rule-based methods commonly separate trees into two parts: leaf-off trunks and tree crowns.
Xu et al. [118] presented a bottom-up hierarchical segmenting algorithm to merge non-photosynthetic
clusters. Merging was conducted based on the dissimilarity between two groups. Euclidean distance
was used to calculate the proximity matrix; whereas, the principal direction was applied to compute
the direction. The key contribution is the cluster combination optimization with minimum energy
function and extraction of non-photosynthetic components using an automatic hierarchical clustering.
Li et al. [119] extracted individual trees from MLS data based on the general constitution of trees.
The trunk and crown are two components for each tree, which can be detected using the dual growing
method. A coarse classification was conducted first to remove human-made objects. Automatic
seeds selection was the second step to avoid manual initial parameters setting. Then, the trees were
separated using a dual growing process, which circumscribed a trunk in a scalable growing radius and
segmented a crown in limited growing regions. Rule-based methods need pre-defined thresholds to
process the data in several steps, which is time-consuming.

Recently, deep learning methods have been used in the roadside tree extraction. Guan et al. [60]
presented a method with two steps: tree preprocessing and tree classification. The tree preprocessing
is similar to the work in [62]. Then, the geometric structures of trees were modeled while using a
waveform representation. After that, the generation of high-level feature abstractions of the trees’ using
waveform representations was conducted via deep learning architectures. Finally, these features were
fed into SVM to train a tree classifier. Zhou et al. [120] also proposed a deep learning method to extract
trees and their species. At first, individual trees were extracted by analyzing the density of the point
clouds. Then, the voxel-based rasterization was applied to generate low-level feature representation.
Finally, the tree species were classified by a deep learning model. However, deep learning architecture
was applied to generate low-level or high-level features, which were fed into a machine learning
classifier later. This operation cannot fully utilize the strength of deep learning methods, but just use
them as a feature generator. Automated extraction focusing on deep learning should be considered in
future research.

Figure 12. Methods and experimental results for tree extraction from MLS point clouds.
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4.2. Power Lines Extraction

Power lines play an important role in connections among various nationwide grids and
distributions of regional electricity. Accurate and timely detection and monitoring are essential
in electric equipment management and electric power engineering related decision-makings. Recently,
MLS data has been widely applied in power line extraction. Power lines acquired by MLS systems are
featured with the following attributes: (1) power lines are placed above the ground; (2) power lines
have a certain clearance distance; and, (3) power lines have highly linear distribution [121]. Existing
methods are commonly designed based on these features.

Zhu et al. [122] proposed an approach focusing on the locations and heights of the pylons to model
the 3D power lines. Gradients were used to group similar points that were mapped into a binary image.
The processing of the binary image was constrained by the image region properties (e.g., region’s
shape, length, and area), which proves effective in removing non-powerline objects. Guan et al. [123]
extracted the power lines by mapping the point clouds into the 2D plane. They utilized incidence
angles to estimate road ranges and applied elevation-difference and slope criteria to separates off-road
points from ground points. Then, height, spatial density, and an integration of size and shape filters
were used to extract power line point clouds from the clustered off-road objects. Identical power
lines were extracted using Hough transform and Euclidean distance clustering. Finally, the x–y plane
modeling of the 3D power line was featured with a horizontal line; whereas, the x–z plane was featured
with a vertical catenary curve derived from a hyperbolic cosine function. Cheng et al. [121] used
a voxel-based hierarchical method to calculate geometric features of the individual voxel to extract
power lines. A bottom-up method was applied to filter the power lines. The experimental results of
these methods demonstrate the applicability of MLS data for power line extraction.

