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Abstract: The mean shift algorithm has been shown to perform well in optical image segmentation.
However, the conventional mean shift algorithm performs poorly if it is directly used with Synthetic
Aperture Radar (SAR) images due to the large dynamic range and strong speckle noise. Recently,
the Generalized Mean Shift (GMS) algorithm with an adaptive variable asymmetric bandwidth has
been proposed for Polarimetric SAR (PolSAR) image filtering. In this paper, the GMS algorithm
is further developed for PolSAR image segmentation. A new merging predicate that is defined in
the joint spatial-range domain is derived based on the GMS algorithm. A pre-sorting strategy and
a post-processing step are also introduced into the GMS segmentation algorithm. The proposed
algorithm can be directly used for PolSAR image superpixel segmentation without any pre-processing
steps. Experiments using Airborne SAR (AirSAR) and Experimental SAR (ESAR) L-band PolSAR data
demonstrate the effectiveness of the proposed superpixel segmentation algorithm. The parameter
settings, stability, quality, and efficiency of the GMS algorithm are also discussed at the end of
this paper.

Keywords: synthetic aperture radar (SAR); polarimetric SAR (PolSAR); superpixel; segmentation;
mean shift

1. Introduction

In recent decades, object-based image analysis has become a new paradigm in remote sensing [1–3].
Furthermore, in recent years, object-based classification for Polarimetric Synthetic Aperture Radar
(PolSAR) images has become more and more popular [4–12]. Image segmentation is an important
pre-processing step in image interpretation and analysis, and object detection, recognition, and
tracking [13]. However, the state-of-the-art segmentation algorithms, such as the Fractal Net Evolution
Approach (FNEA) [14], mean shift [13], spectral clustering [15], Simple Linear Iterative Clustering
(SLIC) [16], and Statistical Region Merging (SRM) [17], are mostly designed for optical images. It is
therefore necessary to develop segmentation algorithms specifically for PolSAR data. To date, various
PolSAR image segmentation algorithms have been proposed. These algorithms can be classified into
three categories according to the segmentation results, as follows:

(1) Conventional Segmentation Methods. The basic principle of these methods is merging the adjacent
and homogeneous pixels into the same region, and dividing the heterogeneous pixels into different
regions. The size and shape of the obtained regions vary with the image scenes. Dong et al., [4]
proposed using a Gaussian Markov Random Field (GMRF) model for PolSAR image segmentation and
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classification. For simplicity, this method uses a Gaussian distribution instead of a Gamma distribution,
and it only uses the intensity information. Wu et al., [5] proposed to use a Wishart Markov Random
Field (WMRF) model and a Maximum A Posteriori (MAP) criterion for PolSAR image segmentation.
Compared with the GMRF model, the WMRF model is more in line with the characteristics of PolSAR
data. Lombardo et al., [18] derived a split-merge criterion based on a generalized maximum-likelihood
approach, and then applied it to multi-frequency PolSAR image segmentation. Ayed et al., [19]
proposed to use maximum-likelihood approximation and efficient multiphase level-sets for PolSAR
image segmentation. Yin and Yang [20] proposed a modified level-set approach for multi-band PolSAR
image segmentation. Zou et al., [21] proposed to use a level-set method based on a heterogeneous
cluster model for high-resolution PolSAR image segmentation. Yu et al., [22] introduced the Iterative
Region Growing with Semantics (IRGS) algorithm into PolSAR image segmentation and classification
by incorporating a polarimetric feature model that is based on the Wishart distribution and modifying
several key steps. Lang et al., [23] proposed a Generalized SRM (GSRM) algorithm by modifying the
original SRM model according to the characteristics of PolSAR images.

(2) Superpixel Segmentation Methods. These methods segment an image into many small
homogeneous regions with similar sizes. The main difference between the conventional segmentation
approach and superpixel segmentation is that the latter approach limits the size of the segmented
regions (and sometimes may also limit the shape and the edge smoothness). Ersahin et al., [7]
introduced the Spectral Graph Partitioning (SGP) algorithm into the PolSAR image processing field for
segmentation and classification. Liu et al., [8] first used the polarimetric information to detect edges,
and then used the Normalized Cuts (Ncut) [15] algorithm for PolSAR image superpixel segmentation.
Spectral clustering methods have good noise immunity, and they can obtain segmented regions with
similar sizes, compact shapes, and smooth edges, but they cannot preserve the point and linear objects.
Hoekman et al., [6] proposed using the region-growing algorithm for PolSAR image segmentation.
This method first initializes some seed points, where each seed point stands for a region. It then divides
the adjacent pixels whose distances from the central seed points are less than a certain threshold into
the regions for which the central seed points stand. Similar to this method, the SLIC algorithm was
introduced into PolSAR image segmentation by Qin et al., [24], where a revised Wishart distance was
adopted as the similarity measures. For heterogeneous urban areas, Xiang et al., [25] introduced the
Spherically Invariant Random Vectors (SIRV) model. The polarimetric homogeneity measurement
that was proposed by Lang et al. [26] was also used to automatically determine the tradeoff factor.
Wang et al. further combined the Wishart distance and the SIRV distance [27]. The integrated distance
was calculated in a Directional Span-Driven Adaptive (DSDA) region and the superpixels are generated
while using the entropy rate method.

(3) Hierarchical Segmentation Methods. These methods, which are also known as multi-scale
segmentation methods, produce multi-level segmentation results in top-down or bottom-up order.
The top level is the whole image, and the bottom level is a single pixel. All the levels of the
segmentation results form a hierarchical structure. Beaulieu et al., [28] proposed a hierarchical stepwise
optimal algorithm that is based on the region-merging method for PolSAR image segmentation,
where the segmentation criterion was derived from a complex Wishart distribution for homogeneous
images and from a K-distribution for texture images. Since the texture model is not unique,
Bombrun et al., [29] introduced the SIRV model, which can describe a class of stochastic processes
for PolSAR image hierarchical segmentation. To save the segmented results at different levels,
Alonso-González et al., [30] proposed the use of Binary Partition Trees (BPT) for PolSAR image
multi-scale representation. The two main steps that are involved in BPT analysis are tree construction
and tree pruning. Recently, Chen et al., [31] proposed a multi-scale segmentation algorithm for high
resolution PolSAR image by introducing superpixel segmentation and the G0 distribution statistical
heterogeneity into the FNEA algorithm.

