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Abstract: It has been shown that hurricanes generate seismic noise, called microseisms, through
the creation and non-linear interaction of ocean surface waves. Here we model microseisms
generated by the spatially inhomogeneous waves of a hurricane using the non-linear wave equation
where a second-order acoustic field is created by first-order ocean surface wave motion. We treat
range-dependent waveguide environments to account for microseisms that propagate from the deep
ocean to a receiver on land. We compare estimates based on the ocean surface wave field measured
in hurricane Bonnie in 1998 with seismic measurements made roughly 1000 km away in Florida.
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1. Introduction

Hurricanes generate seismic noise, commonly referred to as microseisms, in the 0.1 to 0.6 Hz
frequency range. On a few occasions measurements of these microseisms have been used to track
hurricanes [1–8]. More generally these microseisms are a significant cause of noise in seismic
measurements [7,9,10] and raise the detection threshold for monitoring earthquakes [11].

Physically the process for generating microseisms can be broken down into four steps: (1) The
spatially and temporally varying hurricane winds create complicated wave patterns on the ocean
surface; (2) In locations where these surface waves are in opposition, their non-linear interactions
generate acoustic waves; (3) These acoustic waves propagate through the water and couple into the
ocean bottom; (4) The resulting seismic waves propagate along the sea bottom where they may be
detected at great distances by seismic sensors. In this paper we develop an approach for estimating
the microseisms generated by a hurricane and their seismo-acoustic propagation.

Our modeling approach is based on the non-linear wave equation where a second-order acoustic
field is generated by a source distribution that depends on the first-order ocean surface wave
motion. The acoustic (or seismic) field at a receiver can then be expressed as the integral over
the source distribution multiplied by the waveguide Green function. This approach is ideal for
hurricane-generated microseisms since it can be applied to spatially inhomogeneous surface wave
fields. Also, this approach may be used in range-dependent waveguide environments as is the case
when a hurricane at sea generates microseisms that propagate up the continental margin to a receiver
on land.

As an example, we use the ocean surface directional wave spectrum from hurricane Bonnie [12,13]
to estimate the microseismic source levels. We than calculate the Green’s function to describe the
seismo-acoustic propagation from Bonnie’s location in the North Atlantic to a seismometer in Florida.
Our calculated levels are then compared against actual measurements.
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Our approach builds on a long history of microseism modeling efforts. Initially, microseism
generation was modeled for idealized situations [14] where the ocean surface wave field was taken to
be spatially homogeneous and the ocean waveguide to be range-independent. Previous microseismic
models, however, cannot be applied in typical hurricane scenarios because the surface wave fields
are inhomogeneous in that the wave height spectra in different parts of the hurricane can vary both
in magnitude and directionality. In some cases this is because spatial homogeneity is assumed over
infinite [15–20] or very large [14,21,22] surface wave areas. One model that does account for finite
microseismic source generation regions is limited by the assumption that the receiver is at the center
of the source area [23,24]. Also, these previous models are not applicable to the range-dependent
environments typical in hurricane measurements where microseisms generated by a hurricane over the
deep ocean are measured by sensor on land. Our non-linear wave equation method is shown to agree
with earlier models [18,20] if we make the same simplifying assumptions that the source generation
region is spatially homogeneous and that the waveguide can be modeled as an infinite half-space.

While the treatment of inhomogeneous surface wave fields and range-dependent waveguides
presented here had not been previously considered, the medium non-linear wave equation used
here has a parallel derivation to the wave equations or hydrodynamic equations used in earlier
works. Longuet-Higgins [14], Hasselmann [17] and Brekhovskikh [15] base their derivations on
perturbing Bernoulli’s equation while Hughes [18] and Kibblewhite and Wu [19] begin by separately
perturbing the equations of momentum, continuity and state. We show that the non-linear wave
equation used here is equivalent to perturbation expansions [18] for the physical parameters typical
in hurricane microseisms. Lloyd [20] and Cato [23] base their derivations on Lighthill’s equation;
however, Lloyd [20] shows that both perturbation and Lighthill approaches yield the same end result.
We also note that the non-linear wave equation can be derived as a second-order approximation of
Lighthill’s equation [25].

These second-order non-linear theories should not be confused with the linear theories proposed
by Banerji [26] and Bowen et al. [27]. These linear theories claim that the first-order motion of a surface
gravity wave creates a first order pressure fluctuation on the sea floor regardless of how deep the ocean
is. This is contrary to classic surface wave theory which shows that first-order wave motion decays
exponentially with depth such that, in deep water, the first-order pressure fluctuation on the sea floor
goes to zero [14,28–30].

Our derivation is in agreement with earlier works [14,31], which show that microseisms are
generated by the non-linear interaction of ocean surface waves with roughly the same wavelength
but opposing propagation directions. Measurements [13,32] and models [12] of surface directional
wave height spectra in hurricane Bonnie show complex patterns with the opposing surface waves
necessary to generate microseisms. Based on the wave height spectra in hurricane Bonnie, we calculate
the microseismic source levels generated by the non-linear interaction of the ocean surface waves.

It has been shown both theoretically [10,14] and experimentally [4,11,33–37] that microseisms
propagate as Rayleigh waves along the sea floor. Here we develop a normal-mode model for the
propagation of Rayleigh waves along the seafloor assuming a water depth that changes with range.
The Green’s function from this model is used to estimate the propagation of the microseism from deep
water to a seismometer on land.

Given the wave height spectra in hurricane Bonnie, the calculation of the microseismic source
level generated by the non-linear wave interaction, and the propagation of those waves along the sea
floor, we estimate the noise levels at a seismometer in Florida. These estimates are then compared
against measured data.

It should be noted that there are other sources of microseisms besides hurricanes. Microseisms
have been associated with other non-hurricane storms, coastal regions where complex wave patterns
are prevalent, and the typical ambient ocean wave spectra [11,38–44]. These other sources of
microseisms are not considered here.
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2. Materials and Methods

2.1. Ocean Surface Gravity Waves

Hurricanes are characterized by high winds that can vary quickly with position, both in direction
and speed, as shown in Figure 1A. In addition a hurricane may move at speeds up to 15 m/s [45]
so that the winds at any location can also change with time. These spatially and temporally varying
winds generate complex ocean surface wave directional spectra Figure 2 with wave heights that can
exceed 10 m [12,13,32].
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Figure 1. (A) Wind speed in m/s and (B) microseismic source level LBmm (ω, zs = 0) at ω = 1.26 rad/s
( f = 0.2 Hz) in dB re Pa2 s/m4 from Equation (39) at 1200 on 24 August 1998 as a function of latitude
and longitude. The arrow indicates the direction hurricane Bonnie was moving. The letters (a–d)
represent features of interest; (a) indicates the location of maximum wind speed, (b) indicates the
eye where wind speed is zero, and (c,d) indicate peaks in the microseismic source level. This figure
shows that, while a hurricane can produce significant microseismic source levels (B), these level do not
directly follow the wind speeds (A) in the hurricane.
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Figure 2. The wave height power spectral level (10 log Smm(κ)/(m2/(rad2/m2))) in dB re m2/(rad2/m2)

at the locations of interest (a–d) given in Figure 1 at 1200 on 24 August 1998. The peak in the spectra
is at roughly κ = 0.04 rad/m or σ = 0.63 rad/s which corresponds to an acoustic frequency of
ω = 1.26 rad/s or f = 0.2 Hz. At some locations (b–d) there are waves propagating with opposing
wavenumber vectors κ, while at other locations (a), most of the waves propagate in the same direction.
From Equation (37) we expect these locations with opposing waves to produce the greatest microseismic
source levels and shown in Figure 1B.

