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Abstract: The paper introduces a three-dimensional model to derive the spatial patterns of
photosynthetically active radiation (PAR) reflected and absorbed by a non-uniform forest canopy
with a multi-species structure, as well as a model algorithm application to retrieve forest canopy
composition from reflected PAR measured along some trajectory above the forest stand. This radiative
transfer model is based on steady-state transport equations, initially suggested by Ross, and considers
the radiative transfer as a function of the structure of individual trees and forest canopy, optical
properties of photosynthesizing and non-photosynthesizing parts of the different tree species,
soil reflection, and the ratio of incoming direct and diffuse solar radiation. Numerical experiments
showed that reflected solar radiation of a typical mixed forest stand consisting of coniferous and
deciduous tree species was strongly governed by canopy structure, soil properties and sun elevation.
The suggested algorithm based on the developed model allows for retrieving the proportion of
different tree species in a mixed forest stand from measured canopy reflection coefficients. The method
accuracy strictly depends on the number of points for canopy reflection measurements.
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1. Introduction

Solar radiation is both a direct and indirect driver for most biophysical and biochemical processes
occurring in plant ecosystems. It influences canopy microclimate as well as CO2 and H2O exchange
processes between plants and the atmosphere [1,2], thereby affecting not only the function and
growth of the plant community, but also the concentration of greenhouse gases in the atmosphere
and consequently, Earth’s climate system [3,4]. Plant canopy reflection and absorption of solar
radiation are determined by factors including the structure of vegetation cover, the optical properties
of photosynthesizing and non-photosynthesizing parts of plants, surface topography, and soil [1,5].
During recent decades, numerous studies have focused on the theory of solar radiation transfer in
a plant canopy [1,6–10], leading to the development and application of mathematical models with
different degrees of complexity [11–17]. Most simple approaches consider the plant canopy as a
horizontally uniform turbid medium [13,18,19]. A vertically structured forest canopy can also be
divided into many independent sub-layers [10]. The effects of local plant canopy heterogeneity on
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radiative fluxes in these one-dimensional (1D) approaches are usually ignored. A limited number of
input parameters allow these models to be used for a broad spectrum of scientific tasks, including
solving direct and inverse problems related to remote sensing [10,15,20].

The effects of local-scale heterogeneity on radiation fluxes at a regional scale are usually assumed
to be very small and therefore negligible, but they can be relatively large on an ecosystem level and can
cause large biases in the estimation of solar radiation that is reflected, absorbed, and transmitted by a
plant canopy [21–23]. Complex forest canopy architecture is common along the boundaries between
different forest types and this complexity can have significant effects on absorbed and scattered solar
radiation. Scientific studies of radiative transfer in such non-uniform plant canopies require more
sophisticated and process-based modeling approaches that consider three-dimensional (3D) canopy
structure, including the individual structure of different tree species.

There are several detailed reviews of available 3D models for the description of radiative transfer
within spatially distributed and non-uniform vegetation [7,10,20]. Many of these works were devoted
to the ability of 1D and 3D models to reproduce the mean characteristics of canopy absorption,
transmission, and reflection by allowing for mosaic vegetation structure [16,17,24]. Most studies show
that 3D models of radiative transfer can be a universal tool to describe the 3D radiation absorption and
scattering patterns for a spatially heterogeneous plant canopy. These models are presently used for
various ecological and meteorological tasks involving satellite remote sensing (e.g., Landsat, MODIS,
DSCOVR EPIC) [15,25–29]. Key parameters that can be determined using such models are total
absorbed and reflected solar radiation by a plant canopy and their variance, the fractions of sunlit and
shaded leaves, leaf area index of sunlit and shaded leaves, and soil surface reflection/absorption, etc. In
considering the reflection of solar radiation from the forest canopy with a multi-specific structure, it is
important to also estimate the proportion of various tree species within a forest stand. Such information
can be derived from other biophysical properties of the forest canopy and soil, such as leaf area index
and the amount of photosynthesizing plant biomass.

In this study we developed and applied a 3D model of radiative transfer in a non-uniform plant
canopy to derive the possible influence of multi-specific forest structure on reflected photosynthetically
active radiation (PAR). For our numerical experiments, we selected a mixed forest stand consisting
of a coniferous and a deciduous tree species with different structure of individual trees, vertical and
horizontal biomass distribution, and leaf and shoot optical properties. Mixed deciduous–coniferous
forest is a dominant forest type at the southern boundary of the boreal forest and effects of forest
structural and optical properties on radiative transfer (reflection, absorption, transmission) have not
been sufficiently investigated in the area. Moreover, in this study we proposed and tested an algorithm
to retrieve forest canopy composition (proportion of deciduous and coniferous tree species in a forest
stand) from the intensity of reflected radiation measured by remote sensing at several points above the
forest canopy.

2. Materials and Methods

2.1. The 3D Model Description

The 3D radiative transfer model is based on the main equations and assumptions suggested by
Ross [1] and further developed and described by Myneni [7,30] and Knyazikhin [22,31]. According
to this approach, the function characterizing the radiative field at each spatial point r = {x, y, z}
within the vegetation canopy is the radiance Iλ(r, Ω), which depends on wavelength λ and is
calculated as the sum of the direct and diffuse radiation over all directions defined by vectors
Ω = {µ, ϕ} = {cos ϕ sin θ, sin ϕ sin θ, cos θ}, (ϕ ∈ [0, 2π], θ ∈ [0, π]).

