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Abstract: Increasing flood hazards worldwide due to the intensification of hydrological events and
the development of adaptation-mitigation strategies are key challenges that society must address. To
minimize flood damages, one of the crucial factors is the identification of flood prone areas through
fluvial hydraulic modelling in which a detailed knowledge of the terrain plays an important role for
reliable results. Recent studies have demonstrated the suitability of the Reduced Cost Aerial Precision
Photogrammetry (RC-APP) technique for fluvial applications by accurate-detailed-reliable Digital
Terrain Models (DTMs, up to: ~#100 point/m?; vertical-uncertainty: £0.06 m). This work aims to
provide an optimal relationship between point densities and vertical-uncertainties to generate more
reliable fluvial hazard maps by fluvial-DTMs. This is performed through hydraulic models supported
by geometric models that are obtained from a joint strategy based on Structure from Motion and Cloth
Simulation Filtering algorithms. Furthermore, to evaluate vertical-DTM, uncertainty is proposed as an
alternative approach based on the method of robust estimators. This offers an error dispersion value
analogous to the concept of standard deviation of a Gaussian distribution without requiring normality
tests. This paper reinforces the suitability of new geomatic solutions as a reliable-competitive source
of accurate DTMs at the service of a flood hazard assessment.

Keywords: flood risk assessment; RC-APP technique; ground filtering algorithm; cloth simulation
filtering (CSF) algorithm; vertical DTM-uncertainty

1. Introduction

Floods are probably the most hazardous natural event worldwide as well as the main cause of
numerous human being losses and severe economic damages [1-3]. From the years 2000 to 2012,
the European Union experienced an average annual damage due to floods of €4.2 billion, which could
be increased up to €23.5 billion by 2050 [4]. In particular, 2013 flood events in central Europe had
an estimated cost of €12 billion [5] and, in Spain, floods are the natural hazard that causes the
greatest social and economic losses [6] with estimated annual costs of €0.87 billion predicted to occur
from 2004 to 2033 [7]. Moreover, the intensification of hydrological phenomena (rainfall, flood and
drought, mainly) is a tangible reality even by non-experts with more frequent magnitudes and more
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unpredictable extreme events [8-14]. Recent studies have already shown a direct relationship among
the intensification of hydrological events and climate change [15-18]. This, combined with population
growth in flood prone areas, is increasing the flood damages [19-23].

Under such circumstances, reducing the flood hazard must be an absolute necessity. This global
challenge is leading society to take protective measures [21,24-26], which is mainly based on the
analysis of the three components inherent to a natural hazard: (i) occurrence probability, (ii) level
exposure, and (iii) vulnerability hazards [2,5,27]. Traditionally, the scientific community had focused its
efforts on risk occurrence probability. However, recently, the focus is shifting to risk consequences [2],
its mitigation [28], and damage reductions [24], which is also as a consequence to the growing
variability of the hydrological variables [12,13].

To assess a flood hazard, it is widely accepted to analyze the conceptual scheme into three steps,
which are exposed in de Moel et al. [29]. The three steps are: (i) to estimate discharge flows for
particular return periods from frequency analyses on discharge records, adjusted to extreme value
distributions or specific rainfall-runoff models, (ii) to translate discharge flows into water levels by
rating (stage-discharge) curves or 1D or 2D hydrodynamic models, and (iii) calculate the inundated
area supported by Digital Terrain Models (DTMs). Nevertheless, this seemingly simple scheme hides a
complex and non-trivial three-dimensional hydrodynamic process [11,30] full of uncertainties [30,31].

Flood modeling involves multiple key aspects including: (i) hydrological model or flood wave
characteristics [29], (ii) fluvial geomorphology issues [32-34], (iii) the influence of infrastructures
such as bridges, dams, or buildings [22,35,36], (iv) structure of hydraulic model, its equations,
methods to solve them, and simplifications applied to the model [11,23,37], (v) flow propagation
methods [3,38], (vi) human-induced changes in land use [21], (vii) the roughness coefficient [11,31],
(viii) vulnerability /damage curves of the potential effects of the flow [22,39,40], and (viii) topographic
data of flood prone areas [3,33,41-43].

This multidisciplinary nature makes flood hazard assessment an active research line in the
scientific community. For example, Huang and Qin [31] determine that the Manning’s roughness
coefficient (Manning’s 1) notably affect flood inundation predictions. For their part, Milanesi et al. [22]
argue that the flood assessment must be based on an appropriate combination of flow depth and
velocity by using duly designed vulnerability curves. Macchione et al. [3] shows as key factors the
mathematical model and numerical schemes applied to flow propagation in addition to the terrain
model and the existing constructions. In Arrighi et al. [39], the flood depth, velocity, flood duration,
and the uncertainty in depth-damage curves are shown as relevant issues versus uncertainties in
hydrological-hydraulic models and land uses. Falcao et al. [44] and Md Ali et al. [45] investigate the
influence of elevation modeling on hydrodynamic modeling results and both determined that DTMs
are one the most fundamental inputs for reliable flood modeling. All these studies and their conclusions
reinforce, a fortiori, the multidisciplinary and integrated nature of a flood hazard assessment.

According to Schanze et al. [46], for reducing natural flood hazards, only two different actions may
be applied through: (i) “structural” measures based on works of hydraulic engineering, which modify
hydrological-hydraulic characteristics of floods, and (ii) all other interventions called “non-structural”.
These latter are especially interesting in this research because: (i) they modify the susceptibility of the
inundated area without acting on the flood flow itself [23,46,47], (ii) they are essentially focused on
potential consequences [47], and (iii) they are an accessible way to reduce the flood hazard [48]. In this
sense, the most important non-structural measure is floodplain planning [40] whose goal is to properly
identify flood prone areas. Thus, it is possible to define constraints of land uses on the floodplain and
reduce the flood hazard [24,49]. Essentially, this involves the interplay between flow, the physical
environment, and society [7,50].