For surface gravity waves that are homogeneous over an infinite ocean surface area we can
express the complex surface wave height as the linear superposition of plane waves [46] where κ

is the sea surface wavenumber and σ is the corresponding frequency where in deep water σ2 = gκ.
Throughout this paper the surface wavenumber κ is expressed either in cartesian coordinates as
(κx, κy) or in polar coordinates as (κ, θ). Also, a cartesian coordinate system is used for position where
r = (ρ, z) = (x, y, z) where z is defined downward from the sea surface. The complex surface wave
height can then be written as

ζ̂(ρ, t) =
∫∞∫
−∞

A(κ)e−iσt+iκ·ρd2κ (1)

where A(κ) is the surface wave height spectrum.
Since the complex wave height ζ̂(ρ, t) is produced by the contributions of many independent

random physical processes, we can assume by Central Limit Theorem that the statistical distribution
of ζ̂(ρ, t) is Gaussian [47]. In addition we may define the reference position from which wave height is
measured such that ζ̂(ρ, t) has zero mean. Given this assumption, in Appendix A.1 we show that A(κ)

must also be a zero-mean complex Gaussian random variable [46,47].
Since the spectrum A(κ) is zero-mean and homogeneous over an infinite ocean surface area, the

second moment of the spectrum can be written as (see Appendix A.1) [16,47,48]

< A(κ)A∗(κ′) >= S(κ)δ(κ− κ′), (2)
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where <> denotes the expectation. This expression shows that, for stationary processes, the
wavenumber components κ and κ′ decorrelate. Also, since the spectrum A(κ) is Gaussian, the
fourth moment can then be written as [16]

< A(κ1)A(κ2)A∗(κ3)A∗(κ4) > = δ(κ1 − κ3)S(κ1)δ(κ2 − κ4)S(κ2)

+ δ(κ1 − κ4)S(κ1)δ(κ2 − κ3)S(κ2).
(3)

In a hurricane the surface waves are not homogeneous over an infinite area, but rather the surface
wave spectrum A(κ) changes gradually with position in the storm. To characterize the spatially
varying surface wave field in the hurricane, we divide the sea surface into a grid made up of finite
regions m with surface areas Sm over which the wave spectrum Am(κ) can be taken to be homogeneous.
The complex wave height in a particular finite region m then can be expressed as

ζ̂m(ρ, t) =
∫∞∫
−∞

Am(κ)e−iσt+iκ·ρd2κ (4)

In Appendix A.2 we show that the finite size of the regions m introduces a ‘windowing’ effect
when calculating the moments of the spectrum Am(κ). However, we also show that this windowing
effect can be neglected if the dimensions Lx and Ly of the region are much greater than the wavelength
λg of the surface wave. For the hurricane waves of interest in this paper, the surface wavelengths λg

range from roughly 100 to 300 m requiring that the dimensions Lx and Ly be in the order of 1 km or
greater. Provided this condition is met we can make the approximation.

< Am(κ)A∗n(κ
′) >≈ Smn(κ)δ(κ− κ′) (5)

where Smn(κ) is the cross-spectral density of the surface wave fields at locations m and n.
As before we can assume by Central Limit Theorem that ζ̂m(ρ, t) is a zero-mean complex Gaussian

random variable so that Am(κ) is also a zero-mean complex Gaussian random variable. Because of
this we can write the fourth moment as

< Am(κ1)Am(κ2)A∗n(κ3)A∗n(κ4) > ≈ δ(κ1 − κ3)Smn(κ1)δ(κ2 − κ4)Smn(κ2)

+ δ(κ1 − κ4)Smn(κ1)δ(κ2 − κ3)Smn(κ2).
(6)

This expression for the fourth moment of the wave height spectra will be used later in Section 2.3.
From Equation (4) we can write the real part of the surface wave height as

ζm(ρ, t) =
1
2

∫∞∫
−∞

(Am(κ)e−iσt+iκ·ρ + A∗m(κ)e
iσt−iκ·ρ)d2κ (7)

We can also express the real surface wave particle velocity v as a linear superposition of plane waves
such that

vm(r, t) =
∫∞∫
−∞

−σ

2
(

κx

κ
îx +

κy

κ
îy)(Am(κ)e−iσt+iκ·ρ + A∗m(κ)e

iσt−iκ·ρ)e−κz

− iσ
2

îz(Am(κ)e−iσt+iκ·ρ − A∗m(κ)e
iσt−iκ·ρ)e−κzd2κ.

(8)

where îx, îy and îz represent unit vectors in the x, y and z directions respectively.
Experiments by Forristall et al. [49] show that the linear wave theory of Equations (1), (4), (7)

and (8) is adequate to describe surface waves even in high sea states with significant wave breaking
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as in a hurricane. The use of linear surface wave theory can also be justified since the typical surface
wave heights in a hurricane are an order of magnitude less than the wavelength [12,13,32,49].

Wright et al. [13] and Walsh et al. [32] measured the spatial variation of the directional wave
spectra Am(κ) in hurricane Bonnie using an aircraft-mounted Scanning Radar Altimeter (SRA).
These measurements, however, are limited to the locations and times of the aircraft flights and
do not give a complete picture of the wave field in the hurricane.

To quantify the surface wave field at any location and time in hurricane Bonnie, Moon et al. [12]
used the Wave Watch III (WW3) ocean surface wave model [50]. These model results, shown in
Figure 2, are in close agreement with measurements from [13,32] and with data from buoys and
oceanographic stations. In this paper we use the surface directional wave spectra Am(κ) in hurricane
Bonnie calculated using WW3 [12].

2.2. Non-Linear Wave Equation

The non-linear wave equation [51,52] describes the second-order acoustic wave field generated
by first order fluid motion. For the long surface waves in a hurricane viscosity may be neglected so
that the non-linear wave equation can be written as [53]

∇2 p2(r, t)− 1
c2

∂2 p2(r, t)
∂t2 =

Γ
ρc4

∂2 p2
1(r, t)
∂t2

− ρ

2c2
∂2

∂t2 (v1(r, t) · v1(r, t))

− ρ

2
∇2(v1(r, t) · v1(r, t)),

(9)

where the first order velocity v1 and pressure p1 terms on the right-hand side generate a second-order
acoustic pressure field p2 on the left-hand side, c is the sound speed, ρ is density and Γ is the coefficient
of nonlinearity [51,53].

In this work we will consider the case where the first order velocity v1, from Equation (8), is due
to surface wave motion. The first order pressure p1 can be found using conservation of momentum
where −∇p1 = ρ∂v1/∂t. Using the relationship between first order velocity and pressure we can
compare the relative magnitudes of the source terms in Equation (9). Given typical parameters κ = 0.02
to 0.7 rad/m, σ = 0.4 to 0.8 rad/s, c ≈ 1500 m/s, ρ ≈ 1000 kg/m3, and Γ ≈ −2.6 [54] we find that
the ρ0

2 ∇2(v1(r, t) · v1(r, t)) term of Equation (9) exceeds the other source terms by several orders of
magnitude. Dropping the lesser terms yields

∇2 p2(r, t)− 1
c2

∂2 p2(r, t)
∂t2 = −ρ

2
∇2(v1(r, t) · v1(r, t)) = q(r, t). (10)

This equation is equivalent to the perturbation expression used in the previous microseism
derivation of Hughes [18]. This can be seen by taking Equation (10) of [18] and assuming irrotational
flow (∇(v1(r, t) · v1(r, t)) = 2(v1(r, t) · ∇)v1(r, t)) and continuity (∇ · (ρ0v1(r, t)) = 0). Taking
the Fourier Transform of Equation (10) we find the frequency domain Helmholtz equation for the
second-order field

∇2P2(r, ω) + k2P2(r, ω) = q(r, ω). (11)

We will begin by solving for the pressure field generated by a finite volume Vm with a source
distribution qm which depends on the fluid velocity v1,m from Equation (8). The volume Vm extends
vertically from the ocean surface at z = 0 to a depth well below the surface wave region (z > λg =

2π/κ). The volume extends over the horizontal area Sm with dimensions Lx and Ly centered at
ρm = (xm, ym) as defined in Section 2.1. We can solve the Helmholtz (Equation (11)), using the
frequency domain Green function g(rr, rs, ω) such that,
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P2,m(rr, ω) =
∫∫
Vm

∫
g(rr, rs, ω)qm(rs, ω)d3rs, (12)

where rs = (xs, ys, zs) and rr = (xr, yr, zr) are the source and receiver locations respectively.
It should be noted that, although the ocean surface is perturbed by the presence of surface waves,

we choose to define the upper boundary of our volume by the quiescent surface z = 0 following the
example of Lloyd [20]. He argues that the Green function g “has the form g = g0 + g1 + g2 + . . . where
g0 is the Green function for the quiescent ocean and where gj, j ≥ 1, is of degree j in a wave height
perturbation parameter < h2 >1/2. The first-order term g1 represents Bragg reflected by the moving
spatially periodic components”. He shows that the terms gj for j ≥ 1 may be omitted in the excitation
of p2. He goes on to apply the Green function for a quiescent ocean half-space and, even with this
approximation, matches the result of earlier work by Hughes [18]. In Appendix C we will demonstrate
agreement between our end result and that of both [20] and [18].