4.3. Multiple Road Objects Extraction

Instead of focusing on the single urban object extraction, some researchers are dedicated to
extracting multiple objects in urban areas. The development of implicit shape model and random
forests renders Hough forests is capable of constructing an effective model, which can map the
components features to the center of objects. Wang et al. [106] utilized the Implicit Shape Model to
label object types and applied the framework of Hough Forest for detecting off-road objects: trees,
light poles, cars, and traffic signs. Structural and reflective characteristics were employed to describe a
3D local, which was then mapped to predict the approximate position of the object centroid. Then,
the peak points in the 3D Hough voting space was used to classify objects. A circular voting strategy
was used to maintain the invariance of objects. Based on [106], Wang et al. [35] integrated super-voxel
with Hough forest framework for detecting objects (e.g., cars, light poles, traffic signs) from 3D laser
scanning point clouds. But, there exist two differences. First, over-segmenting was conducted to group
the point clouds into spatially consistent super-voxels. Individual supervoxels, as well as its first order
neighborhoods, were segmented into small components. Second, a random forest classifier was used
to predict the possible location of the object center. Subsequently, a set of multiscale Hough Forest
was applied by Yu et al. [59] to the encode high-order feature of 3D local patches to estimate car point
cloud voxel centroids. Then the visibility estimation model was conducted to predict the completeness
of cars by integrating Hough voting.

Yu et al. [62] proposed a contextual visual vocabulary approach integrated with spatial contextual
information of feature regions to encode local abstract features of point cloud objects (e.g., light poles,
traffic signposts, and cars). Then, related objects were extracted by measuring the similarity of
the bag of contextual-visual words between the query object and the segmented semantic objects.
Moreover, Luo et al. [124] used the similarities to detect road scenes, such as trees, lamp posts,
traffic signs, cars, pedestrians, and hoardings from 3D point cloud data. At first, 3D components
derived from point clouds were applied in the construction of a 3D patch-based match graph structure
(3D-PMG), which effectively changes the labeling condition of category labels from labeled to unlabeled
point cloud road scenes. Secondly, 3D components contextual information was analyzed with the



Remote Sens. 2018, 10, 1531 26 of 33

integration of 3D-PMG and Markov random fields, which play a role in rectifying the transferring
errors result from local patch similarities in multiple classes. Furthermore, Lehtomäki et al. [6] used
several geometry-based features, i.e., local descriptor histograms (LDHs), spin images, general shape,
and point distribution features, in the classification of the following roadside objects: trees, lamp posts,
traffic signs, cars, pedestrians, and hoardings.

5. Challenges and Trend

This literature review reveals that MLS systems have proven their potential in static urban objects
extraction and modeling, especially for road-related equipment inventory and condition detection.
With the consistent advance of MLS technology and the declined costs of the system components,
technique and algorithm challenges and future trends are discussed in this part.

(1) System design and cost

MLS techniques have been fast-developing especially with the advancement of laser scanners,
high-resolution cameras, and accurate positioning systems in the past years. However, existing laser
scanners are relatively expensive, which limits the wide applications of MLS. In future, cost-effective
laser scanners which provide intensive point clouds with multiple attributes (e.g., colors and normal
directions) are in high demand. For the digital camera, high-resolution and high-quality output
images are needed for the extraction of semantic objects. The improvement of locating and positioning
techniques for GNSS and IMU can provide an accessibility for highly accurate point clouds and image
position information. The upgrade of hardware with powerful computation and low cost affects the
efficiency and accuracy of dealing with large volume point clouds and imagery data.

(2) Software developments

Few existing point cloud processing programs are capable to process large volumes of 3D points
in one or two steps. Complicated data processing, difficult fusion of multivariate data, and inconsistent
data output format hinder the cross-application of point cloud data in different disciplines. Thus,
large-volume data processing, seamless integration of multi-source data, and consistent data output
software are urgently needed. Besides, there is no public platform for fusing data obtained from MLS
systems. MLS systems produce 3D point clouds, imagery, position, and localization data. These data
can be integrated together to generate advanced products. Efficient data fusion platform construction
should be considered in future to improve the data utilization.