On the other hand, recent geomatic advances on: (a) instruments and techniques for data
acquisition, (b) imagery processing algorithms, and (c) alternative aerial platforms have led the
appearance of effective (time-cost) solutions in response to the growing need of suitable topographic
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data for flood modeling [41]. In this sense, a Reduced Cost Aerial Precision Photogrammetry
methodology (RC-APP, [43]) is one of them based on Digital Photogrammetry (DP).

While topographic data sources traditionally applied to 3D ground modeling such as Global
Navigation Satellite System, Airborne/Terrestrial Laser Scanning and Satellite images have been
extensively discussed in many prior studies [45,51-56]. The influence of spatial resolution and vertical
uncertainty on flood modeling and hazard assessment have received far less attention. This study aims
to provide an optimal relationship between the point densities and vertical-uncertainties to generate
more reliable fluvial hazard maps.

This paper forms part of the research line exposed in Zazo et al. [42,43] and Zazo [57] that
is characterized by hybridizing geomatics and fluvial hydraulics with the purpose of improving
the knowledge of flood behavior. In this case, an accurate-high density point cloud was obtained
through RC-APP methodology. Next, point clouds with different point densities were generated. Then,
to reduce the vegetation influence on DTMs, a novel point cloud filter named Cloth Simulation
Filtering (CSF; [58]) was applied to classify point clouds into ground/non-ground. After that,
different bare-ground DTMs were generated and their vertical-uncertainties were also assessed.
Subsequently, 2D hydraulic models were performed, which were supported by previous DTMs.
The results achieved (flood modeling and hazard assessment) were analyzed in-depth. Lastly, to reveal
the potential that the approach based on RC-APP and CSF have on flood hazard assessment, the results
were compared with those obtained through the Light Detection and Ranging data (LiDAR) technique.

In addition, this work proposes a variant of the non-parametric Robust Estimators (RE)
method [42] for assessing the vertical-DTM uncertainty. This provides a dispersion value of error
comparable to the concept of standard deviation from a Gaussian distribution without requiring
normality tests.

This paper is organized as follows: after this introduction, there is a description of geometrical
and hydrological data. The case study and applied methodology is shown in Section 2. Section 3
presents the main experimental results drawn from the research. In Section 4, the results are discussed
in detail. Lastly, Section 5 addresses the general conclusions from the study.

2. Materials and Methods

2.1. Geometric Data

Two geometric sources have been taken into account in this research. The first one source is
LiDAR-data (from active sensors). Geometric source of National System of Flood Zone Mapping
(SNCZI, [59]) were developed due to these data. Nowadays in Spain, two LiDAR-data are available:
(a) bare-ground DTM and (b) LiDAR dense point cloud automatically classified. Both data are freely
obtained from the National Center for Geographic Information according to INSPIRE Directive [60]
and the National Plan for Territory Observation [61]. Table 1 summarizes the geometric characteristics
of both LiDAR-data.

Table 1. LiDAR data. Geometric characteristics.

Geometric Data Parameter Value
Bare-ground DTM Spatial resolution. Mesh size 5.00m x 5.00 m
Vertical precision. +0.50 m
Dense Point Clouds  Spatial resolution. Point density. 0.5 point m 2
Average distance between points. 141 m
Vertical uncertainty. RMSE(Z) 1 +0.20 m

1 RMSE (Z): Root mean square error (vertical).

The second data source is an accurate-high resolution and ad hoc dense point cloud (XYZ
coordinates with RGB values), which was obtained by RC-APP methodology. This is an efficient
(time-cost) approach based on photogrammetry and computer vision. This method, through the
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hybridization of reduced costs passive sensors, on board in alternative aerial platforms type ULM
(Ultra-Light Motor), provides accurate and detailed topographic data from digital aerial images to
fluvial applications. RC-APP is intensively exposed and detailed in the study Zazo et al. [43].

2.2. Case Study

This study is located in the upper basin of the Adaja River, which is a sub-system integrated into
the Duero river basin known as the largest river basin in the Iberian Peninsula (Figure 1). Study area
comprises ~(1.5 km x 0.8 km), focusing attention on a peri-urban area of ~(1.3 km x 0.6 km) in the
municipality of El Fresno, where it also located a bridge.

The flow regime is natural and river reach is characterized by a well-defined river bed of sand
and gravel with an average width of 80 m and two wide and regular floodplains that are each of 250 m
in width approximately. Likewise, there are specific areas of dense trees and riverbank vegetation.
The sinuosity is low (s = 1.11, 1 <'s < 1.3, [40]) with a length of thalweg of 1402 m and in a straight-line
of 1268 m (Figure 1).

Regarding the sub-basin of 530 km?, its time of concentration (Tt) is 11.7 hours (h) according to
the legal requirement in Spain. This provides an assessment of level exposure as “severe” (1 h < Tc <
12 h, [49]) from a security point of view. Furthermore, the Adaja sub-basin shows a scarce and irregular
rainfall, which leads to long dry periods that enable total inspection of the riverbed.

the reach

LA S

Start of
the reach

Figure 1. Top left view: Duero River basin and case study situation (source Duero River Basin
Authority). Detailed view: Analyzed reach (Digital orthoimage from National Plan for Territory
Observation [61]). Coordinate Reference System: EPSG: 25830.

2.3. Hydrological Data

A 100-year return period (100-YRP) flow of 229 m? s~ was simulated. This is an accepted and
common design flow applied to the flood hazard [24,62]. This flow value was supplied by the Duero
River Basin Authority through a map of instant peak flows in the natural regime [63]. According to
previous work in the area Zazo et al. [42,43], this flow does not provide relevant consequences neither
in the bridge zone nor in the urban area. In contrast, the floodplain is significantly affected because the
carrying capacity of the main channel is considerably exceeded.