Equation (12) can be rewritten as

P2,m(rr, w) =

∞∫
0

dzs

∫∞∫
−∞

w(ρs − ρm)g(rr, rs, w)qm(rs, w)d2ρs, (13)

where the window function w(ρs− ρm) is unity for−Lx/2 < xs− xm < Lx/2 and−Ly/2 < ys− ym <

Ly/2 and zero elsewhere. The double integral over ρs represents the field at a receiver rr due to a
distribution of sources q over a finite area defined by the window function w. If the receiver rr is
in the far field of the finite area (|rr − rm| > L2

x/λa and |rr − rm| > L2
y/λa where λa is the acoustic

wavelength and where rm = (ρm, zs) = (xm, ym, zs)), we can make the plane wave approximation,

g(rr, rs, w) ≈ g(rr, rm, w)e−ikr ·(ρs−ρm) (14)

where the acoustic wavenumber is defined in cartesian coordinates as k = (kr, kz) = (kx, ky, kz) where

ω/c =
√

k2
x + k2

y + k2
z = k. In free space this would simplify to

g(rr, rs, w) =
1

4π|ρr − ρs|
eik|ρr−ρs | ≈ 1

4π|ρr − ρm|
eik|ρr−ρm |e−ikr ·(ρs−ρm) (15)

however, we will use the more general form given in Equation (14). Inserting Equation (14) into
Equation (13) yields

P2,m(rr, w) ≈
∞∫

0

dzsg(rr, rm, w)
∫∞∫
−∞

w(ρs − ρm)e
−ikr ·(ρs−ρm)qm(rs, w)d2ρs, (16)

Again the double integral over ρs analogous to a horizontal planar array of acoustic sources with
broadside directed down toward the ocean bottom. In the following analogy we can define this double
integral as the array output [55]

Bm(k, zs) =
∫∞∫
−∞

w(ρs − ρm)e
−ikr ·(ρs−ρm)qm(rs, w)d2ρs, (17)

The array output in Equation (17) can be evaluated for any horizontal wavenumber vector kr;
however, only those wavenumber vectors where |kr| ≤ ω/c lead to a propagating acoustic field.
This can be illustrated if we consider the microseismic field generated by a horizontal plane of sources
near the sea surface as described in Equation (17). In previous works [14] it has been shown that
microseisms generated at the ocean surface are first transmitted downward to the sea floor where they
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then propagate along the bottom as Rayleigh waves. This vertical propagation from the sea surface to
the sea floor can be modeled to first order using the free-space Green function

g(w) =
1

4πd
eikzd (18)

where d represents the water column depth. If |kr| exceeds ω/c then kz becomes imaginary leading
to an exponential decay with depth d. For example if |kr| = 2ω/c then kz = i

√
3ω/c so that, for

ω = 1.3 rad/s, c = 1500 m/s and an ocean depth d = 1000 m, the field is attenuated by e−kzzr ≈ 0.2 or
13 dB. Greater depths will lead to even more attenuation. Because of this evanescent attenuation we
will only consider the acoustic field where |kr| ≤ ω/c.

Assuming the acoustic pressure field given in Equation (16) is temporally stationary, the power
spectral density may be written as [56]

SPm,n(rr, ω)δ(ω−ω′) =< P2,m(rr, w)P∗2,n(rr, w′) >

≈
∞∫

0

∞∫
0

dzsdz′sg(rr, rm, w)g∗(rr, rn, w′)

× < Bm(k, zs,m)B∗n(k
′, zs,n) >,

(19)

where <> represents the expectation and rn = (ρn, z′s) = (xn, yn, z′s). In the next section we derive
expressions for the second moment < Bm(k, zs,m)B∗n(k′, zs,n) > of the array output and the power
spectral density SPm,n due to ocean surface waves.

The power spectral density SPm ,n in Equation (19) represents the field at a receiver from a single
pair of finite volumes Vm and Vn. In the next section we determine the microseismic field generated by
a hurricane where the surface wave field is inhomogeneous and extends over a large region hundreds
of kilometers across. To do this we divide the hurricane region into finite volumes Vm, as shown in
Figure 3, and then sum their contributions to find the total power spectral density of the received field
written as

SP(rr, ω) = ∑
m,n

SPm,n(rr, ω). (20)

Surface Waves

Surface Wave
Fluid Motion

Ocean Surface

Ocean Bottom

Source Volume Vm

Acoustic Waves

Seismic
Sensor

Hurricane Winds

Figure 3. Geometry of the hurricane wave field and ocean waveguide (not to scale). In our model
the waveguide environment may be range-dependent and in this paper we consider the example of
upslope propagation from the deep North Atlantic to Florida. The range and ocean depth parameters
R and d are given in Table 1. The depth of the receiver below the ocean bottom of 162 m corresponds to
the depth below the earth surface of the actual seismometer in Florida. The compression wave speeds
cp are 1500 and 5200 m/s in the water and bottom respectively. The shear wave speed cs in the bottom
is 3000 m/s. The densities ρ in the water and bottom are 1.0 and 2.5 g/cm respectively.
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Table 1. Parameters for Hurricane Bonnie on 24 August 1998.

Time
Hurricane Center Position Range from Ocean Depth at

Lat (◦N) Lon (◦W) Sensor (km) Hurricane Center (km)

0000 24.8 71.8 1028 5.1
0600 25.2 72.1 983 5.5
1200 25.6 72.4 939 5.5
1800 26.1 72.8 881 5.2

2.3. Power Spectral Density Due to Ocean Surface Gravity Waves

Taking the ocean surface wave velocity as the first order field we can determine the source term
from Equation (11) where q(rs, ω) is the Fourier transform

qm(rs, ω) =
1

2π

∞∫
−∞

qm(rs, t)eiwtdt (21)

of
qm(rs, t) = −ρ

2
∇2(v1,m(rs, t) · v1,m(rs, t)). (22)

Given Equation (8) for the first order velocity we find

∇2(v1,m(rs, t) · v1,m(rs, t)) =
∫∞∫
−∞

∫∞∫
−∞

σ1σ2

4

×
[

Am(κ1)Am(κ2)e−iσ+teiκ+ ·ρs F1(κ1, κ2)

+ A∗m(κ1)A∗m(κ2)eiσ+te−iκ+ ·ρs F1(κ1, κ2)

+ Am(κ1)A∗m(κ2)e−iσ−teiκ− ·ρs F2(κ1, κ2)

+ A∗m(κ1)Am(κ2)eiσ−te−iκ− ·ρs F2(κ1, κ2)
]

× e−(κ1+κ2)zs d2κ1d2κ2,

(23)

where σ+ = (σ1 + σ2), σ− = (σ1 − σ2), κ+ = (κ1 + κ2), and κ− = (κ1 − κ2). Note that the Laplacian
operator (∇2) in Equation (23) leads to the direction cosine functions

F1(κ1, κ2) =
[
(κ+)2 − (κ+x )

2 − (κ+y )2
][
−1 +

κ1xκ2x

κ1κ2
+

κ1yκ2y

κ1κ2

]
= 2κ1κ2[1− cos(θ1 − θ2)][−1 + cos(θ1 − θ2)],

(24)

and
F2(κ1, κ2) =

[
(κ−)2 − (κ−x )

2 − (κ−y )2
][

1 +
κ1xκ2x

κ1κ2
+

κ1yκ2y

κ1κ2

]
= 2κ1κ2[−1 + cos(θ1 − θ2)][1 + cos(θ1 − θ2)],

(25)

where κ+x = (κ1x + κ2x), κ+y = (κ1y + κ2y), κ−x = (κ1x − κ2x), and κ−y = (κ1y − κ2y).
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Substituting Equation (23) into the definition of qm(rs, t) from Equation (22) and taking the Fourier
transform yields,

qm(rs, ω) = −ρ

8

∫∞∫
−∞

∫∞∫
−∞

σ1σ2

×
[

Am(κ1)Am(κ2)F1(κ1, κ2)δ(ω− σ+)eiκ+ ·ρs

+ A∗m(κ1)A∗m(κ2)F1(κ1, κ2)δ(ω + σ+)e−iκ+ ·ρs

+ Am(κ1)A∗m(κ2)F2(κ1, κ2)δ(ω− σ−)eiκ− ·ρs

+ A∗m(κ1)Am(κ2)F2(κ1, κ2)δ(ω + σ−1 )e−iκ− ·ρs

]
× e−(κ1+κ2)zs d2κ1d2κ2.

(26)

By inserting Equation (26) into the definition of the array output Bm(k, zs) from Equation (17)
we obtain

Bm(k, zs) = −
ρ

8

∫∞∫
−∞

∫∞∫
−∞

σ1σ2

×
[

Am(κ1)Am(κ2)F1(κ1, κ2)δ(ω− σ+)

( ∞∫
−∞

∞∫
−∞

w(ρs − ρm)e
iκ+ ·ρs e−ikr ·(ρs−ρm)d2ρs

)

+ A∗m(κ1)A∗m(κ2)F1(κ1, κ2)δ(ω + (σ1 + σ2))

( ∞∫
−∞

∞∫
−∞

w(ρs − ρm)e
−i(κ1+κ2)·ρs e−ikH ·(ρs−ρm)d2ρs

)

+ A∗m(κ1)Am(κ2)F2(κ1, κ2)δ(ω− (σ1 − σ2))

( ∞∫
−∞

∞∫
−∞

w(ρs − ρm)e
i(κ1−κ2)·ρs e−ikH ·(ρs−ρm)d2ρs

)

+ A∗m(κ1)Am(κ2)F2(κ1, κ2)δ(ω + (σ1 − σ2))

( ∞∫
−∞

∞∫
−∞

w(ρs − ρm)e
−i(κ1−κ2)·ρs e−ikH ·(ρs−ρm)d2ρs

)]
× e−(κ1+κ2)zs d2κ1d2κ2.