This paper focuses on superpixel segmentation. When compared with the conventional
segmentation approach, superpixel segmentation can produce small-scale regions with a similar
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size even in large homogeneous areas, preserving the statistical characteristics of the image. Therefore,
superpixel segmentation is more suitable for the object-based classification algorithms that are based
on statistics such as the Wishart classifier.

Mean shift segmentation is a commonly used segmentation algorithm. Because the segmentation
result of the mean shift algorithm is often piecemeal, it is usually regarded as a superpixel segmentation
algorithm. However, the conventional mean shift algorithm is designed only for optical images and
cannot be directly used with PolSAR images. Recently, Lang et al., [32] extended the conventional
mean shift algorithm according to the characteristics of PolSAR images. The proposed Generalized
Mean Shift (GMS) algorithm can be directly used for Synthetic Aperture Radar (SAR) and PolSAR
image filtering, avoiding unnecessary information loss. In this paper, the GMS algorithm is further
extended for the superpixel segmentation of PolSAR images.

The main contributions of this paper are as follows: (1) We propose a new merging predicate to be
used for superpixel segmentation based on the basic GMS formula, and we further propose the GMS
algorithm based on the new merging predicate. (2) To improve the accuracy of the segmentation, we
introduce a pre-sorting strategy into the GMS segmentation algorithm after comparing the pre-sorting
strategy and the row-column strategy used in the conventional mean shift segmentation algorithm.
(3) To suppress the influence of speckle noise and preserve strong point targets, we introduce a
post-processing step into the GMS segmentation algorithm.

The rest of this paper is organized as follows. Firstly, in Section 2, we briefly review the materials
and methods that are used in this study. A new merging predicate defined in the joint spatial-range
domain is derived based on the GMS algorithm. A pre-sorting strategy and a post-processing step
are introduced into the GMS segmentation algorithm. Section 3 describes the experimental results
that were obtained with AirSAR and ESAR L-band PolSAR data and evaluates the effectiveness of the
proposed algorithm. The parameter settings, stability, quality, and efficiency of the GMS segmentation
algorithm are discussed in Section 4. Finally, in Section 5, we conclude the paper and summarize the
next steps in this work.

2. Materials and Methods

2.1. Experimental Data Sets and Preprocessing

NASA/JPL Airborne SAR (AirSAR) and DLR Experimental SAR (ESAR) L-band PolSAR data
were selected to evaluate the effectiveness of the proposed superpixel segmentation algorithm by
comparison with the original mean shift algorithm [13], the normalized cuts (Ncut) algorithm used
in [8], and the SLIC-PolSAR algorithm using the grid-centered initialization strategy (SLIC-GC) [24].
The data sets that were used in this study are freely available from the website of the European
Space Agency (ESA) (https://earth.esa.int/web/polsarpro/airborne-data-sources). Because the Ncut
and SLIC-GC algorithms are sensitive to speckle noise, filtering processing is required before the
segmentation step. In these experiments, the PolSAR data were preprocessed by the refined Lee
filter [33]. The GMS segmentation algorithm involves the GMS filtering process, so no extra filtering
processing was needed. The first data set was a four-look AirSAR L-Band PolSAR image from
Flevoland, the Netherlands. Since the original image was as large as 750 × 1024, for the convenience of
showing details of the image, a region of 380 × 430, which was as the same as the one shown in Figure
9 in [8], was sampled from the original image. Because the points and lines in the image were small
and fine, a speckle filter with a large window might have blurred the points, lines, and edges, which
are very important in remote sensing image segmentation, so we used a relatively small window,
3 × 3, for the refined Lee filter. The Red-Green-Blue color image composited by Pauli decomposition
parameters (Pauli-RGB image) of this area is shown in Figure 1a, and the 3 × 3 refined Lee filtered
image is shown in Figure 1b. Since the filtering window was small, strong speckle noise can still be
observed in Figure 1b.

https://earth.esa.int/web/polsarpro/airborne-data-sources
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and evaluation, a pre-processing of two looks in the azimuth direction was performed to equalize the 

resolutions of the azimuth and range, and a region of 540 × 888, which was the same as the one shown 

in Figure 9 in [32], was sampled from the original image. Since the points and lines in the ESAR image 

were bigger and thicker than those in the AirSAR image, and the speckle noise of the former was 

stronger than the latter, we chose a 7 × 7 window for the refined Lee filter. The Pauli-RGB image of 

this area is shown in Figure 2a, and the 7 × 7 refined Lee filtered image is shown in Figure 2b. It can 

be observed from Figure 2 that the speckle noise is well suppressed, but some details are blurred, 

such as the dark lines in the areas that are marked by the ellipse. 
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Figure 2. Pauli-RGB images of the Experimental Synthetic Aperture Radar (ESAR) PolSAR data: (a) 

Original image and (b) 7 × 7 refined Lee filtered image. 
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2.2.1. Conventional Mean Shift 

The mean shift procedure was proposed for nonparametric density gradient estimation by 

Fukunaga and Hostetler [Error! Reference source not found.], and it was improved and applied to 

data and image analysis, including smoothing, segmentation, clustering, and real-time tracking of 

objects by Cheng [34] and Comaniciu et al., [13,35–38]. The following is a brief introduction to the 

conventional mean shift algorithm. 

Figure 1. Pauli-RGB images of the Airborne Synthetic Aperture Radar (AirSAR) Polarimetric SAR
(PolSAR) data: (a) Original image and (b) 3×3 refined Lee filtered image.