Regarding the map of instant peak flows, this is obtained through maximum discharges time series
records of gauging stations related to the peak flood flow with its annual probability of occurrence
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(quantile or frequency law). This is done by analyzing six different YRP (2, 5, 10, and 25, 100,
and 500 years). Through a process of consistency validation of the time series (reliability of records,
time tendency check by Mann-Kendall test, and outliers data, mainly), the gauging of peak flows is
adjusted to a generalized extreme values distribution function by the L-moments method. Previously,
Spanish peninsular river basins are split into homogeneous regions through geographical criteria
based on the orography of the basin, the altitude, the rainfall patterns, and the value of the highest
precipitation quantiles. This split is subsequently checked by statistical homogeneity tests such as
Wiltshire and Hosking-Wallis tests.

Flow assessment at sites that have no gauging station is carried out by an extrapolation of results.
In the case of basins larger than 500 km?, the extrapolation process is carried out by statistical multiple
regression models that relate the quantiles of gauging stations or specific statistics with physiographic
and climatic characteristics of the basin. For sub-basin lower than 500 km?, hydro-meteorological
models are applied. For a more deep explication on the generation process of this map, the reader is
referred to the work CEDEX [64].

The instant map value is transformed into unsteady flow by the Soil Conservation Service (SCS)
dimensionless unit hydrograph [65]. According to the exposed aim (Section 1) and the eminently
geomatic context in which this work is developed, this flow hypothesis is valid. Figure 2 shows the
resulting inflow hydrograph.

240.0 ¥
Peak discharge: 229 m3/s
Time to peak: 12.87 hours
Time base: 34.36 hours
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Figure 2. Inflow hydrograph.
2.4. Methodology

This research is articulated in four stages (Figure 3). First, an accurate-high resolution dense point
cloud is obtained by the RC-APP methodology. From this initial data, different point clouds were
derived in which each of them had a different point density (Stage-1). Then, the vegetation influence
was reduced through a novel point cloud filter based on the cloth simulation technique. After that,
DTMs were generated and their vertical uncertainties were assessed by a variant of a non-parametric
RE method (Stage-2). Next, 2D hydraulic simulations were performed with the same set of hydraulic
parameters (except DTMs, Stage-3). Lastly, flood modeling and hazard assessment were assessed and
compared in-depth against the results achieved that were supported by LIDAR-DTMs (Stage-4).
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Figure 3. General methodology.
2.4.1. Stage-1. Data Acquisition. Point Cloud by Means of RC-APP Methodology

At this stage, DP-data acquisition is entirely done by RC-APP methodology. Because of dry
conditions, it was not necessary to bathymetric techniques. RC-APP comprises: (a) an unconventional
manned aerial platform ULM type (Ultra-Light Motor), (b) gyro-stabilized cameras platform
MultiSpectral Airborne System (MUSAS®), and (c) a simple hand-held digital camera, reflex type
(non-photogrammetric camera). Thus digital aerial images (data-set) are acquired. Next, by means of
a photogrammetric and computer vision process through a Structure from Motion (5fM) algorithm,
supported by Agisoft PhotoScan® software in this case, aerial images were processed and the high
spatial resolution dense point cloud was obtained. Furthermore, it should be noted that a Global
Navigation Satellite System (GNSS) observation was also needed: (1) to geo-reference DP-data via 12
Ground Control Points (GCP) located on artificial targets and (2) to assess DTM-vertical uncertainty
through 56 Check Points situated on natural features.

ULM and MUSAS® platforms are widely described in Ortega-Terol et al. [66]. Flight parameters
and constraints were the same as that in previous research studies in the zone [42,43] because of the
optimal ratio (accuracy-spatial resolution) achieved. In addition, it should be noted that meteorological
conditions could constraint flight planning. In this sense, weather requirements would comprise
aspects such as minimum wind speed, the absence of rain, or the presence of turbulence resulting
from thermal currents among others [66]. In the case of the mini-trike, the recommended wind speed
should be lower than 15 km/h. Furthermore, regarding image quality, low illumination conditions
could generate blurring effects. However, the MUSAS® gyro-stabilized platform minimizes this issue.
To a complete discussion of photogrammetric and computer vision process and SfM background, it
refers the reader to Fonstad et al. [67], Hartley and Zisserman [68], and Snavely [69].
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Table 2 summarizes the main technical specifications both the sensor used as well as the flight
performed. Table 3 shows point clouds obtained from the initial RC-APP point cloud.

Table 2. Technical specifications: sensor and flight.

Parameter Value
Camera model Canon EOS 5D Mark II
Sensor type/size CMOS/36 x 24 mm
Image size 5616 x 3744 pixels
Sensor Pixel size 6.41 x 1073 mm
Focal length 50 mm
Exposure time 1/800s
ULM platform. Speed: 11ms!
Flight Flight height 200 m (above gro.unc.i level)
Cover area 146 x 97 m/aerial image
GSD? 0.026 m

2 GSD: Ground Sample Distance (pixel size on the ground).

Table 3. Point clouds: Density points initial.

Point Cloud Point Density/Spatial Resolution (m X m)

DP-100 3 ~100 point m~2/22(0.10 x 0.10) m
DP-45 ~45 point m~2/2(0.15 x 0.15) m
DP-15 ~15 point m~2/~(0.25 x 0.25) m
DP-5 a5 point m 2 /~2(0.45 x 0.45) m

DP-0.50 ~0.5 point m2/~(141 x 1.41) m

3 DP-100: Initial point cloud from the RC-APP technique.

2.4.2. Stage-2. DTM Generation and Vertical Assessment

Having a reliable and continuous DTM is essential for flood modeling properly [41,42,58,70].
Likewise, the influence of an accurate and detailed terrain on hydraulic simulations and flood modeling
is well known [51,57,71]. Some studies have demonstrated how minor errors have consequences on
hydraulic model results [43,45,62]. In this sense, the terrain representation may also be adversely
affected by the effects of vegetation due to ground concealment, overestimation of ground surface
elevation, and sudden changes in the ground surface among others [72-75]. Accordingly, given that
a DTM is derived by interpolation of the points belonging to the bare earth surface, it is crucial to
accurately classify point clouds into ground/non-ground through a filtering process. For this reason,
a novel, robust, and easy-to-set point cloud filter named Cloth Simulation Filtering (CSF) was applied
to RC-APP point clouds (Table 3). This point filtering process raised a double challenge: on one side,
to preserve the geometrical structure of the elements existing on the floodplain (stone masonry, walls,
and constructions) that channel and constrain the flow, and, on the other, to apply a filter designed
initially to operate with LiDAR-data whose spatial resolution is far less than the RC-APP point cloud.