(27)

Note that the wave height spectra Am and An in Equation (27) can be brought out of the spatial
integral since they are constant over the ocean surface area Sm defined by the window function w.
Integrating over ρs then leads to

Bm(k, zs) = −
ρ

8

∫∞∫
−∞

∫∞∫
−∞

σ1σ2

×
[

Am(κ1)Am(κ2)F1(κ1, κ2)δ(ω− σ+)
(

W(kr) ∗ δ(kr − κ+)
)

+ A∗m(κ1)A∗m(κ2)F1(κ1, κ2)δ(ω + σ+)
(

W(kr) ∗ δ(kr + κ+)
)

+ Am(κ1)A∗m(κ2)F2(κ1, κ2)δ(ω− σ−)
(

W(kr) ∗ δ(kr − κ−)
)

+ A∗m(κ1)Am(κ2)F2(κ1, κ2)δ(ω + σ−)
(

W(kr) ∗ δ(kr + κ−)
)]

× e−(κ1+κ2)zs d2κ1d2κ2,

(28)

where ∗ represents the two-dimensional convolution written as,

F(kr) ∗ G(kr) =
∫∞∫
−∞

F(k′r)G(kr − k′r)d
2k′r (29)
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and where

W(kr) =
2 sin( kx Lx

2 )

kx

2 sin( ky Ly
2 )

ky
. (30)

Note that, when integrating over ρs, the ρm term in the window function w(ρs − ρm) of
Equation (27) introduces a phase factor e−ikr ·ρm . This cancels the other phase term eikr ·ρm in
Equation (27). From this we see that the source array output given in Equation (28) has no phase
dependence on location ρm.

The delta functions in Equation (28) show that the horizontal component kr of the acoustic
wavenumber vector is generated by and equal to either the sum κ+ or difference κ− of the surface
wavenumber. In Section 2.2 we discussed how the non-propagating field where |kr| > ω

c is not
significant and may be ignored. Therefore, when integrating over κ2 we need only consider a range of
integration Ω corresponding to propagating acoustic waves. For the sum terms in Equation (28) Ω
corresponds to the integration region where |κ+| ≤ ω

c and for the difference terms Ω corresponds to
|κ−| ≤ ω

c .
Here we will define the source area dimensions Lx and Ly to be ‘acoustically small’ (Lx, Ly << λa).

The acoustic wavelengths of the microseismic field in water range from roughly 6 to 11 km requiring
that the dimensions Lx and Ly be on the order of 1 km or less. Note that this requirement on Lx and
Ly, combined with the requirement that Lx, Ly >> λg from Section 2.1, means that λg << Lx, Ly <<

λa. If Lx, Ly << λa, the function W(kr) ≈ LxLy in Equation (30) within the range of acoustically
propagating wavenumbers kr ≤ ω/c. With this approximation Equation (28) can be written as

Bm(k, zs) = −
ρLxLy

8

∫∞∫
−∞

∫∫
Ω

σ1σ2

×
[

Am(κ1)Am(κ2)F1(κ1, κ2)δ(ω− σ+)

+ A∗m(κ1)A∗m(κ2)F1(κ1, κ2)δ(ω + σ+)

+ Am(κ1)A∗m(κ2)F2(κ1, κ2)δ(ω− σ−)

+ A∗m(κ1)Am(κ2)F2(κ1, κ2)δ(ω + σ−)
]

× e−(κ1+κ2)zs d2κ1d2κ2.

(31)

The power spectral density of the pressure in Equation (19) contains the second moment or
variance of the array output Bm(k, zs) which from Equation (31) can be expressed as,

< Bm(k, zs)B∗n(k
′, z′s) > =

ρ2L2
xL2

y

64

∫∞∫
−∞

∫∫
Ω

∫∞∫
−∞

∫∫
Ω

σ1σ2σ3σ4

× <
[

Am(κ1)Am(κ2)F1(κ1, κ2)δ(ω− (σ1 + σ2))

+ A∗m(κ1)A∗m(κ2)F1(κ1, κ2)δ(ω + (σ1 + σ2))

+ Am(κ1)A∗m(κ2)F2(κ1, κ2)δ(ω− (σ1 − σ2))

+ A∗m(κ1)Am(κ2)F2(κ1, κ2)δ(ω + (σ1 − σ2))
]

×
[

A∗n(κ3)A∗n(κ4)F1(κ3, κ4)δ(ω− (σ3 + σ4))

+ An(κ3)An(κ4)F1(κ3, κ4)δ(ω + (σ3 + σ4))

+ A∗n(κ3)An(κ4)F2(κ3, κ4)δ(ω− (σ3 − σ4))

+ An(κ3)A∗n(κ4)F2(κ3, κ4)δ(ω + (σ3 − σ4))
]
>

× e−(κ1+κ2)zs e−(κ3+κ4)z′s d2κ1d2κ2d2κ3d2κ4.

(32)
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Since the wave height spectra Am and An are uncorrelated zero-mean Gaussian random variables
as discussed in Section 2.1, we can substitute Equation (6) into Equation (32) and integrate over κ3 and
κ4 to obtain

< Bm(k, zs)B∗n(k
′, z′s) > =

ρ2L2
xL2

y

32

∫∞∫
−∞

∫∫
Ω

σ2
1 σ2

2 Smn(κ1)Smn(κ2)

×
[

F2
1 (κ1, κ2)δ(ω− σ+)δ(ω′ − σ+

1 )

+ F2
1 (κ1, κ2)δ(ω + σ+)δ(ω′ + σ+)

+ F2
2 (κ1, κ2)δ(ω− σ−)δ(ω′ − σ−)

+ F2
2 (κ1, κ2)δ(ω− σ−)δ(ω′ + σ−)

+ F2
2 (κ1, κ2)δ(ω + σ−)δ(ω′ − σ−)

+ F2
2 (κ1, κ2)δ(ω + σ−)δ(ω′ + σ−)

]
× e−(κ1+κ2)zs e−(κ1+κ2)z′s d2κ1d2κ2.

(33)

Then by integrating κ2 in Equation (33) over the integration region Ω, corresponding to |κ+| ≤ ω
c

and |κ−| ≤ ω
c , we find

< Bm(k, zs)B∗n(k
′, zs) > = 2ρ2πL2

xL2
yk2

∫∞∫
−∞

σ4
1 κ4

1

×
[
Smn(κ1)Smn(−κ1)δ(ω− 2σ1)δ(ω

′ − 2σ1)

+ Smn(κ1)Smn(−κ1)δ(ω + 2σ1)δ(ω
′ + 2σ1)

+ 4Smn(κ1)Smn(κ1)δ(ω)δ(ω′)
]

× e−2κ1(zs+z′s)d2κ1.

(34)

Since ω
c << κ this integration leads to the approximations κ1 ≈ −κ2 in the sum terms and κ1 ≈ κ2 in

the difference terms.
The term 4Smn(κ1)Smn(κ1)δ(ω)δ(ω′) of Equation (34) leads to a constant (ω = ω′ = 0) value in

the power spectral density that is irrelevant. Also, for the remainder of the paper, we suppress the
subscripts of κ1 and σ1 to simplify notation.

The wave height cross-spectral density Smn(κ) can be converted to the frequency-angle (σ-θ)
domain Smn(σ, θ) by evaluating the Jacobian ∂κ

∂σ κ where σ2 = gκ = g|κ| [57]. This yields the relation

Smn(σ, θ) = ∂κ
∂σ κSmn(κ) =

2σ3

g2 Smn(κ). Making this substitution in Equation (34) and integrating over
σ yields,

< Bm(k, zs)B∗n(k
′, z′s) > ≈

ρ2πL2
xL2

yk2ω9

512g2 δ(ω′ −ω)

× e
−ω2zs

2g (zs+z′s)
2π∫
0

Smn

(ω

2
, θ
)

Smn

(ω

2
, θ + π

)
dθ.

(35)

Note that the delta functions in Equation (34) introduce a frequency doubling effect in Equation (35)
where the frequency ω of the acoustic wave is twice the frequency σ of the surface gravity wave.
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Substituting Equation (35) into Equation (19) and integrating over ω′ leads to the power spectral
density of the pressure field

SPm,n(rr, ω) =
ρ2πL2

xL2
yk2ω9

512g2

∞∫
0

∞∫
0

dzsdz′s

× g(rr, rm, w)g∗(rr, rn, w)e
−ω2zs

2g e
−ω2z′s

2g

×
2π∫
0

Smn

(ω

2
, θ
)

Smn

(ω

2
, θ + π

)
dθ

=

∞∫
0

∞∫
0

dzsdz′sg(rr, rm, w)g∗(rr, rn, w)

× SBmn(ω, zs),

(36)

where we define the ‘microseismic source cross-spectral density’ as

SBmn(ω, zs) =

∞∫
−∞

< Bm(k, zs)B∗n(k
′, z′s) > dω′

=
ρ2πL2

xL2
yk2ω9

512g2 e
−ω2zs

2g e
−ω2z′s

2g

×
2π∫
0

Smn

(ω

2
, θ
)

Smn

(ω

2
, θ + π

)
dθ.