The second data set was an ESAR L-band PolSAR image from the Oberpfaffenhofen test site,
Germany. The original single-look image was 2861 × 1540 in size. To facilitate the visual interpretation
and evaluation, a pre-processing of two looks in the azimuth direction was performed to equalize
the resolutions of the azimuth and range, and a region of 540 × 888, which was the same as the one
shown in Figure 9 in [32], was sampled from the original image. Since the points and lines in the ESAR
image were bigger and thicker than those in the AirSAR image, and the speckle noise of the former
was stronger than the latter, we chose a 7 × 7 window for the refined Lee filter. The Pauli-RGB image
of this area is shown in Figure 2a, and the 7 × 7 refined Lee filtered image is shown in Figure 2b. It can
be observed from Figure 2 that the speckle noise is well suppressed, but some details are blurred, such
as the dark lines in the areas that are marked by the ellipse.
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Figure 2. Pauli-RGB images of the Experimental Synthetic Aperture Radar (ESAR) PolSAR data:
(a) Original image and (b) 7 × 7 refined Lee filtered image.

2.2. Conventional Mean Shift Segmentation

2.2.1. Conventional Mean Shift

The mean shift procedure was proposed for nonparametric density gradient estimation by
Fukunaga and Hostetler [34], and it was improved and applied to data and image analysis,
including smoothing, segmentation, clustering, and real-time tracking of objects by Cheng [35]
and Comaniciu et al., [13,36–39]. The following is a brief introduction to the conventional mean
shift algorithm.
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Given n independent and identically distributed (i.i.d.) random vectors xi ∈Rd, i = 1, . . . , n, in the
d-dimensional space Rd, the PDF of xi can be estimated by the multivariate kernel density estimator
with kernel K(x) and a symmetric positive definite d × d bandwidth matrix H:

f̂ (x) =
1
n

n

∑
i=1

KH(x− xi) (1)

where
KH(x) = |H|−1/2K

(
H−1/2x

)
(2)

In practice, to reduce the complexity of the estimation, the bandwidth matrix H is chosen as
proportional to the identity matrix H = h2I. In pattern recognition, a special class of radially symmetric
kernels satisfying K(x) = ckk

(
‖x‖2

)
are usually used, where the function k(x) is called the kernel

profile, and constant ck makes the integral of K(x) equal to one. Accordingly, the PDF estimator
(Equation (1)) can be rewritten as:

f̂h,K(x) =
ck

nhd

n

∑
i=1

k

(∥∥∥∥x− xi
h

∥∥∥∥2
)

(3)

A key step in the feature space analysis with the underlying density f (x) is to find the local
maximum values of the density, i.e., the modes of the density. For a continuous PDF, the modes are
located where the gradient ∇f (x) = 0. The mean shift procedure is an efficient way to locate these
modes without estimating the PDF. The mean shift vector is calculated, as follows [13]:

Mh,Q(x) =

n
∑

i=1
xiq
(∥∥∥ x−xi

h

∥∥∥2
)

n
∑

i=1
q
(∥∥∥ x−xi

h

∥∥∥2
) − x (4)

where q(x) = −k’(x) and Q(x) = cqq(||x||2). The kernel K(x) was called the shadow of the kernel Q(x)
in [35]. From Equation (4), it can be found that the mean shift vector is the difference between the
weighted mean of the area bounded by bandwidth h and the center point x. At each point, the mean
shift vector always points to the direction of maximum increase of f (x), so it can define a path leading
to a mode of f (x). The mean shift procedure is defined as an iterative process. At each iteration, the
mean shift vector (Equation (4)) is calculated and it is added to the center point to obtain the new
center until it converges to a mode point where the density gradient is zero.

2.2.2. Mean Shift Filtering

In order to take full advantage of the spatial information that is contained in the image, Comaniciu
and Meer [13] proposed introducing a multivariate kernel that is defined in the joint spatial-range
domain into the mean shift procedure:

Khs ,hr (x) =
C

hs2hrd ks

(
‖xs

hs
‖

2
)

kr

(
‖xr

hr
‖

2
)

(5)

where xs is the spatial part, xr is the range part of feature vector x, ks(x) and kr(x) are the profiles
used in the two domains, hs and hr are the employed kernel bandwidths, and C is the corresponding
normalization constant.

Mean shift filtering is a straightforward application of the mean shift procedure. For each point x
defined in the d-dimensional space, find its mode point xm by using the mean shift iterative process,
and assign the filtered value of x = (xs, xm,r).
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2.2.3. Mean Shift Segmentation

The principle of the conventional mean shift segmentation is straightforward [13]: firstly, run the
mean shift filtering procedure for the image and store both the spatial and range information of the
mode point; then, merge the pixels whose mode points’ spatial distances are less than hs and range
distances are less than hr.

We suppose that xk and zk (k = [1, N]) are the d-dimensional pixels in the original input image I
and the filtered image If defined in the joint spatial-range domain, and Li is the region label that the
i-th pixel belongs to. The procedure of the conventional mean shift segmentation algorithm can then
be described, as follows:

Algorithm 1. Mean Shift Segmentation Algorithm

1. Run the mean shift filtering procedure for the image I, obtain the filtered image If, and save the
coordinate of each pixel’s mode point.

2. Judge the adjacent pixels in turn. Merge the pixels in If whose mode points’ spatial distances are less
than hs and range distances are less than hr.

3. (Optional) Merge the small regions whose sizes are less than M pixels into the most similar
adjacent regions.

4. Suppose that the number of final segmented regions is m, and the segmented regions are Cp, p = 1, . . . ,m.
For each pixel k = 1, . . . ,N, assign Lk = { p | zk∈Cp}.

From the procedure of mean shift segmentation, it can be seen that this algorithm uses the region
growing and merging technique, which contains two elements: the merging predicate confirming
whether adjacent regions are merged or not, and the merging order followed to test the merging of
regions. In this paper, the mean shift segmentation algorithm is improved from these two aspects, so
that it is appropriate for PolSAR images.