CSF is based on simulating the colocation of a piece of “cloth” with certain rigidity over an
inverted point cloud. The cloth is simulated through an interconnected particles grid through a cloth
simulation technique [76]. The main CSF steps are: (1) the initial point cloud is inverted upside-down
and, over that, a new inverted surface of the cloth with rigidness is extended, (2) the cloth-shape is
adjusted through functions that explained gravity (Newton’s second law) and forces of interaction
between particles on the cloth (Hooke’s law), (3) the classification in ground /non-ground points is
carried out by cloth particle types (unmovable/movable), and (4) a post-processing method is applied
to address abrupt terrain changes. For further discussion, it refers the reader to Reference [58].

The CSF filter is setup by nine parameters: (i) three points shift (X,Y,Z) that do not need setup
generally, (ii) one steep slope fit factor (0 flat terrain, 1 steep slopes), (iii) cloth rigidness value (1, 2,
or 3), (iv) a time step parameter, which handles the influence of gravity in each iteration (default 0.65),
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(v) maximum iteration times of simulation, (vi) a class threshold that aids the identification of ground
points, and (vii) a cloth resolution or particle separation that implies particles creating. This algorithm
is implemented in open source free software CloudComparer®. However, when the point cloud has
a high-spatial resolution, as seen in the RC-APP case, this software cannot process them. For that,
the CSF algorithm was implemented in a numerical computing environment like MATLAB®.

From bare-ground point clouds, the different DTMs were generated by Triangulated Irregular
Networks, which were subsequently transformed to 2.5-D (raster) models by applying the linear
method as an interpolation choice.

On the other hand, one of the key factors to carry out a reliable flood modeling is to know
DTM-vertical uncertainty [43,44,77,78]. Here, a variant of the RE method is proposed [42], which does
not require a priori knowledge of the errors distribution function and, therefore, normality tests are
not necessary. According to Rodriguez-Gonzalvez et al. [79,80], the central tendency of vertical errors
is determined by a median and its statistical dispersion is properly evaluated through a Normalized
Median Absolute Deviation (NMAD, [81]). This new proposed evaluation is expressed below.

MAD = m(|x; — my|) 1

NMAD = 1.4826-MAD )

where MAD is the Median Absolute Deviation (Equation (1)), m is the median of the absolute deviations
from the data’s median, and NMAD is the Normalized Median Absolute Deviation (Equation (2)).
This approach allows the statistical dispersion vertical-DTM error to be comparable with the concept
of standard deviation of a normal distribution.

2.4.3. Stage-3. Hydraulic Model

Currently, there are a wide availability of numerical tools for one and two dimensional (1D/2D)
and 1D/2D coupled hydrodynamic modeling based on the fully-dynamic wave modeling. These tools
provide accurate predictions of the hydraulic behavior of flood flow. Some of them are free while
others require a license purchase [38]. To a conceptual review of hydrodynamic modeling packages,
its numerical schemes, capabilities, and applications, the reader is referred to Patel et al. [82], Weber [83],
and Néelz and Pender [84] because a full review of these models is not appropriate for an eminently
geomatic manuscript.

Regarding free software, one of the most widely used hydraulic models is HEC-RAS® [28,38] and
was developed by the U.S. Army Corps of Engineers (USACE). Traditionally, it was just a 1D hydraulic
model. However, it was successfully applied to flood modeling research [62,70,85-91]. Recently,
HEC-RAS® has been updated to version 5 and has implemented a fully 2D flow routing within the
unsteady flow analysis through a closed polygon that is split into computation cells of up to 8 sides.
Now, HEC-RAS® v5 can perform completely 1D and 2D unsteady flow simulations or combined
1D /2D modeling called hybrid models through the interconnection of both. The program can also
solve the full version of 2D Saint-Venant equations or the 2D Diffusion Wave (DW) equations [92].

This new numerical tool is gaining attention among researchers who are highlighting current
works such as References [11,38,93]. Liu et al. [11] evaluates the influence of the hydraulic models and
surface roughness on flood modeling by four usually used 1D and 2D hydraulic models (HEC-RAS®
1D and 2D through 2D Saint-Venant equations, LISFLOOD-FP® diffusive and subgrid). In Moya
Quiroga et al. [38], the applicability of HEC-RAS® v5 to flood modeling using DW equations is studied.
On the other hand, Moya Quiroga et al. [93], also using DW equations implemented in HEC-RAS®
v5, analyzes the importance of flood duration by comparing flood hazard maps based on flood depth
with flood hazard maps by considering flood duration.

It is important to underline that bed friction and terrain are dominant aspects [37] especially on
the floodplain. Additionally, it is remarkable that the strong geomatic component of this research
focuses exclusively on the influence of the DTM spatial resolution and vertical uncertainty. For that, 2D
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DW equations approximations were applied in this work using software version 5.0.3. These equations
are valid in the case of slowly evolving floods and overflows [93,94] (as it happens in this study,
please see Section 2.2 floodplain description and Section 2.3 inflow hydrograph). In addition,
the application of this numerical scheme is characterized by more efficient hydraulic simulations
computationally [37,38,93].

As a method to solve the equations, the implicit finite volumes algorithm is used. This provides
an increment of improved stability and robustness over usual methods such as finite differences or
finite elements. Furthermore, the wetting and drying of computational cells is robust and 2D flows
areas can start completely dry [92]. 2D flow computational mesh was defined by an irregular polygon,
~(1.3 km x 0.6 km), which was mainly split into square cells. Boundary cells had an irregular shape
between 3 up to 8 sides.