(37)

Summing the contribution from all finite volumes Vm gives us the total received power
spectral density

SP(rr, ω) ≈
ρ2πL2

xL2
yk2ω9

512g2 ∑
m,n

∞∫
0

∞∫
0

dzsdz′s

× g(rr, rm, w)g∗(rr, rn, w)e
−ω2zs

2g e
−ω2z′s

2g

×
2π∫
0

Smn

(ω

2
, θ
)

Smn

(ω

2
, θ + π

)
dθ

≈ ∑
m,n

∞∫
0

∞∫
0

dzsdz′sg(rr, rm, w)g∗(rr, rn, w)

× SBmn(ω, zs).

(38)

Equation (38) provides an analytic expression for microseisms generated by inhomogeneous
ocean surface wave fields, as opposed to previous formulations where spatial homogeneity is
assumed over infinite [15,17–20] or very large [14,21,22] surface wave areas. Also the Green functions
g(rr, rm, w) and g∗(rr, rn, w) in Equation (38) may be calculated for any arbitrary range-dependent
or range-independent ocean waveguide using standard propagation models. Later we will use a
formulation for range-dependent Rayleigh wave propagation to calculate the Green functions and
model microseismic propagation in a typical North Atlantic waveguide environment.

While Equation (38) is applicable to inhomogeneous surface wave fields and arbitrary ocean
waveguides, it can also be applied to simpler homogeneous surface wave fields and Green functions.
In fact, in Appendix C we find that, given an infinite half-space and assuming the surface wave
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spectrum is range-independent (Smn(ω/2, θ) = S(ω/2, θ)), the power spectral density of the pressure
field in Equation (38) simplifies to the results derived by Hughes [18] and by Lloyd [20].

2.4. Microseismic Source Levels in Hurricane Bonnie

In this section we show how Equation (37) can be used to find the microseismic source
cross-spectral density generated by the surface wave field in a realistic hurricane. In these examples we
use the wave spectra from hurricane Bonnie. Through this analysis we demonstrate the relationship
between the wind speeds, surface wave spectra, and microseismic source spectra in a hurricane.

Beginning on 22 August 1998, hurricane Bonnie traveled along the east coast of the Bahamas,
Florida, and South Carolina [58]. During this time microseisms were recorded by an Incorporated
Research Institutions for Seismology (IRIS) seismometer at the Disney Wilderness Preserve in Florida
(28.1◦N, 81.4◦W). Here we model the microseisms generated by hurricane Bonnie that would be
measured by this seismometer.

To evaluate the microseismic source cross-spectral density SBmn of Equation (37) requires
knowledge of the surface wave height spectrum Am. Moon et al. [12] calculate the surface wave
height spectrum for the wind speeds measured in hurricane Bonnie using the Wave Watch III (WW3)
wind-wave modeling program [50]. They also show how their results are in close agreement with
aircraft-based measurements of surface wave height spectrum by Wright et al. [13] and Walsh et al. [32].

Figure 1A shows the surface wind speed in hurricane Bonnie on 24 August 1998. Illustrated is
the typical hurricane structure with the high wind speeds of the ‘eye wall’ surrounding the ‘eye’ at
the hurricane’s center. From these wind speeds, WW3 is used to determine the wave height spectra
Am(κ) as defined in Equation (5) (Figure 2). In Figure 2 we see that hurricanes generate waves
that propagate in many different and often opposing directions. For example in Figure 2c we see a
peak in the surface wave spectrum (in red) with waves traveling North ((κx, κy) ≈ (0.0, 0.04)), West
((κx, κy) ≈ (−0.04, 0.0)), and South ((κx, κy) ≈ (0.0,−0.04)).

From the wave height spectra calculated using WW3, the microseismic source cross-spectral
density SBmn may be calculated from Equation (37). We define the ‘microseismic source level’ as

LBmn(ω, zs) = 10 log
(SBmn(ω, zs)

L2
xL2

y

1m4

1Pa21s

)
(39)

expressed in dB re Pa2s/m4 where the somewhat arbitrary length scales Lx and Ly have been factored
out. Figure 1B shows LBmm(ω, 0) at ω = 1.26 rad/s ( f = 0.2 Hz) on 24 August 1998, the day where
we found the source level to be highest. We see that the peak of LBmm at location (c) is not at the
same location as the maximum wind speed (a). This is because, while location (a) has large wave
heights (≈37 dB re m2/(rad2/m2)), the waves are all propagating primarily to the South without any
opposing waves. At location (c), however, there are opposing waves (propagating both North and
South) which generate microseisms as expressed in Equation (37). Also the source level is higher in the
low-wind-speed eye (b) than at the maximum wind speed location (a) due to the opposition in the
surface waves (Figure 2b).

The arrows in Figure 1 represent the direction hurricane Bonnie was moving and we see that
there is a small peak in the source level well ‘behind’ the hurricane at location (d) even though the
wind speed there is relatively low. This is again due to the opposing waves at this location (Figure 2d).
This illustrates the complex relationship between wind speed and wave spectra, where the wave
spectra is a function not only of wind speed but also of hurricane geometry and translation speed [12],
and the complex relationship between wave spectra and microseismic source level, where the level
depends on the non-linear interaction of opposing waves.
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3. Results

In this section we model the propagation of the microseisms generated by hurricane Bonnie
through the North Atlantic waveguide. The model results are then compared with seismic data
gathered in Florida.

To determine the microseisms received at the sensor in Florida the Green functions g(rr, rm, w)

and g∗(rr, rn, w) of Equation (38) are calculated using the adiabatic Rayleigh wave propagation model
derived in Appendix B. The bathymetry between the hurricane, located over the roughly 5 km deep
Hatteras Abyssal plain on 24 August, and the seismometer, located in Florida is characterized by a
gentle upslope. We will model this up-sloping environment with the simplified geometry shown in
Figure 4. The sound speeds and densities for this model waveguide are based on typical values for the
deep North Atlantic Ocean [59] and bottom [60].

0 200 400 600 800
6

4

2

0

Range from hurricane center (km)

O
ce

an
 d

ep
th

 (
km

)

Figure 4. The ocean depth (solid line) between hurricane Bonnie and the seismometer in Florida at
noon on 24 August. Also shown is the ocean depth for the idealized up-sloping environment used to
calculate the Green functions in Section 3 (dashed line). The scale of the figure makes the actual slope
appear to change rapidly; however, the maximum slope of the ocean floor is roughly 3◦.

With this environment the Green functions g(rr, rm, w) and g∗(rr, rn, w) are calculated using
Equation (A47). The sea-floor depth at the center of hurricane Bonnie is given in Table 1, as well as the
range between the seismometer and the hurricane center. The seismometer in Florida is buried in the
ground to a depth of 162 m as shown in Figure 3.

Given the source cross-spectral density from Equation (38) and Green functions from
Equation (A47), the power spectral density of the field, from Equation (38), received by the seismometer
in Florida is calculated. Figure 5 shows the power spectral density of the horizontal velocity
(Figure 5a–d) and vertical velocity (Figure 5e–h) of the earth’s crust at the Florida seismometer
based on our model (the red dashed curves) and on measured data (in blue).

The dotted blue lines in Figure 5 represent portions of the measured data that are dominated
by non-hurricane related ambient noise. The level of this ambient noise is determined by measuring
the noise levels during the week before and the week after the hurricane passed. The un-corrupted
microseism signals are taken to be those that exceed the ambient by at least 3 dB while anything below
that is considered to be corrupted.
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Figure 5. Horizontal (a–d) and vertical (e–h) velocity spectra modeled (red dashed) and measured
(blue) at the seismometer in Florida at four times on 24 August 1998. The dotted blue lines represent
portions of the data that where dominated by non-hurricane related ambient noise. Note that the peak
in the spectra is at roughly f = 0.2 Hz. This frequency corresponds to the peak in the wave height
spectrum at κ = 0.04 rad/m seen in Figure 2.

4. Discussion

The theoretical results and measured data show reasonable agreement with peaks in the spectrum
at roughly f = 0.2 Hz and a peak level between 50 and 60 dB re (nm/s)2/Hz. Note that the peak of
the wave height spectral in Figure 2 is at roughly κ = 0.04 rad/m which equates to a surface wave
frequency σ = 0.63 rad/s. From the frequency doubling effect discussed in Section 2.3, this gives a
peak in the acoustic field at ω = 1.26 rad/s or f = 0.2 Hz which we see in the received field in Figure 5.