2.3. Generalized Mean Shift Segmentation

2.3.1. Generalized Mean Shift

It is known that the probability distribution of single-look and N-look amplitude SAR data is
asymmetric, as is the intensity. However, the bandwidth of the conventional mean shift algorithm is
symmetric. Furthermore, a single fixed bandwidth is also inadequate, since the range of SAR data is
usually very large. Therefore, pre-processing, such as logarithmic transformation and normalization,
has to be applied before the mean shift filter is used for SAR images in the existing approaches [40–43].
Clearly, these pre-processing steps will result in a loss of some information and reduce the segmentation
quality. To overcome these problems, Lang et al., [32] proposed using an adaptive variable asymmetric
bandwidth, and derived the GMS:

MG(x) =

n
∑

i=1
q
(∥∥∥ x−xi

h(x)

∥∥∥2
)

xi

n
∑

i=1
q
(∥∥∥ x−xi

h(x)

∥∥∥2
) − x (6)

where x = [x1, x2, . . . , xp] is the center pixel in an image with p channels, xi is a sample pixel, q(||x||2)
is the profile of the kernel function Q(x), and h(x) is the bandwidth vector:

h =

{
hj,1 = (1− σ1)x̂j, i f xi,j ≤ xj
hj,2 = (σ2 − 1)x̂j, i f xi,j > xj

, 1 ≤ j ≤ p (7)
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where x̂j is the Minimum Mean Square Error (MMSE) [44,45] estimated value of the center pixel
in channel j, and (σ1, σ2) is the sigma range that maintains the mean value of the SAR intensity or
amplitude [32,46]. Since the sigma range was described by parameter ξ in [46], the bandwidth vector
h is determined only by parameter ξ.

If we suppose that a = [a1,a2, . . . ,an] and b = [b1,b2, . . . ,bn] are two n-dimensional vectors, then
the vector division a/b is defined as:

a
b
=

[
a1

b1
, . . . ,

an

bn

]
(8)

According to Equations (7) and (8), the Euclidean norm used in the profile function is:

∥∥∥∥x− xi
h

∥∥∥∥2

= ∑
(

xj − xi,j

hj,1

)2

+ ∑
(

xk − xi,k

hk,2

)2
(9)

where the subscript j stands for the dimension xi,j≤xj, and the subscript k stands for the dimension
xi,k>xk, in the total p range dimensions. For more information about GMS, we refer the reader to [32].
After the above extension, the GMS algorithm can be used directly with SAR data without any
pre-processing steps.

Accordingly, we obtain the new GMS that is defined in the joint spatial-range domain:

MG(x) =

n
∑

i=1
qs

(∥∥∥ xi,s−xs
hs

∥∥∥2
)

qr

(∥∥∥ xi,r−xr
h(xr)

∥∥∥2
)

xi

n
∑

i=1
qs

(∥∥∥ xi,s−xs
hs

∥∥∥2
)

qr

(∥∥∥ xi,r−xr
h(xr)

∥∥∥2
) − x (10)

where subscripts s and r stand for the spatial and range domains, respectively.

2.3.2. Merging Predicate

The merging predicate of the conventional mean shift segmentation can be defined in
mathematical form as:

P(z, zi) =

{
true. i f (‖zi,s − zs‖ < hs)&(‖zi,r − zr‖ < hr)

f alse. otherwise
(11)

where z denotes the center pixel filtered by the mean shift filter and zi denotes an adjacent pixel.
The conventional mean shift defined in the joint spatial-range domain is [32]:

Mhs ,hr ,Q(x) =

n
∑

i=1
qs

(∥∥∥ xi,s−xs
hs

∥∥∥2
)

qr

(∥∥∥ xi,r−xr
hr

∥∥∥2
)

xi

n
∑

i=1
qs

(∥∥∥ xi,s−xs
hs

∥∥∥2
)

qr

(∥∥∥ xi,r−xr
hr

∥∥∥2
) − x (12)

By comparing Equations (11) and (12), the predicate (Equation (11)) can be modified, as follows:

P(z, zi) =

true. i f
(∥∥∥∥ zi,s−zs

hs

∥∥∥∥ < 1
)

&
(∥∥∥∥ zi,r−zr

hr

∥∥∥∥ < 1
)

f alse. otherwise
(13)

Equation (13) indicates that the merging predicate of the mean shift segmentation algorithm is
judging whether the parameter of the profile function q(x) is less than 1 or not.
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Accordingly, the merging predicate of the GMS segmentation algorithm can be derived based on
Equation (10):

PG(z, zi) =

true. i f
(∥∥∥∥ zi,s−zs

hs

∥∥∥∥ < 1
)

&
(∥∥∥∥ zi,r−zr

h(zr)

∥∥∥∥ < 1
)

f alse. otherwise
(14)

What we should note here is, that, differing from mean shift, during the region-merging process of
GMS, two regions are involved, whose corresponding range bandwidths are h(x) and h(xi), respectively.
However, only the bandwidth of the central pixel is considered in Equation (14), which is not
comprehensive. We therefore need to consider how to use these two bandwidths. In general, there
are four main approaches: (1) minimum; (2) maximum; (3) summation; and, (4) difference. The
fourth method can be eliminated because the result is a constant, which can be derived according
to Equation (7). The final bandwidths of the other three methods increase from (1) to (3). Since the
bigger the bandwidth, the higher the merging probability, we choose the first method to reduce the
over-merging problem. Accordingly, the predicate (Equation (14)) becomes:

PG(z, zi) =

true. i f
(∥∥∥∥ zi,s−zs

hs

∥∥∥∥ < 1
)

&
(∥∥∥∥ zi,r−zr

min(h(zr),h(zi,r))

∥∥∥∥ < 1
)

f alse. otherwise
(15)

In the conventional mean shift segmentation algorithm, the adjacent pixels are used to decide
if the regions to which the adjacent pixels belong to should be merged. However, this model might
produce unsatisfactory results since the value of a single pixel may not be true in a noise-polluted
image. To ensure the reliability of the merging test, the adjacent homogeneous pixels should be
used to estimate the central pixel. For a segmentation algorithm that is based on the region-growing
and merging technique, the pixels in the same segmented region are considered to be homogenous.
Therefore, any pixel in the same region can be represented by the mean of the region. In this paper, the
means of two adjacent regions are used to judge if they should be merged. Consequently, the merging
predicate (Equation (15)) becomes:

PG(R(z), R(zi)) =

true. i f
(∥∥∥∥ zi,s−zs

hs

∥∥∥∥ < 1
)

&
(∥∥∥∥ Rr(zi)−Rr(z)

min(h(Rr(z)),h(Rr(zi)))

∥∥∥∥ < 1
)

f alse. otherwise
(16)

where R(z) stands for the region to which pixel z belongs and Rr(z) stands for the mean values of
region R in the range domain.