The numerical scheme was controlled by the relationship among the time step (At; seconds) and
the size cell (Ax; meters). To avoid numerical instability into the hydraulic model, At and Ax was
selected, according to the Courant-Friedrichs-Levy condition (Courant number—C).

At ~ (Vgh)-At
C= 5 S10="—r—<10 ®3)

where c is the flood wave velocity or wave celerity (m s~!), ¢ is the gravity acceleration (m s~2), and
h is the flow depth (m). The celerity c was estimated based on the maximum observed water depth
(3.03 m) in the area to the same water flow of 100-YRP (see Zazo et al. [42]). Furthermore, for 2D flow
computational meshes that star dry simulation (Section 2.3), it is recommended to use a time step
based on a Courant number of 1.0 to get a more accurate and stable wetting front [92].

Since boundary conditions were used: (i) upstream: inflow SCS-hydrograph (Section 2.3) and (ii)
downstream: rating curve according to Zazo et al. [42] results (please note that the same downstream
boundary was used in both works). The roughness coefficient “n” was selected after a calibrated
process based on the inundated area for 100-YRP flow from SNCZI and the results of preceding studies
in the zone [42,43]. Table 4 summarizes the main data of the hydraulic model.

Given that the version of the software used does not support bridge modeling capabilities
inside of a 2D flow area, the bridge was modeled by high Manning’s roughness coefficients that
simulated the influence of piers and abutments. Exclusively, if the lower part of the bridge deck was
affected, a hybrid model 1D /2D was defined. This model consists of a 1D model in the bridge area,
defined by a cross section [95], that is connected to two 2D flow computational meshes (upstream and
downstream, respectively).

Table 4. Hydraulic model. Main data.

Parameter Value
At 4st
Ax 21.5m
n (main channel) 0.035
n (floodplain) 0.015 (road), 0.10 (woodland), 0.05 (riverbank)
10 (building, piers-abutments), 0.035 (rest of cases)
Hydrograph SCS dimensionless unit hydrograph (Section 2.3)
Water flow (100-YRP) Peak discharge 229 m? s~!, Time base: 34. 36 h
Geometric basis DTMs (Section 2.4.2)

* According to Equation (3), and Courant number equal to 1. Please note that the hydraulic cells have a higher mesh
size than any of the spatial resolutions of the DTMs considered in this research (see Table 3).

2.44. Stage-4. Flood Hazard Assessment

This last stage is crucial in the proposed methodology. Once executed and calibrated as the first
hydraulic simulation, which is supported by the highest spatial resolution DTM, the unique variable
that was modified in the following simulations was the basic geometrical model (DTMs generated



Remote Sens. 2018, 10, 1566 10 of 23

in Stage-2 and DTMs-LiDAR indicated in Section 2.1). All other parameters of the hydraulic model
were kept fixed. In this way, the differences both on flood modeling and the hazard assessment will be
exclusively produced by the spatial resolution of DTMs and their vertical uncertainties.

Flood hazard assessment was carried out considering the Spanish guidelines for flood prone
areas of fluvial origin [49]. MAGRAMA [49] is based on the European Union Floods Directive [24] and
it is in line with Martin Vide [40] regarding depth/velocity—damage curves at rural and peri-urban
environments and the arguments of Milanesi et al. [22] in relation to combination of flow depths,
velocities, and vulnerability curves to assess the flood hazard properly. Furthermore, the target area
was focused on the floodplain because the main channel itself is a well-known high-hazard zone [49].

The process of assessment, in each hydraulic simulation, was based on three key factors from
the safety standpoint: (1) response time of the basin to a flood (Tt), (2) the maximum inundated area,
and (3) the maximum flood depths and velocities achieved simultaneously was associated with the
maximum flood. According to MAGRAMA [49], Table 5 shows the threshold values of hydraulic
parameters to hazard assessment. Other aspects such as flow erosive capacity transported solid flow
and geological hazards, which were not considered due to the geomatic framework of this work.

Table 5. Hydraulic parameters. Threshold values.

Level Exposure Parameter

Flood Depth (D) > 1 m or
Velocity (V) >1m s~lor
DxV>05m2s7!

Severe
lh<Tc<12h

It is worth noting the role that Tc plays. In this sense, it is well known that level exposure increases
as Tc decreases as well as this factor that informs the available time to take the appropriate measures
to minimize the possible damages [49]. For that, the analysis of the flood hazard was focused on
threshold hydraulic parameters, according to Tc.

From each hydraulic model, a set of vector maps of the maximum values of thresholding hydraulic
variable will be available in addition to the maximum flood area (Stage 2.4.3). Then, all enclosures
and lines of these vector maps will be intersected with each other for generating the flood hazard
map associated with each DTM. This cartographic process as well as the comparison of the results
(RC-APP-data versus LiDAR-data) was supported through the open source Geographical Information
System software QGIS.

3. Results

3.1. Bare-Ground DTM Generation and Vertical Assessment

By using a training process on nine CSF parameters, an optimum set of parameters was found,
which allowed a suitable classification of points (ground/non-ground points) while keeping the
geometric structure of the floodplain elements such as stone masonry, walls, and constructions.
Consequently, the most appropriate values were: steep slope fit factor = 1, cloth rigidness = 3,
time step = 0.65, iterations = 1000, class threshold = 0.70 (in all cases), and cloth resolution = the
same value that point density from the DP-data (see Table 6). From bare-ground density points,
different 2.5-D DTMs were generated through a conservative adjustment process. Table 6 summarizes
the results achieved (bare-ground/non ground) and the final mesh sizes obtained for the geometrical
models that will be used in the hydraulic simulations. Please note that the influence of the geometrical
structure of the existing constructions is addressed through both point density (mesh size DP-data)
and the CSF filter to get reliable DTMs.
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Table 6. Point clouds: Density points initial.
CSF Filter. Points Clasiffication .
DP Initial Data 4 Final DTMs
Bare-Ground Non Ground
Points =~ Density Points Mesh Size