There is a lesser peak in the model result at around 0.1 Hz that is not obvious in the measured data.
This peak in the model comes from the model for the Rayleigh wave propagation and suggests perhaps
a limitation of the single layer (fluid water layer over a solid half-space) approximation adopted here.

It should be noted that the horizontal- and vertical-velocity measurements are consistent with
Rayleigh waves. There is no evidence that other seismic wave types play a significant role.

5. Conclusions

Here we present an analytic model, based on the non-linear wave equation, to describe the
microseisms generated by a hurricane. This model is ideal for hurricane-generated microseisms since
it can be used to calculate the acoustic field due to spatially inhomogeneous surface waves. Also, this
model may be used in range-dependent waveguide environments as is the case when a hurricane at sea
generates microseisms that propagate up the continental margin to a receiver on land. This modeling
is useful because microseisms are a primary cause of noise in seismic measurements [7,9,10] that raise
the detection threshold for monitoring earthquakes [11] and tsunamis.

Based on the ocean surface directional wave spectrum in hurricane Bonnie [12,13], we predict
the microseismic source levels generated by the non-linear interaction of the ocean surface waves.
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We then model propagation of the microseismic field from hurricane Bonnie in the North Atlantic to a
seismometer in Florida to hindcast the measured signal. We find that these results compare reasonably
well with seismic measurements.
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Appendix A. Spectral Properties Surface Waves

Appendix A.1. Homogeneous Surface Wave Fields

In Equation (1) we define the complex surface wave height in the form of an inverse Fourier
transform such that

ζ̂(ρ, 0) =
∫∞∫
−∞

A(κ)eiκ·ρd2κ (A1)

The surface wave height spectra A(κ) can then be written as the Fourier transform

A(κ) =
1

4π2

∫∞∫
−∞

ζ̂(ρ, 0)e−iκ·ρd2ρ (A2)

We assume that surface wave height has zero mean (< ζ̂(ρ, 0) >= 0). Taking the expectation of
Equation (A2)

< A(κ) >=
1

4π2

∫∞∫
−∞

< ζ̂(ρ, 0) > e−iκ·ρd2ρ (A3)

we can see that the wave height spectra must also have zero mean (< A(κ) >= 0).
The second moment < A(κ)A∗(κ′) > can also be derived using Equation (A2) such that

< A(κ)A∗(κ′) > =<
1

4π2

∫∞∫
−∞

ζ̂(ρ, 0)e−iκ·ρd2ρ
1

4π2

∫∞∫
−∞

ζ̂∗(ρ′, 0)eiκ′ ·ρ′d2ρ′ >

=
1

16π4

∫∞∫
−∞

∫∞∫
−∞

< ζ̂(ρ, 0)ζ̂∗(ρ′, 0) > e−iκ·ρeiκ′ ·ρ′d2ρd2ρ′

(A4)

If we define ρ′′ = ρ− ρ′ we can write this as

< A(κ)A∗(κ′) > =
1

16π4

∫∞∫
−∞

∫∞∫
−∞

R(ρ′′)e−iκ·ρeiκ′ ·(ρ−ρ′′)d2ρd2ρ′′

=
1

16π4

∫∞∫
−∞

R(ρ′′)e−iκ·ρ′′d2ρ′′
∫∞∫
−∞

e−iκ·ρeiκ′ ·ρd2ρ

= S(κ)δ(κ− κ′)

(A5)

http://aslwww.cr.usgs.gov
http://www.liss.org
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where R(ρ′′) =< ζ̂(ρ, 0)ζ̂∗(ρ′, 0) > is the wave height correlation and the power spectral density S(κ)
is its Fourier transform. This expression shows that, for homogeneous surface wave fields, the different
wavenumber components are uncorrelated.

In Section 2.1 we also assume, based on the Central Limit Theorem, that the complex wave height
ζ̂(ρ, t) is a Gaussian random variable. Since the spectrum A(κ) is the Fourier transform of the complex
wave height (Equation (A2)), it must also be a Gaussian random variable. The fourth moment of a
Gaussian random variable can be written in terms of its second moments such that

< A(κ1)A(κ2)A∗(κ3)A∗(κ4) > = δ(κ1 − κ3)S(κ1)δ(κ2 − κ4)S(κ2)

+ δ(κ1 − κ4)S(κ1)δ(κ2 − κ3)S(κ2).
(A6)

We can also examine the cross correlation between two surface wave processes ζ̂m and ζ̂n where

ζ̂m(ρ, 0) =
∫∞∫
−∞

Am(κ)eiκ·ρd2κ (A7)

end

ζ̂n(ρ, 0) =
∫∞∫
−∞

An(κ)eiκ·ρd2κ (A8)

The surface wave height spectra can then be written as the Fourier transform

Am(κ) =
1

4π2

∫∞∫
−∞

ζ̂m(ρ, 0)e−iκ·ρd2ρ (A9)

and

An(κ) =
1

4π2

∫∞∫
−∞

ζ̂n(ρ, 0)e−iκ·ρd2ρ (A10)

Again we assume that surface wave heights and the wave height spectra have zero mean so that
the second moment < Am(κ)A∗n(κ′) > can be written as

< Am(κ)A∗n(κ
′) > =<

1
4π2

∫∞∫
−∞

ζ̂m(ρ, 0)e−iκ·ρd2ρ
1

4π2

∫∞∫
−∞

ζ̂∗n(ρ
′, 0)eiκ′ ·ρ′d2ρ′ >

=
1

16π4

∫∞∫
−∞

∫∞∫
−∞

< ζ̂m(ρ, 0)ζ̂∗n(ρ
′, 0) > e−iκ·ρeiκ′ ·ρ′d2ρd2ρ′

=
1

16π4

∫∞∫
−∞

∫∞∫
−∞

Rmn(ρ
′′)e−iκ·ρeiκ′ ·(ρ−ρ′′)d2ρd2ρ′′

=
1

16π4

∫∞∫
−∞

Rmn(ρ
′′)e−iκ·ρ′′d2ρ′′

∫∞∫
−∞

e−iκ·ρeiκ′ ·ρd2ρ

= Smn(κ)δ(κ− κ′)

(A11)

where Rmn(ρ′′) =< ζ̂m(ρ, 0)ζ̂∗n(ρ′, 0) > is the wave height cross correlation and the cross-spectral
density Smn(κ) is its Fourier transform.
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Again we assume that the spectra Am(κ) and An(κ) are Gaussian random variables so that the
fourth moment can be written as

< Am(κ1)Am(κ2)A∗n(κ3)A∗n(κ4) > = δ(κ1 − κ3)Smn(κ1)δ(κ2 − κ4)Smn(κ2)

+ δ(κ1 − κ4)Smn(κ1)δ(κ2 − κ3)Smn(κ2).
(A12)

Appendix A.2. Inhomogeneous Surface Wave Fields

Now we consider the case where the surface wave height is defined over a finite area. The complex
surface wave height in a finite region centered at the origin can be written as

ζ̂w(ρ, 0) = ζ̂(ρ, t)w(ρ) (A13)

where the window function w is unity for −Lx/2 < x < Lx/2 and −Ly/2 < y < Ly/2 and zero
elsewhere. Taking the Fourier transform (Equation (A2)) of both sides of Equation (A13) yields

Aw(κ) = A(κ) ∗W(κ) =
∫∞∫
−∞

A(κ′)W0(κ− κ′)d2κ′ (A14)

The second moment of Aw can then be written as

< Aw(κ)A∗w(κ
′′) >=

∫∞∫
−∞

W(κ− κ′)d2κ′
∫∞∫
−∞

W∗(κ′′ − κ′′′)d2κ′′′ < A(κ′)A∗(κ′′′) > (A15)

which, from Equation (A5) becomes

< Aw(κ)A∗w(κ
′′) > =

∫∞∫
−∞

W(κ− κ′)d2κ′
∫∞∫
−∞

W∗(κ′′ − κ′′′)d2κ′′′S(κ′)δ(κ′ − κ′′′)

=
∫∞∫
−∞

W(κ− κ′)W∗(κ′′ − κ′)S(κ′)d2κ′

(A16)

As the dimensions Lx and Ly become much larger than a wavelength λg the functions W begin to
approximate delta functions such that

< Aw(κ)A∗w(κ
′′) > ≈

∫
δ(κ− κ′)δ(κ′′ − κ′)S(κ′)d2κ′

≈ δ(κ− κ′′)S(κ) =< A(κ)A∗(κ′′) >
(A17)

We can now consider the more complicated case of the cross power spectral density between the
surface wave heights in two finite regions m and n.