2.3.3. Merging Order

From Equation (16), we can deduce that the merging order will influence the merging result,
because the mean region value will be different if the merging order is changed. In the conventional
mean shift segmentation algorithm, the merging predicate is tested in row-column order. This strategy
can obtain correct segmentation results when the borders between different classes are clear, but when
the borders are ambiguous, the results may be wrong. For example, in Figure 3a, where the border of
class 1 and class 2 is clear, the row-column strategy can obtain two regions that are consistent with
class 1 and class 2. However, in Figure 3b, where the border is ambiguous, class 1 and class 2 are
merged into one region (Figure 4a), even if the bandwidth is set as small as 15.

However, it is clear that the smaller the difference of the merged pixels, the better the reliability of
the merging predicate. Therefore, we propose to use a pre-sorting strategy that first sorts the adjacent
pixel pairs according to their difference or gradient in increasing order, and it then traverses this
order only once [17,23]. For any current pair of pixels (p1,p2), if R(p1) 6= R(p2), we make the test
PG(R(p1),R(p2)) and merge R(p1) and R(p2) if the result is true.
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Figure 3. Class 1 and class 2 with (a) clear and (b) ambiguous borders.

When using the pre-sorting strategy, the adjacent pixels with the smallest differences in Figure 3b
will be merged first. The border pixels will be later merged into several different regions, as shown in
Figure 4b–d. We can see that, even when the bandwidth is set as high as 90, class 1 and class 2 can
be preserved.
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Figure 4. Mean shift segmentation results of Figure 3b using (a) the row-column strategy with range
bandwidth h = 15 and 30 (same result); and, (b)–(d) the pre-sorting strategy with range bandwidth
h = 30, 60, and 90, respectively.

Since the pre-sorting strategy sorts the differences or gradients of adjacent pixels, the gradient
function should be deduced according to Equation (15), and not Equation (16). On the basis of
Equation (15), the gradient function used for sorting is:

f (z, zi) =

∥∥∥∥ zr − zi,r

min(h(zr), h(zi,r))

∥∥∥∥ (17)

2.3.4. Post-Processing

As with most segmentation algorithms, the result of mean shift segmentation is often very broken
due to the influence of speckle noise. A post-processing step is therefore needed to eliminate the “noisy
regions”, which are composed of only one or several pixels.

The strategy of the post-processing is usually straightforward: merge the regions whose sizes are
less than a threshold Nn into their nearest neighbors [13]. However, this strategy might result in some
small heterogeneous objects being merged inappropriately, which is not conducive to the follow-up
image interpretation. To preserve strong point targets while eliminating the noisy regions, we adopt
the same strategy as [24]: set a threshold Np, whose value should be set manually, according to the
size of the point targets in the PolSAR image. Any region less than Np is directly merged into its most
similar adjacent region as a noisy region. If the size of a region is in the range of [Np, Nn), the gradient
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of the region and its nearest neighbor should be calculated. If the gradient is bigger than a threshold
Gth, the region is preserved as a strong point target; else, merge the two regions. The gradient measure
used in this paper is defined, as follows [23,24]:

G
(

Ri, Rj
)
=

1
q

∥∥∥∥Tdiag
i − Tdiag

j

Tdiag
i + Tdiag

j

∥∥∥∥
1

(18)

where Tdiag denotes the vector that is composed by the diagonal elements of the central coherence
matrix T of a region R, ‖·‖1 denotes the 1-norm, and q is the number of diagonal elements. Since
the range of G is [0,1], it is simple to set the threshold Gth. In this study, we set Gth = 0.2 in all of
the experiments.

2.3.5. GMS Superpixel Segmentation for PolSAR Data

Because the GMS segmentation method is used to produce superpixels, the size of the maximum
superpixel should be controlled during the region merging. If we suppose that the size threshold
of the maximum superpixel is Nmax, then the complete procedure of the proposed GMS superpixel
segmentation algorithm can be summarized, as follows:

Algorithm 2. Generalized Mean Shift (GMS) Superpixel Segmentation Algorithm

1. GMS filtering
1) Let x and z be the d-dimensional input and filtered image pixels in the joint spatial-range domain, xi, i =

1,..., n are the adjacent pixels of x, and yj, j = 1, 2,..., to which the successive locations of the mean shift
vectors point. Given an initial point x, assign j=1 and yj = x.

2) From Equation (10), yj+1 can be calculated by:

yj+1 =

n
∑

i=1
qs

(∥∥∥ xi,s−xs
hs

∥∥∥2
)

qr

(∥∥∥ xi,r−xr
h(xr)

∥∥∥2
)

xi

n
∑

i=1
qs

(∥∥∥ xi,s−xs
hs

∥∥∥2
)

qr

(∥∥∥ xi,r−xr
h(xr)

∥∥∥2
) (19)

and the j-th GMS vector can be written as:

Mj = yj+1 − yj. (20)

3) If Mj < ε, then yj+1 is the mode point, assign z = (xs, yj+1,r) and break; else, assign yj = yj+1 and j = j + 1,
go to step 2), and compute the new yj+1 and Mj.