DP-100 88,943,111 ~ 111 point m~2 84,822,510 ~ 106 point m~>

DP-45 38,612,537 ~ 48 point m~2 36,343,108 ~ 45 point m 2
DP-15 13,062,459 ~ 16 pointm~2 12,195,988 ~ 15 point m >
DP-5 4,134,028 ~ 5 point m 2 3,824,882 ~ 5 point m 2

DP-0.5 413,011 ~ 0.5 point m 2 366,603 ~ 0.5 point m 2

4,120,601 ~ 5 point m—2 0.10m x 0.10 m
2,269,429 ~ 3 point m—2 0.15m x 0.15m
866,471 ~ 1 point m 2 0.25m x 0.25m
309,146 ~ 0.1 pointm~2  0.45m x 0.45m
46,408 ~ 0.1 point m 2 141m x 141 m

4 Case study area: ~800,000 m?.

As mentioned in (Stage-2), from 56 check points belonging to GNSS observation, with a vertical
precision (RMSE 7)) of (0.014 4 0.002) m and applying the Equations (1) and (2), the vertical
uncertainty of DTMs was assessed. Table 7 shows the obtained results through an exposed method.
Subsequently, in Section 3.3, these uncertainty values from DP-DTMs will be compared with the
vertical precision/uncertainty of the LIDAR-data (Table 1).

Table 7. Vertical uncertainties of DTMs through the RE method.

Statistical Dispersion

DTMs 3 Central Tendency (median) Vertical Uncertainty
MAD NMAD
0.10m x 0.10 m 0.00 m 0.04 m 0.06 m (0.00 £ 0.06) m
0.15m x 0.15m —0.01m 0.04 m 0.06 m (—0.01 £ 0.06) m
0.25m x 0.25m 0.00 m 0.05m 0.07 m (0.00 = 0.07) m
045m x 0.45m 0.00 m 0.05m 0.08 m (0.00 £ 0.08) m
141 m x 141 m —0.02m 0.05m 0.08 m (—0.02 £ 0.08) m
5 Mesh size.

3.2. Influence of the DTM Mesh Size on Flood Modeling and a Hazard Assessment

First, Figure 4 shows the cartographic process of generating the hazard map from the individual

vector maps (see Section 2.4.4).
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Figure 4. Process of generating of the hazard map (DTM of spatial resolution 1.41 m x 1.41 m). Upper
image: Maximum inundated area. Central image: Vector maps of the threshold hydraulic parameters
according to Tc, (brown line represents flood depth (D) > 1 m, red line shows values of velocity
(V) >1ms~ 1, blue line indicates values of D x V > 0.5 m~2 s~1. Please note that each line defines
the lower limit of the values indicated in Table 5). Image below: Hazard map (red areas) obtained by
intersection of all individual maps (central image).



Remote Sens. 2018, 10, 1566

Normalized areas

13 of 23

The effect both of spatial resolution and vertical uncertainty on flood modeling and hazard
assessment is highlighted in Table 8 and Figures 5 and 6.

Table 8. Influence of mesh size and vertical uncertainty.

Mesh Size Vertical Uncertainty Flood Modeling Hazard Assessment

0.10m x 0.10 m (0.00 £ 0.06) m 370,748 m? 108,830 m?

0.15m x 0.15m (—0.01 £ 0.06) m 328,953 m? 105,619 m?

025m x 0.25m (0.00 £ 0.07) m 315,991 m? 103,859 m?2

0.45m x 045 m (0.00 & 0.08) m 308,144 m? 98,911 m?

141m x 141 m (—0.02 £ 0.08) m 311,701 m? 99,950 m?
1.00 +
5561 L \ @ Flood modelling

F \ O Flood hazard assessment
0.80 + \

\
0.70 +
0.60 + N
AN
0.50 + N
N
0.40 + N
~
030 1 ™
L XX ceead, \\
020 1 teeetess =
0.10 1 " ':-----..—l-—r._..._:.—,]— e —
0.00 + t + {
DP-100 (0.10x0.10) DP-45 (0.15x0.15) DP-15 (0.25x0.25) DP-5 (0.45x0.45) DP-0.50 (1.41x1.41)

DP (points/m? ) and Mesh size (m x m)

Figure 5. Influence of mesh size on flood modeling and hazard assessment. Blue and red lines

represent tendency on flood modeling and hazard assessment, respectively. Note: the values are

normalized. Normalization intervals: flood modeling [371,500, 300,000] and a flood hazard assessment
[140,000, 96,000].
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Figure 6. Flood modeling (light blue color). Hazard assessment (red color). (A) Mesh size (0.10 m x 0.10 m).
(B) Mesh size (0.15 m x 0.15 m). (C) Mesh size (0.25 m x 0.25 m). (D) Mesh size (0.45 m x 0.45 m).
(E) Mesh size (1.41 m x 1.41 m). Note that the flood hazard modeling based on hydrological synthetic
events may produce small disconnected areas as a result of: (i) simulation time of the inflow hydrograph
and (ii) generated flood depth of hydraulic cells as a consequence of the maximum inundated area
hydraulic modeling time step intervals due to the DTM point density. This effect is more evident in
the case of high spatial resolution DTMs. In this case study, characterized by two wide and regular
floodplains, these minimal flood depths had no impact on the flood hazard assessment.

Figure 7 shows the influence of the DTMs mesh sizes on hydraulic simulations as a consequence
of the existing bridge modeling. This figure clearly reveals an affection to the lower part of the
bridge deck, which was only observed in the case of the DTM with the highest spatial resolution
(0.10 x 0.10 m). This situation led to an increase on the flood depth that comparatively enlarged the
flood area (see Table 8).
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Figure 7. Influence of the mesh size of DTMs at the bridge area. Please note that upstream and
downstream sections are located one (1) meter from the bridge midpoint, respectively. The water
surface head is expressed in meters above the sea level.