ζ̂w,m(ρ, 0) = ζ̂(ρ, 0)w(ρ− ρm) (A18)

and
ζ̂w,n(ρ, 0) = ζ̂(ρ, 0)w(ρ− ρn) (A19)

which, after taking the Fourier transform, become

Aw,m(κ) = Am(κ) ∗ (W(κ)e−iκ·ρm) (A20)

and
Aw,n(κ) = An(κ) ∗ (W(κ)e−iκ·ρn) (A21)
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As before, we can take the second moment which becomes

< Aw,m(κ)A∗w,n(κ
′′) >

=
∫∞∫
−∞

W(κ− κ′)e−i(κ−κ′)·ρm d2κ′
∫∞∫
−∞

W∗(κ′′ − κ′′′)ei(κ′′−κ′′′)·ρn d2κ′′′ < Am(κ
′)A∗n(κ

′′′) >

=
∫∞∫
−∞

W(κ− κ′)e−i(κ−κ′)·ρm d2κ′
∫∞∫
−∞

W∗(κ′′ − κ′′′)ei(κ′′−κ′′′)·ρn d2κ′′′Smn(κ
′)δ(κ′ − κ′′′)

=
∫∞∫
−∞

W(κ− κ′)e−i(κ−κ′)·ρm W∗(κ′′ − κ′)ei(κ′′−κ′)·ρn Smn(κ
′)d2κ′

(A22)

Again, as the dimensions Lx and Ly become much larger than a wavelength λg the functions W
begin to approximate delta functions such that

< Aw,m(κ)A∗w,n(κ
′′) >≈ e−i(κ−κ′′)·(ρm−ρn)δ(κ− κ′′)Smn(κ) (A23)

This expression is similar to the previous Equations (A5) and (A17) with the addition of an
exponential phase term. Since the delta function is zero for all κ′ − κ′ 6= 0 and since the phase term is
unity when κ′ − κ′ = 0 this expression can be reduced to

< Aw,m(κ)A∗w,n(κ
′′) >≈ δ(κ− κ′′)Smn(κ) =< Am(κ)A∗n(κ

′′) > (A24)

Appendix B. Adiabatic Propagation of Generalized Rayleigh Waves in a Range-Dependent
Ocean Environment

To determine the microseisms received by a sensor either in the ocean or in the earth’s crust, the
Green function of Equation (38) must be calculated. It has been shown both theoretically [10,14] and
experimentally [4,33–37] that microseisms propagate as Rayleigh waves along the sea floor.

Stoneley [61] shows how the depth or thickness of the ocean layer affects Rayleigh wave phase
speed and how, for large depths or frequencies, there may be multiple propagating Rayleigh modes.
Press and Ewing [10], Press and Ewing [62] and Ellis and Chapman [63] later show that the Rayleigh
wave field can be expressed as a sum of normal-mode contributions. Unlike ‘classic’ Rayleigh waves
which are defined to propagate along a vacuum/elastic boundary, Ewing et al. [64] coin the term
‘generalized Rayleigh waves’ to describe Rayleigh waves that propagate along an elastic boundary, such
as at the sea floor, under a finite thickness fluid layer like the ocean. The modal expressions of [10,62,63]
are only applicable, however, to environments where the ocean depth is constant. Varying water depth
at the continental margin can affect the Rayleigh wave propagation.

To solve the range-dependent propagation problem, Arvello and Überall [65] divide the
waveguide into range-independent segments, each with its own numerically calculated eigenvalues
and eigenfunctions, and apply the adiabatic normal-mode approximation to evaluate the seismic
and acoustic propagation between segments. The computational nature of their approach, however,
does not provide the physical insight given by the analytic results of the earlier range-independent
studies [10,61–64]. Here we provide an analytic solution for the range-dependent case where a fluid
ocean of varying depth overlays an elastic ocean floor, as opposed to the computational solution
method given by [65].

We consider the simple case where a monopole source is located in a homogeneous fluid medium
overlaying an elastic half space. Unlike previous range-independent studies, here the depth or
thickness of the fluid layer may change with range from the source. For the example in this paper we
model an up-sloping environment where depth decreases with range, however, other depth profiles
may also be considered.

It should be noted that, in addition to modeling microseisms, this range-dependent Rayleigh
wave model also has application in other seismic research where a sensor on land measures signals
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generated by sources at sea. For example undersea earthquakes [66] and underwater explosions, like
those monitored under the Comprehensive Nuclear Test Ban Treaty [67,68], also produce Rayleigh
waves on the sea floor. The propagation of these Rayleigh waves is also often measured to infer the
geologic characteristics of the ocean floor using surface-wave tomography [69–71].

We begin by considering the range-independent form of the normal-mode solution for a source at
a depth z0 in a constant-depth fluid layer overlaying an elastic halfspace [65]

φ1(ρ, z) = ∑
n

u1,n(zs)u1,n(zr)H(1)
0 (knρ), (A25)

φ2(ρ, z) = ∑
n

u1,n(zs)u2,n(zr)H(1)
0 (knρ), (A26)

and
ψ2(ρ, z) = ∑

n
u1,n(zs)v2,n(zr)H(1)

0 (knρ), (A27)

where ρ = |ρ| is the horizontal distance from source to receiver and zr and zs are the receiver and
source depth respectively. The variable φ1 represents the displacement potential due to compressional
waves in the fluid medium, and φ2 and ψ2 represent the compression and shear potentials in the solid
medium. The variable kn is the horizontal component of the wavenumber and u1,n, u2,n and v2,n are
the modal eigenfunctions for each mode n. The potentials are related to the horizontal displacement
dr, vertical displacement dz, vertical normal stress pzz and vertical shear stress pzr by [62,64]

dr =
∂φ

∂r
+

∂2ψ

∂r∂z

dz =
∂φ

∂z
+

∂2φ

∂z2 +
ω2

β2 ψ

pzz = λ∇2φ + 2µ
∂w
∂z

pzr = µ(
∂q
∂z

+
∂w
∂r

).

(A28)

The Lame’s constants λ and µ are related to the compressional wave speed in the fluid v1 and the
compression and shear wave speeds in the solid α2 and β2 by

v2
1 = λ1/ρ1

α2
2 = (λ2 + 2µ2)/ρ2

β2
2 = µ2/ρ2,

(A29)

where ρ1 and ρ2 are the densities in the fluid and elastic media respectively [62,64].
Pierce [72] has shown that for slowly varying range-dependent waveguides the modal sums of

Equations (A25)–(A27) can be written as

φ1(ρ, z) = e
−iπ

4

√
2

πρ
×∑

n
u1,n(zs)u1,n(ρ, zr)

e−i
∫ ρ

0 kn(ρ′)dρ′√
kn(ρ)

(A30)

φ2(ρ, z) = e
−iπ

4

√
2

πρ
×∑

n
u1,n(zs)u2,n(ρ, zr)

e−i
∫ ρ

0 kn(ρ′)dρ′√
kn(ρ)

(A31)

and

ψ2(ρ, z) = e
−iπ

4

√
2

πρ
×∑

n
u1,n(zs)v2,n(ρ, zr)

e−i
∫ ρ

0 kn(ρ′)dρ′√
kn(ρ)

(A32)
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based on the adiabatic mode approximation. This approximation requires that the change in the
waveguide environment as a function of range ρ is negligible over a wavelength scale and that there is
no coupling between modes. In these expressions both the modal eigenfunctions u1,n, u2,n and v2,n
and the horizontal wavenumber kn are allowed to change with range ρ from the source.

For an iso-speed fluid layer of depth H(ρ) overlaying an elastic half-space the general solutions
for the mode functions u1,n, u2,n and v2,n can be written in terms of sinusoids and exponentials [62,63]
such that Equations (A30)–(A32) become

φ1(ρ, z) = e
−iπ

4

√
2

πρ
×∑

n
Φ1 sin(ξn(0)zs) sin(ξn(ρ)zr)

e−i
∫ ρ

0 kn(ρ′)dρ′√
kn(ρ)

(A33)

φ2(ρ, z) = e
−iπ

4

√
2

πρ
×∑

n
Φ2 sin(ξn(0)zs)eηn(ρ)zr

e−i
∫ ρ

0 kn(ρ′)dρ′√
kn(ρ)

(A34)

and

ψ2(ρ, z) = e
−iπ

4

√
2

πρ
×∑

n
Ψ2 sin(ξn(0)zs)eζn(ρ)zr

e−i
∫ ρ

0 kn(ρ′)dρ′√
kn(ρ)

(A35)

where

ξn(ρ) =

√
ω2

v2
1
− k2

n(ρ) = kn(ρ)

√
c2

n(ρ)

v2
1
− 1

ηn(ρ) =

√
k2

n(ρ)−
ω2

α2
2
= kn(ρ)

√
1− c2

n(ρ)

α2
2

ζn(ρ) =

√
k2

n(ρ)−
ω2

β2
2
= kn(ρ)

√
1− c2

n(ρ)

β2
2

(A36)

represent the vertical components of the wavenumber vector for each mode n. The phase speed for
each mode is defined as cn(ρ) = ω/kn(ρ) where ω is the frequency in radians/Section.