(3) Algorithm trend

Currently, the learning-based point cloud processing algorithms are the mainstream trend.
Machine learning methods [77,125–127] train efficient classifiers by designing an effective feature
descriptor. It highly relies on the prior knowledge of the human operators, which is a challenging
task in the complex urban environments. Then, designing a proper feature descriptor for various
sizes of point clouds is the future focus for machine learning methods. Recently published effective
and available point cloud processing algorithms mainly focus on deep learning architectures and
demonstrate their excellent performance, such as PointNet [71], PointNet++ [128], PointCNN [78],
VoxelNet [129], and MSNet [130]. These methods mainly process small scene point clouds. It is
challenging for them to deal with large scenes. Thus, the direct construction of efficient neural
networks on the 3D points with various sizes and volumes is an interesting topic for future studies.

(4) Data storage and updating

With the advancement of data acquisition and data resolution, data, including point clouds
and images collected by MLS systems, is in quite large-volume [131]. Accordingly, cost-effective
and efficient data storage and updating have impacts on the working continuity and efficiency of
MLS systems. Moreover, post-processing data storage and updating are important for MLS-related
applications with regard to modeling, mapping, and managing. Challenges in large-volume data
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storage and timely data updating are the primary concerns when the worldwide LiDAR manufacturers
develop new types of LiDAR sensors and information and communication technology (ICT) companies
design commercial data processing and management software. However, data quality can be
influenced due to system errors of MLS systems, ambient occlusion, and data calibration. Such data
obtained from multiple sensors at different times, in various weather conditions, under different
illuminations, and with different sampling densities, make the data calibration and data fusion
challenging [132]. Furthermore, the evaluation of data updating and data correction results are
cumbersome. Therefore, reliable, efficient, and cost-effective data management is one of the major
challenges in the development and application of MLS techniques.

6. Conclusions

The urban road network plays an important role in the urban planning with regard to planning,
design, construction, management, and maintenance. The inventory of road features contains
both pavement geometrical properties (e.g., road width, slopes, and lanes) and road infrastructures
(e.g., road markings, pavement cracks, road manholes, traffic signs, roadsides trees, and buildings).
In order to enhance traffic safety and efficiency, managers, and decision-makers in cities and countries
should pay much attention to periodically investigate urban spatial structures and road asset inventory.
Such periodically surveyed data are used not only for ITS-related development to reconstruct and
maintain the existing road networks, but also for city managers to formulate traffic policies and
advance traffic management. As a vehicle-based mobile mapping system, an MLS system integrated
with laser scanners, GNSS sensors, and digital cameras, collects high-density 3D point clouds from
the surrounding objects in urban road environments and provides detailed georeferenced coordinate
information of roads. To date, due to the high flexibility and accurate data acquisition over large-scaled
surveyed areas, the industrial applicability of MLS systems has been proven to provide higher
time-efficiency and better cost-saving in comparison to aerial imagery, terrestrial laser scanning,
and human fieldwork. When considering such strengths of MLS systems, as demonstrated in previous
studies, journal publications, and projects, an increasing number of governments and transportation
departments have been applying mobile laser scanning techniques to urban road asset inventory.

In this paper, a literature review described and detailed the feasibility and applications of MLS
systems to road asset inventory. The MLS technique, system component, direct geo-referencing,
error analysis, and current applications of on-road and off-road inventory were accordingly discussed.
The state-of-the-art road object detection and extraction algorithms, focusing on mobile laser scanning
point clouds, have been reviewed. Accordingly, their performance and adaptability have been
discussed. When compared to other review papers focusing on MLS applications, the main contribution
of this review demonstrates that the MLS systems are suitable for supporting road asset inventory,
ITS-related applications, high-definition maps, and other highly accurate localization services, such as
road feature extraction and accurate perception.

MLS systems have indicated great potentials for rapid commercialization. With the further
advancement of laser scanning technologies and the decreased costs of new MLS-related hardware,
it can be predicted that MLS systems and big data management technologies will dominate the
advanced remote sensing and photogrammetry fields, as well as accurately localization-based services,
such as high-definition maps and autonomous driving. To summarize, this review indicates that MLS
systems provide an effective and reliable solution for conducting road asset inventory in complex
urban road environments.
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