3.3. Comparison of Results Versus LiDAR Data

To conclude and underline the suitability of the proposed methodology, flood modeling and
hazard assessment results were deeply compared with those obtained by a LiDAR technique (see
Table 1 LIDAR-DTMs). The Figure 8 and Table 9 show the effects of mesh size and vertical uncertainty
on hydraulic simulations. Lastly, Figure 9 summarizes and shows the evolution of the results through
normalized area values from Table 8 (DP-data) and Table 9 (LiDAR-data). It can be observed how, as
the spatial resolution and vertical uncertainty increase [(from 0.10 m x 0.10 m to 5.00 m x 5.00 m) and
(from £0.06 m to £0.50 m)], the maximum inundated area and its associated hazard zones decrease.
Moreover, based on this figure, it is proposed that the optimal relationship among mesh size (point
density) and vertical uncertainty is found in this research.

Figure 8. DP-DTMs versus LIDAR-DTMs. Influence of mesh size and vertical uncertainty. Flood
modeling (light blue color) and hazard assessment (red color). (A) DP-DTM mesh size (0.10 m x 0.10 m).
(B) DP-DTM mesh size (1.41 m x 141 m). (C) LiDAR-DTM mesh size (1.41 m x 1.41 m).
(D) LiDAR-DTM mesh size (5.00 m x 5.00 m).
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Table 9. Influence of mesh size and vertical uncertainty.

Mesh Size Vertical Uncertainty Flood Modeling Hazard Assessment
0.10m x 0.10m ® (0.00 = 0.06) m 370,748 m? 108,830 m?
141m x 141 m?® (—0.02 £ 0.08) m 311,701 m? 99,950 m?
141m x 141 m7 (£0.20) m 290,465 m? 91,100 m?
5.00 m x 5.00m”’ (0.50) m 285,835 m? 90,389 m?
¢ DP-DTM. 7 LiDAR-DTM.
Geometric source: RC-APP data Geometric source: LIDAR data
1.00 + = &L 050
(0.10x0.10) DP-100 -
090 + oo + 045
-
0.80 Il 0.40
- =l
2] - - - et
o 070 1+ - 035
[ (015 5 o_45 - -
& oe0 d {0-15x0.15) DA (1.41x1.41) DP-0.50 _-" 1 om0 ,é
o : e -
[} - -
N 050 T 1 ! P pad 025 Y
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Figure 9. Influence of mesh size and vertical uncertainty on flood modeling and hazard assessment.
Blue and red continuous lines refer to DP-data and blue and red dashed lines refer to LIDAR-data. Note:
Normalization intervals applied to an adequate display of results including flood modeling [272,000,
377,000] and hazard assessment [80,000, 171,000]. The light blue area represents the optimal relationship
among mesh size (point density) and vertical uncertainty that is proposed through this research.

4. Discussion

The multidisciplinary nature of the flood hazard assessment has led to an active research
line within the scientific community. Relevant studies have highlighted the important role that a
detailed, continuous, and accurate DTM with a minimal/reduced vegetation influence plays in reliable
hydrodynamic modeling results. Although the available spatial resolutions of these DTMs have
achieved, so far, in the best case resolutions, to close to one meter and vertical precisions ranged from
£0.50 m and £0.25 m. For this purpose, the exposed methodology (by RC-APP & CSF) is a novel
application because no work has addressed the influence of hyper-resolution DTMs (in the range from
~1 m to 0.10 m) and with vertical-centimeter uncertainties [from (0.00 + 0.06) m to (—0.02 £ 0.08)] in
the field of flood modeling so far.

It is worth mentioning that the CSF filter reliability as well as the suitability of the parameters set
(Section 2.4.2). This is highlighted, on one hand, through the high rates of bare-ground points obtained
(among 95.4% and 88.8%, see Table 5) and, on the other hand, the minimal vertical uncertainties
achieved (Table 6). This is because DTMs were generated exclusively by bare-ground points. In this
sense, the vertical uncertainties, evaluated through the proposed method in this work, ranges among
(0.00 £ 0.06) m to DP-100 (0.10 m x 0.10 m mesh size) and (—0.02 = 0.08) m to DP-0.5 (1.41 m x 1.41 m
mesh size). Furthermore, a slight trend towards a high uncertainty in the DTMs was observed as the
spatial resolution increases (Table 7). Geometrically, the vertical DP-DTM uncertainties achieved [(0.00
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£ 0.06) m and (—0.02 £ 0.08) m, Table 7] ranges roughly among three and seven times better than
vertical LIDAR-DTM uncertainties [(£0.20 m and 4+0.50 m, Table 1).

Furthermore, flood modeling shows important differences from the safety point of view
(Figure 6). According to DP-100 as a reference value (0.10 m x 0.10 m, 370,748 m?, Table 8),
the observed differences vary between 15% and 17% for DP-15 (0.25 m x 0.25 m; 315,991 m?) and
DP-5 (0.45 m x 0.45 m; 308,144 m?), respectively. It is also observed that the increase of the mesh
size (from 0.10 m x 0.10 m to 1.41 m x 1.41 m) produces a decrease on the inundated area (Table 7,
370,748 m? to 308,144 mz). Please note the minimal difference among DP-5 and DP-0.50 (3557 m2,
308,144-311,701 mz). However, these differences are increased significantly up to 22% and 23% when
the values are compared with LiDAR-data flood modeling (Table 9, 1.41 m x 1.41 m: 290,465 m?;
5.00 m x 5.00 m: 285,835 m?). It should be noted that the minimal difference among LiDAR-data
results only in 4630 m? and roughly at 1.6%. In all cases, it is evident the positive effect that a high
spatial resolution DTM and low vertical uncertainty has on flood modeling. In this sense, the high
density points cloud got by RC-APP & CSF, which have allowed us to obtain DTMs with a large spatial
resolution between 50 and 14 times better than LiDAR-data (5.00 m x 5.00 m, 1.41 m x 1.41 m, Table 1).