2. GMS merging
1) Let SI be the set of adjacent pixel pairs in I in the 8-neighborhood. Compute the gradients of the pairs in

SI by Equation (17).
2) Sort the pairs of SI by the gradients computed in Step 1) in increasing order.
3) In the series of SI, for any current pair (z, zi) ∈ SI, if R(z) = R(zi), compute the merging criterion PG(R(z),

R(zi)) by Equation (16). If the result is true, and their total size is less than Nmax, merge R(z) and R(zi).
3. Post-processing. For each segmented region, if its size Ns is less than Nn, compute the gradient between

this region and its neighboring regions. Find the minimum gradient Gmin. If Gmin < Gth or Ns < Np,
merge the two regions; else, set the region aside.

It should be noted that, in Algorithm 2, the spatial bandwidths used in the GMS filtering step
(denoted by hs

f) and the GMS merging step (denoted by hs
m) are different. hs

f means the radius of
the filtering window, and it is a positive integer that is equal to or greater than 1. Meanwhile, hs

m

means the spatial location threshold of the mode points, and it is a positive real number that is usually
assigned as equal to or less than 1. In this study, we set hs

f = 5 and hs
m = 1 in all of the experiments.
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3. Results

3.1. Evaluation Based on AirSAR Data

Firstly, Figure 1a was processed by the original mean shift segmentation algorithm with hs = 7,
M = 10, and hr = 10, 15, and 20, respectively. The results are shown in Figure 5a–c, with the right halves
of the figures showing the borders of the segmented regions. The obtained numbers of regions are
Nr = 6474, 5467, and 3444, respectively. From the left halves of Figure 5a–c, it can be clearly seen that
the points and edges in Figure 1a are not preserved well. From the right halves of Figure 5a–c, both
over-segmentation and over-merging can be clearly observed, as in the area that is marked by the
rectangle. The over-segmentation could be reduced by parameter adjustment, while the over-merging
situation would increase, and vice versa. To further understand the results, the mean shift filtered
images are shown in Figure 5d–f, from which we can see that the speckle noise is barely suppressed,
especially in dark areas, such as the areas that are marked by the ellipses.
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Figure 5. The segmentation (a–c) and filtering (d–f) results of the conventional mean shift algorithm
with hs = 7, M = 10, and hr = 10 (a,d), hr = 15 (b,e), and hr = 20 (c,f).

The GMS superpixel segmentation algorithm was then applied to the AirSAR PolSAR image. The
filtering and merging parameters were set as: ξ = 0.9, hs

f = 5, hs
m = 1, and Nmax = 100. Although there

are several other parameters that need to be set, the appropriate values have been discussed in [32].
These values were directly selected as the default values. The post-processing parameters were set as:
Nn = 49, Np = 4, and Gth = 0.2. The result is shown in Figure 6a, with Nr = 2021. When compared with
Figure 5a–c, Figure 6a presents a better segmentation quality: the sizes of the superpixels are similar,
the borders of the superpixels are smoother, and the points and edges are preserved well, proving the
effectiveness of the GMS superpixel segmentation algorithm.
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Figure 6. The superpixel segmentation results obtained with the AirSAR PolSAR image: (a) GMS
segmentation, with Nr = 2021; (b) Ncut segmentation, with Nr = 2016; and, (c) Simple Linear Iterative
Clustering algorithm for PolSAR image with the grid-centered initialization strategy (SLIC-GC)
segmentation, with Nr = 2081.

For comparison, the Ncut algorithm was applied to the first data set. The desired superpixel
number was set as k = 2000. The result is shown in Figure 6b, with Nr = 2016. From a general view,
the left half of Figure 6b is similar to the left half of Figure 6a. However, the right half of Figure 6b
shows that the Ncut superpixels are more compact and the shapes and sizes of the superpixels are
more similar. On the other hand, the points and lines, such as those that are marked by the red ellipses,
are not preserved well.

Finally, the SLIC-GC algorithm was applied to the AirSAR PolSAR image. The desired superpixel
number was again set as k = 2000. The post-processing parameters were the same as for the GMS
algorithm. The result is shown in Figure 6c, with Nr = 2081. When compared with Figures 6a and 6b, the
left half of Figure 6c shows that the segmentation result is broken and discontinuous in homogeneous
areas, and both the edges of homogeneous areas and the borders of superpixels are jagged, such
as those areas that are marked by the rectangles. This indicates that the SLIC-GC algorithm is still
affected by speckle noise. In addition, the compactness of Figure 6c is m = 0.5. When this parameter
is set as a larger value, the superpixels are more compact, but the points and lines are not preserved.
When it is set as a smaller value, the shapes of the superpixels are more irregular, and the borders are
more jagged.

To further evaluate the segmentation quality, the ratio method that was used in [47] was adopted.
The first step is to obtain the ratio images of the original intensity image to the segmented versions.
Based on the ratio images, there are two ways to evaluate the segmentation quality:

1) Qualitative evaluation: This method is a visual evaluation method used to evaluate the ability
of a segmentation algorithm in detail preservation. If the ratio image is made up of random noise
without structured information, it can be considered that the segmentation result depicts the ideal
segmentation image; otherwise, any sign of structure indicates a loss of detail.

2) Quantitative evaluation: The mean and variance of the ratio image are calculated. For the
intensity ratio image, the theoretical mean value is r = 1, and the theoretical variance is given by:

var(r) =
1

N − 1

m

∑
j=1

nj

L +
(
1/nj

) (21)

where N is the number of pixels in the ratio image, m is the number of segments, nj is the number of
pixels in the j-th segment, and L is the number of looks. The closer the mean value to the theoretical
one, the better the radiometric information preservation ability. Since the value of any segment is
defined as the local average, the mean value of the ratio image is always 1. Similarly, the closer the
variance to the theoretical one, the better the detail information preservation ability.
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The ratio images of the original image to the segmented versions of the different algorithms are
shown in Figure 7, being plotted over the range [0.5, 1.5]. Weak structural information can be observed
in Figure 7a,c, indicating the good detail preservation abilities of the GMS and SLIC-GC algorithms.
Meanwhile, strong and obvious structures can be observed in Figure 7b, indicating the poor detail
preservation ability of the Ncut algorithm.
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Figure 7. The ratio images of the different superpixel segmentation algorithms for the AirSAR PolSAR
image: (a) GMS segmentation, with Nr = 7449; (b) Ncut segmentation, with Nr = 8064; and, (c) SLIC-GC
segmentation, with Nr = 7728.