The amplitudes Φ1, Φ2 and Ψ2 of the mode functions in Equations (A33)–(A35) must be chosen
such that the boundary conditions

(pzz) f = (pzz)s

(pzr)s = 0
(dz) f = (dz)s

 at z = H(ρ) (A37)

are satisfied at the fluid solid interface z = H(ρ). The subscripts f and s indicate that the variable is
to be evaluated in the fluid or solid layer respectively. These boundary conditions yield a system of
three equations for the unknown amplitudes Φ1, Φ2 and Ψ2 whereby any two of the unknowns may
be solved in terms of the third. The third amplitude is then normalized to some convenient value.
Later we will choose a normalization such that our solution is consistent with that of [62] for constant
bathymetry H(ρ) = H. The solution to this set of equations only exists, however, if the determinant∣∣∣∣∣∣∣

−λ1(ξ
2
n + k2

n) sin(ξn H) (−λ2(η
2
n + k2

n) + 2µ2ηn)e−ηn H −2µ2k2
ne−ζn H

0 −2ηne−ηn H (2ζ2
n +

ω2

β2
2
)e−ζn H

ξn cos(ξnH) ηne−ηn H −k2
ne−ζn H

∣∣∣∣∣∣∣ = 0 (A38)
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equals zero [62,64] where the dependence of kn, ξn, ηn, ζn and H on range ρ has been suppressed to
simplify notation. Equation (A38) reduces to the equation

ρ1

ρ2

ω4

β4
2

ηn(ρ)

ξn(ρ)
tan(ξn(ρ)H(ρ))−

[
4k2

n(ρ)ηn(ρ)ζn(ρ)−
(

2k2
n(ρ)−

ω2

β2
2

)2]
= 0 (A39)

where the roots kn(ρ) correspond to the horizontal wavenumbers for each mode n. For the case of
constant bathymetry H(ρ) = H, Equation (A39) is identical to those given in earlier works [10,62,64];
however, for this more general range-dependent case the roots kn(ρ) can now vary with range ρ.
Unlike a ‘classic’ Rayleigh wave which has only one root or propagating value, ‘generalized’ Rayleigh
waves may have multiple roots kn(ρ) depending on frequency and fluid layer thickness as shown in
Equation (A39) for the range-dependent case and as shown by [10] for the range-independent case.
Note that Equation (A39) has no roots for kn(ρ) > ω/v1.

Given the roots kn(r) from Equation (A39), we can express the potentials as

φ1(ρ, z) =
2

H(ρ)

√
2π

ρ
e
−iπ

4 ∑
n

Φ1(kn(ρ), H(ρ))× sin(ξn(0)zs) sin(ξn(ρ)z)
e−i

∫ ρ
0 kn(ρ′)dρ′√
kn(ρ)

(A40)

φ2(ρ, z) =
2

H(ρ)

√
2π

ρ
e
−iπ

4 ∑
n

Φ2(kn(ρ), H(ρ))× sin(ξn(0)zs)eηn(ρ)z e−i
∫ ρ

0 kn(ρ′)dρ′√
kn(ρ)

(A41)

and

ψ2(ρ, z) = 2

√
2π

ρ
e
−iπ

4 ∑
n

Ψ2(kn(ρ), H(ρ))× sin(ξn(0)zs)eζn(ρ)z e−i
∫ ρ

0 kn(ρ′)dr′√
kn(ρ)

(A42)

where the solutions for the modal amplitudes are

Φ1(kn(rho), H(ρ)) = −

ρ1

ρ2

c4
n(ρ)

β4
2

ηn(ρ)

ξn(ρ)
kn(ρ)H(ρ)√

c2
n(ρ)/v2

1 − 1 cos(ξn(ρ)H(ρ))D(kn(rho), H(ρ))
(A43)

Φ2(kn(ρ), H(ρ)) = −

ρ1

ρ2

c2
n(ρ)

β2
2

(2− c2
n(ρ)/β2

2)kn(ρ)H(ρ)√
c2

n(ρ)/v2
1 − 1D(kn(rho), H(ρ))

(A44)

and

Ψ1(kn(ρ), H(ρ)) = −
2 ρ1

ρ2

c2
n(ρ)

β2
2

ηn(ρ)
ξn(ρ)

D(kn(rho), H(ρ))
(A45)
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and where

D(kn(rho), H(ρ)) =
ρ1

ρ2

c4
n(ρ)

β4
2

[
sin(ξn(ρ)H(ρ))√

c2
n(ρ)/v2

1 − 1
√

1− c2
n(ρ)/α2

2

(
1 +

1− c2
n(ρ)/α2

2
c2

n(ρ)/v2
1 − 1

)

−
(

kn(ρ)H(ρ)
√

1− c2
n(ρ)/α2

2

c2
n(ρ)/v2

1 − 1
sec(ξn(ρ)H(ρ))

)]

− 4

[√
1− c2

n(ρ)/β2
2√

1− c2
n(ρ)/α2

2

+

√
1− c2

n(ρ)/α2
2√

1− c2
n(ρ)/β2

2

+ 2
√

1− c2
n(ρ)/α2

2

√
1− c2

n(ρ)/β2
2

− 2(2− c2
n(ρ)/β2

2)

]
cos(ξn(ρ)H(ρ))

(A46)

Equations (A40)–(A46) provide an analytic model for the propagation of ‘generalized’ Rayleigh
waves in a range-dependent environment. Note, however, that the mode amplitudes have been
normalized such that Φ1(kn(ρ), H(ρ)), Φ2(kn(ρ), H(ρ)) and Ψ1(kn(ρ), H(ρ)) are the same as Φ1(kn, H),
Φ2(kn, H) and Ψ1(kn, H) of [62] for the case of constant bathymetry H(ρ) = H (Equation (38) of [62] is
missing a factor of 2 which was later corrected in Equations (4)–(184) of [64]). The Green function used
in this paper can be written as

g(rr, rs, w) =
4π

f
pzz(|ρr, ρs|, zr, zs) (A47)

where the 4π
f accounts for the normalization adopted by [62].

Appendix C. Range-Independent Half-Space

To compare the expression in Equation (38) with derivations by others we can simplify our
solution for the case of a range-independent surface wave field over an infinite ocean half-space.
The Green function for a source near the free surface of an infinite ocean half-space can be written as
a dipole

g(rr, rm, ω) =
eikRm

2πRm
kzscos(βm), (A48)

where Rm = |rr − rm| is the distance between source and receiver positions rm and rr respectively and
βm = Atan(|ρr − ρm|/|zr − zm|) is the angle from vertical. From Equation (38) we write the power
spectral density of the pressure field, substituting Equation (A48) as

SP(rr, ω) ≈
ρ2πL2

xL2
yk2ω9

512g2

∫
S
(ω

2
, θ
)

S
(ω

2
, θ + π

)
dθ

×
∞∫

0

∞∫
0

dzsdz′se
−ω2zs

2g e
−ω2z′s

2g

×∑
m,n

eikRm

2πRm
kzscos(βm)

e−ikRn

2πRn
kz′scos(βn)

(A49)
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For densely spaced rm and rn the sums can be approximated as integrals on ρs and ρ′s

SP(rr, ω) ≈
ρ2πL2

xL2
yk2ω9

512g2

∫
S
(ω

2
, θ
)

S
(ω

2
, θ + π

)
dθ

×
∞∫

0

∞∫
0

dzsdz′se
−ω2zs

2g e
−ω2z′s

2g

×
∞∫
−∞

∞∫
−∞

d2ρs
LxLy

eikR

2πR
kzscos(β)

×
∞∫
−∞

∞∫
−∞

d2ρ′s
LxLy

e−ikR′

2πR′
kz′scos(β′)

(A50)

For kzr >> 1 the integral over ρs can be approximated as zs
Lx Ly

eik(zr−zs)+iπ/2 and the integral over

ρ′s as z′s
Lx Ly

e−ik(zr−z′s)−iπ/2 so that

SP(rr, ω) ≈ ρ2πk2ω9

512g2

∫
S
(ω

2
, θ
)

S
(ω

2
, θ + π

)
dθ

×
∞∫

0

∞∫
0

dzsdz′szsz′se
−ω2zs

2g e
−ω2z′s

2g eikzs e−ikz′s .
(A51)

Integrating over zs then yields

SP(rr, ω) ≈ ρ2πk2ωg2

32

∫
S
(ω

2
, θ
)

S
(ω

2
, θ + π

)
dθ (A52)

since ω2

2g >> k at the frequencies considered here. This result is identical to Equation (33) of [18] and

Equation (35) of [20] where S(σ, θ) equates to
8ω3

f
g2 X(k1)G(θ) from Hughes and to 8σ3

g2 f (κ) from Lloyd

(including the 1
2 correction of Hughes derivation discussed by Lloyd).
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