Next, regarding the hazard assessment (see Table 8), it is noticeable that the higher mesh sizes
(0.45m x 0.45m and 1.41 m x 1.41 m) do not produce relevant changes (98,911 m? versus 99,950 m?2,
only 1039 m?). However, in the case of lower mesh sizes, there are important variations from a
security perspective (108,830 m? 0.10 m x 0.10 m, to 103,619 m? 0.25 m x 0.25 m). The percentages
of modification vary between 9% and 5%, respectively. These values can be significant in an area
with a high exposure level to the flood hazard. Furthermore, a detailed analysis on Figure 6 shows
how there are hazard areas on the floodplain that are only revealed through the maximum resolution
DTM (Figure 6: 0.10 m x 0.10 m). This highlights the usefulness of this spatial resolution for drawing
up reliable evacuation plans to reduce natural flood hazards. On the other hand, the comparison
versus LiDAR-data shows significant differences depending on mesh size, which range between 17%,
108,830 m? and 90,389 m?, and 10%, 99,950 m? and 90,389 m? (see Table 9).

Furthermore, it is found that exclusively vertical-DTM uncertainty produces on inundated area
and hazard assessment. In Table 9, it is shown that for a mesh size of 1.41 m x 1.41 m, the inundated
area varies &~ 7% [311,701 m?2, vertical uncertainty of (—0.02 £ 0.08) m, and 290,465 m?2 (+0.20 m)].
Regarding hazard assessment, the values varies ~ 9% (99,950 m? and 91,100 mz). This proves that a
small difference of only 0.12 m in the vertical uncertainty significantly affects the delimitation of flood
modeling and hazard assessment.

Regarding the existing bridge, Figure 7 shows the influence of the mesh size of DTMs at the
bridge area. It should be noted that, only in the case of DP-100 (mesh size of 0.10 m x 0.10 m), water
surface elevations higher than the lower part of the bridge deck was detected (1073.50 m). The water
surface elevations were 1073.75 m upstream and 1073.73 m downstream. In all other analyzed cases,
the achieved values showed a slight variation [1073.39, 1073.44 m] but none of them were higher than
1073.50 m. This clearly shows the positive effect that a high resolution DTM has on flood modeling. In
this way, an average difference of 0.32 m on the water surface elevation (1073.39-44 versus 1073.75-73)
was found at the bridge area. This situation led to an increase on the flood area and hazard assessment
with respect to the other cases studied.

Figure 9 shows the optimal relationship found between the point density and vertical uncertainty.
In accordance with it, this research proposes DTMs with a mesh size among (0.10 m x 0.10 m) to
(0.15 m x 0.15 m), point densities among 100 to 45-point m~2 to generate more reliable fluvial hazard
maps. Furthermore, through the proposed methodology, it is possible to achieve minimal vertical
uncertainties (0.00 £ 0.06) m and (—0.01 £ 0.06) m lower than LiDAR-data commonly applied to
fluvial modeling.

Lastly, it should be highlighted that the role of the Manning roughness coefficient is crucial not
only for developing accurate flood modeling but also for achieving a deep understanding of the flow
regime behavior. From a hazard flood assessment, this analysis is even more important because of the
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influence that drastic changes in the Manning roughness coefficient may produce on the interaction
flow-terrain-infrastructures. To finish, it is also important mentioning that, for upcoming research
studies, it was planned to develop a comparative sensitivity analysis of the influence of the Manning
roughness coefficient vs. the hydraulic cell size on hydraulic models” reliability.

5. Conclusions

This study reinforces the suitability analysis of new geomatic solutions as a reliable and
competitive source of accurate and high resolutions DTMs. This was done at the service of flood
hazard assessment and flood effects mitigation. The proposed methodology has been revealed as an
effective strategy of adaptation to deal with the growing variability of the hydrological events and
associated systemic risks.

This research has found an optimal relationship between point density (mesh size) and vertical
uncertainty. This was done to generate more reliable fluvial hazard maps as well as to improve
decision-making in the fluvial framework from the safety perspective. This was developed by
minimizing potential flood consequences via more detailed flood prone area maps and making
more realistic evacuation plans. In addition, from a technical point of view, flood modeling supported
by the proposed methodology would provide a more effective definition of solutions in the field of
river engineering as the consequence of a better knowledge of flood behavior. On the other hand, this
methodology may also lead to high detailed 4D models applied to morphometry fluvial.

Regarding a comparison with LiDAR-data, this has revealed that a joint approach through both
techniques (LiDAR & DP by RC-APP and CSF) would allow a more objective (with less uncertainty)
assessment of the inherent river hazard on a specific area. This is found to be even more applicable
especially in areas with a high level of flood exposure. This could be performed by LiDAR-data to
preliminarily evaluate the potential risks and the exposed methodology in-depth. This joint approach
(active/passive sensors, LIDAR versus DP) would allow a better definition of the floodplain land uses,
which would reduce the flood hazard.

A setup of technical specifications (sensor and flight) has also been proposed for planning flights
by an Ultra-Light Motor but is also applicable to Unmanned Aerial Vehicles. Additionally, the applied
methodology (RC-APP and CSF) may be an adequate source of reliable geometric data. This is found
to be true not only for fluvial applications but in zones/places where LiDAR-data are not available
or with poor quality topographic data. In this sense, the optimal relationship between time-cost
achieved a vertical precision-spatial resolution. Furthermore, the application of the CSF algorithm
over photogrammetric high resolutions point clouds has been tested and validated. Likewise, the
methodology applied to vertical-DTM uncertainty has been demonstrated to be an efficient mode
to evaluate vertical accuracy especially in those dataset that do not follow a Gaussian distribution.
The exposed method may be applied to DTMs derived from different geometric sources and not only
from DP.

For future research, we plan to apply an optimal mesh size and a proposed vertical uncertainty
in the form of continuous DTMs. This would be implemented together with the new approaches
on hydrological time series analysis such as causal reasoning implemented by the Bayes’ theorem to
generate more reliable predictive models on flood modeling.

To conclude, we found that a better knowledge of the interaction flow-terrain through the
hybridization of alternative platforms, sensors, and processing techniques (5fM and CSF algorithms)
produces a better definition of flood prone areas with important social and economic benefits.
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