The quantitative evaluation measurements of the superpixel segmentation results are listed
in Table 1. Although the numbers of superpixels are different, the theoretical variances are equal.
The variance of the SLIC-GC segmentation is the smallest and it is the closest to the theoretical value.
The GMS result is close to the SLIC-GC, which is consistent with the visual assessment. The variance
of the Ncut segmentation is the biggest.

Table 1. Means and variances of the ratio images for the different superpixel segmentation algorithms
with the AirSAR image.

Algorithm Number of Superpixels Mean Variance Theoretical Variance

GMS 2021 1.0 0.2645 0.2492
Ncut 2016 1.0 0.3278 0.2492

SLIC-GC 2081 1.0 0.2549 0.2492

The execution efficiency is always an important evaluation measurement for a segmentation
algorithm. The execution times of the different superpixel segmentation algorithms are listed in
Table 2. Since all three algorithms need filtering steps, the execution times of both the filtering and
segmentation steps are taken into account. Table 2 shows that although the GMS algorithm has an
obvious advantage in the segmentation step, it has a moderate performance in total execution time
due to the low efficiency of the GMS filter. The most efficient segmentation algorithm is SLIC-GC.
The execution time of the Ncut algorithm is far more than other algorithms.

Table 2. Execution times of the different superpixel segmentation algorithms with the AirSAR image.

Algorithm Filtering(s) Segmentation(s) Total(s) Execution Environment

GMS 30 1 31 Windows 10 x64, Intel(R)
Core(TM) i7-4710MQ CPU
@ 2.50 GHz, RAM: 8.0 GB

Ncut 1 218 219
SLIC-GC 1 11 12

3.2. Evaluation Based on ESAR Data

Figure 8 shows the visual assessment of the GMS superpixel segmentation algorithm, the Ncut
segmentation algorithm, and the SLIC-GC segmentation algorithm applied to the ESAR image. For



Remote Sens. 2018, 10, 1592 14 of 20

the GMS superpixel segmentation algorithm, the filtering, merging, and post-processing parameters
were the same as for the first data set. The result is shown in Figure 8a, with Nr = 7449. From the right
side of Figure 8a, we can see that the points and lines in the image are preserved well, such as those in
the areas that are marked by the ellipses. From the left side of Figure 8a, it can be observed that the
sizes and shapes of the superpixels are irregular and they vary with the different scenes.
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Figure 8. The superpixel segmentation results that were obtained with the ESAR PolSAR image:
(a) GMS segmentation, with Nr = 7449; (b) Ncut segmentation, with Nr = 8064; and, (c) SLIC-GC
segmentation, with Nr = 7728.

For the Ncut algorithm, the desired superpixel number was set as k = 8000. The result is shown in
Figure 8b, with Nr = 8064. From the left side of Figure 8b, it can be seen that the sizes and shapes of the
superpixels are regular, and the borders are smooth. However, the right side of Figure 8b shows that
the points and lines are blurred obviously, especially those in the areas that are marked by the ellipse,
although the number of superpixels is larger than that of the GMS algorithm.

For the SLIC-GC algorithm, the desired superpixel number was also set as k = 8000. The
post-processing parameters were the same as for the first data set. The result is shown in Figure 8c, with
Nr = 7728. When compared with Figure 2a, the right side of Figure 8c shows a moderate segmentation
quality, since some dark lines and bright points in the areas marked by the ellipse are not preserved well.
However, when compared with Figure 2b, Figure 8c can be considered as acceptable. The right side is
similar to Figure 2b, and the left side shows that the sizes and shapes of the superpixels are similar,
and the borders of the superpixels are smooth, due to the good speckle noise suppression. When
combined with the experimental results that were obtained with the first data set, we can conclude
that the SLIC-GC algorithm is sensitive to speckle noise, and its segmentation quality depends on the
performance of the filtering algorithm.

The ratio method was again used to evaluate the segmentation quality. The ratio images of the
different algorithms are shown in Figure 9, being plotted over the range [0.5, 1.5]. Similar to the first
data set, weak structural information can be observed in Figure 9a,c, and strong and obvious structures
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can be observed in Figure 9b, indicating the good detail preservation abilities of the GMS and SLIC-GC
algorithms, and the poor detail preservation ability of the Ncut algorithm.
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image: (a) GMS segmentation, with Nr= 7449; (b) Ncut segmentation, with Nr= 8064; and, (c) SLIC-GC
segmentation, with Nr= 7728.

The quantitative evaluation measurements are listed in Table 3. Since the differences of the
numbers of superpixels are much bigger than the first data set, the theoretical variances are different,
but they are very close. From Table 3, we can find that the variance of the GMS segmentation is the
smallest and it is the closest to the theoretical value. The SLIC-GC result is slightly worse. The variance
of the Ncut segmentation is nearly twice the theoretical value.

Table 3. Means and variances of the ratio images for the different superpixel segmentation algorithms
with the ESAR image.

Algorithm Number of Superpixels Mean Variance Theoretical Variance

GMS 7449 1.0 0.5293 0.4963
Ncut 8064 1.0 0.9545 0.4959

SLIC-GC 7728 1.0 0.5723 0.4961

The execution times of the different superpixel segmentation algorithms are listed in Table 4.
Table 4 shows that the GMS algorithm still has an obvious advantage in the segmentation step.
However, due to the low efficiency of the GMS filter, the total execution time of the GMS algorithm is
the longest.
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Table 4. Execution times of the different superpixel segmentation algorithms with the ESAR image.

Algorithm Filtering(s) Segmentation(s) Total(s) Execution Environment

GMS 306 4 310 Windows 10 x64, Intel(R)
Core(TM) i7-4710MQ CPU
@ 2.50 GHz, RAM: 8.0 GB

Ncut 4 250 254
SLIC-GC 4 40 44

Combined with the first data set, we can find that, when the number of looks is high or the speckle
noise is not very strong, the SLIC-GC algorithm has the best segmentation results. When the speckle
noise is strong, the SLIC-GC algorithm gets worse, and the GMS algorithm get better. In the aspect of
execution efficiency, the GMS algorithm has an obvious advantage in the segmentation step. However,
the efficiency of the GMS filter is too low. The GMS algorithm does not have any advantage in the
total execution time. How to improve the efficiency of GMS filtering is an urgent problem to be solved.
Since this problem is beyond the scope of this paper, limited discussion will be expressed in Section 4.2.

4. Discussion

4.1. Parameter Settings

It is well known that the parameter settings are of great importance to a segmentation algorithm.
There are many parameters that are involved in the GMS algorithm. However, as analyzed in [32],
most of the parameters have strong adaptability in the appropriate range. A set of default parameters
can nearly always obtain good results for different data. In practical applications, the parameters can
be set to the default values. The parameter settings of the filtering step used in this paper were the same
as those in [32], except that hs

f was set to 5. The reason for this is that a filtering algorithm with a small
window is more efficient and it can preserve more details, which is helpful to subsequent segmentation.

The new parameters of the merging step are {hs
m, Nmax, Nn, Np, Gth}. Among them, hs

m is usually
set to 1 by default. The other four parameters have nothing to do with the segmentation algorithm, but
are dependent on the application requirements and the actual situation of the images. Nmax and Nn are
related to the desired size or amount of segmented regions. Suppose that the total number of pixels is
NI, the excepted size of the segmented regions is S, and the expected number of the segmented regions
is NS. They have the follow relationship: NI = S * NS. The empirical value of Nmax can be set in the
range (S, 2S] or (S, 2NI/NS]. The empirical value of Nn can be set in the range [S/4, S) or [NI/4NS, S). It
should be noted that, due to the presence of some small heterogeneous regions, the actual number of
segmented regions Na is often larger than Ns. By increasing Nmax and Nn, Na can be close to or even
less than NS. Np is related to the minimum target size in the image. When the image resolution is
high and the point target is large, Np should be set as a large value, and vice versa. Gth reflects the
heterogeneity degree of the same class of objects in the image. Gth should be set as a large value when
the difference between the same class of objects is large. When the difference between different objects
in the image is small, Gth should be set as a small value. When both situations occur at the same time,
priority should be given to the second situation, which is to set a small value for Gth to ensure the
homogeneity of pixels within the same segmented region.

4.2. Stability and Efficiency

The stability of segmentation algorithms was discussed in [48], and a stable mean shift algorithm
was proposed. The so-called stable segmentation algorithm means that a segmentation algorithm should
get matching results for any two overlapping subsets of an image. The basic mean shift segmentation
algorithm is considered to be stable according to the analysis in [48]. However, some optimization
steps can lead to instability of the mean shift algorithm. Therefore, the proposed stable version in fact
achieves the stabilization of the mean shift process by giving up the optimization steps, so as to realize
the image tile segmentation. Finally, the execution efficiency of the mean shift segmentation could be
improved by the use of parallel computing technology.
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The GMS segmentation algorithm that is proposed in this paper is unstable because it adopts a
pre-sorting strategy, and different tile partition methods lead to different orders. According to [48], the
GMS segmentation algorithm can also have a corresponding stable version, i.e., with the optimization
strategies, such as the pre-sorting strategy and the post-processing step not adopted. However, this
may result in a decline of the segmentation quality. In order to obtain a better balance between
segmentation quality and efficiency, another experiment was undertaken. Figure 10 shows the GMS
segmentation results with and without the pre-sorting strategy and the post-processing step, and the
filtering results are also shown. The obtained number of regions for the GMS algorithm without the
pre-sorting strategy and the post-processing step (GMS-0 for short) is Nr = 73511, which is nearly 10
times larger than the result that is shown in Figure 8a. The execution time of the GMS-0 segmentation
is less than 2s. The areas that are marked by the circle in Figure 10 show that some of the points, edges,
and lines that are preserved well by the proposed GMS algorithm are not preserved by the GMS-0
algorithm, even though the obtained superpixels of the latter are nearly 10 times the size of the former.
As it is well known that both effectiveness and efficiency are important to an algorithm, when we
cannot have both, we should make a choice that is based on the actual requirements.
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Figure 10. The GMS filtering and segmentation results of the ESAR PolSAR image. (a) and (d) are
the filtering results. (b) and (e) are the segmentation results with the pre-sorting strategy and the
post-processing step. (c) and (f) are the segmentation results without the pre-sorting strategy and the
post-processing step.

5. Conclusions

The work that is proposed in this paper is an extension of the previous work by Lang et al., [32],
who proposed the GMS algorithm and applied it to PolSAR image filtering. In this paper, the GMS
algorithm is further applied to PolSAR image superpixel segmentation. A new merging predicate
defined in the joint spatial-range domain is derived based on the GMS algorithm. A pre-sorting
strategy and a post-processing step are also introduced into the GMS segmentation algorithm. When
compared with the conventional mean shift segmentation algorithm, the method proposed in this
paper can be directly applied to PolSAR images without any pre-processing. The experimental results
that were obtained with AirSAR and ESAR L-band PolSAR data showed that the GMS segmentation
algorithm has good anti-noise ability and can preserve the detail information by producing superpixels
conforming to the actual scene of the image. Although the GMS, Ncut, and SLIC-GC algorithms all
require pre-processing filtering to suppress speckle noise, the GMS segmentation is bound to the GMS
filtering, and thus show a robust performance. For the Ncut and SLIC-GC algorithms, different choices
of filters and filtering parameters can produce very different segmentation results.



Remote Sens. 2018, 10, 1592 18 of 20

The time consumption of the GMS filtering is longer than the other algorithms due to the low
efficiency of the GMS iterative process. Although the segmentation efficiency could be improved by
abandoning the optimization steps and adopting parallel computing technology, the segmentation
quality might decline. How to achieve a balance between segmentation quality and efficiency for the
GMS algorithm is still an open research topic.
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