The spatial pattern of direct radiation within the plant canopy depends on the probability that a
sunbeam incident on the upper canopy along the direction Ω0 reaches some point r within the vegetation
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without being reflected or scattered by vegetation elements [7,30]. The intensity of direct solar radiation

within a plant canopy can be expressed as Q0,λ(r) = Tm,λ exp

− lr,Ω0∫
0

σ(r− sΩ0, Ω0)ds

.

Here, Tm,λ(W/m2) is the intensity of direct solar radiation at the upper boundary of the vegetation
canopy, lr,Ω0 is the distance between the point r and the upper boundary of vegetation cover along
the direction Ω0 to the sun, and σ(r, Ω) is the total cross-section of the interaction (scattering and
absorption) of solar radiation with vegetation elements (see Appendix A).

The intensity of diffuse radiation at some point r within the vegetation over the direction defined
by vector Ω is determined by the equation:

Ω · ∇Iλ,d(r, Ω) + σ(r, Ω)Iλ,d(r, Ω) =
∫

4π

Iλ,d
(
r, Ω′

)
σsλ

(
r, Ω′ → Ω

)
dΩ′ + σsλ(r, Ω0 → Ω)Q0,λ(r). (1)

Here σsλ(r, Ω′ → Ω) is the differential cross-section for the scattering of the sun rays falling in the
direction and scattered in the solid angle dΩ for corresponding r and Ω (see Appendix A).

The additional boundary condition for solar radiation above the vegetation canopy for Equation (1)
can be written as Id,λ(rt, Ω) = Td,λ/2π, where Td,λ(W/m2) is the intensity of diffuse radiation incoming
into the point rt = {x, y, zt} at the upper boundary of the vegetation canopy.

The upward radiation in the point rb = {x, y, zb} at the soil surface below tree crowns can be
expressed as the sum of direct and diffuse solar radiation that is reflected off the soil surface. Direct
radiation reaches the soil surface without interacting with vegetation elements, whereas diffuse solar
radiation is scattered by vegetation elements before reflecting off the soil surface:

Id,λ(rb) = ρλ

∫
(Ω′nb)>0

Id,λ
(
rb, Ω′

)∣∣(Ω′, nb
)∣∣dΩ′ + ρλ|(Ω0, nb)|Q0,λ(rb)

Here, nb is outward normal to the soil surface and ρλ is the soil surface reflection coefficient.
We assume that the ground surface is horizontally uniform and that reflected radiation is uniformly
distributed in all directions of the upper hemisphere. The equation for total reflected radiation at soil
surface Id,λ(rb, Ω) can be therefore written as:

Id,λ(rb, Ω) =
1

2π
ρλ

 ∫
(Ω′nb)>0

Id,λ
(
rb, Ω′

)∣∣(Ω′, nb
)∣∣dΩ′ + cos θ0 ·Q0,λ(rb)

,
(
Ω′nb

)
< 0

We also assume that the forest plot under consideration is surrounded by a forest stand with
similar leaf area indexes (LAI) and characterized by the same species composition. These assumptions
allow us to parameterize solar radiation at the lateral boundary as Id,λ(rl , Ω)

∣∣
(Ω,nl)<0 =

Id,λ(rl , Ω)
∣∣
(Ω,nl)>0. Here, rl = {xl , yl , z} is a point on the lateral boundary, and nl is its outward normal.

The reflected radiation is calculated in accordance with [23]. Let us assume that I(rM, Ω) is the
intensity of upward radiation reflected from some point rM = {xM, yM, z0} at the upper boundary
of the forest stand in the direction Ω = {ξ, η, µ} (µ = cos θ, θ is the solar zenith angle) (Figure 1).
The intensity of the reflected radiation for some point at a reference height h placed above the point
r = {x, y, z0} can be estimated as a total intensity of reflected radiation coming out from all points
with coordinates rM = {xM, yM, z0}. Coordinates of vector rM can be expressed in general form as
rM = r{x, y, z0} − l, where l is calculated as

l =

{
htgθ

ξ√
ξ2 + η2

, htgθ
η√

ξ2 + η2
, z0

}
=

{
h
µ

√
1− µ2 ξ√

1− µ2
,

h
µ

√
1− µ2 η√

1− µ2
, z0

}
=

{
h
µ

ξ,
h
µ

η, z0

}



Remote Sens. 2018, 10, 1661 4 of 24Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 24 

 
Figure 1. The arrangement of the ray reflected from point Mr  and captured by the sensor located at 

some height h above point r. 

2.2. Scenarios of Numerical Experiments 

To derive the possible effects of multispecies forest structure on PAR albedo (the ratio of PAR 
irradiance reflected to the irradiance received by a surface) and angle distribution of reflected PAR, 
we considered a mixed forest stand consisting of deciduous (Silver birch; Betula pendula Roth.) and 
coniferous (Scots pine; Pinus sylvestris L.) tree species. Such species composition is very typical for 
the Southern-European taiga. 

All trees of different species were randomly distributed within the 100 m × 100 m modeling 
domain (Figure 2). The proportion of each tree species based on aboveground biomass within the 
modeling domain of our numerical experiments was assumed to vary between 0 and 1. Thus, the 
model scenarios can imitate both monospecific (pine or birch) and mixed (pine and birch trees in 
different proportions) forest stands. All numerical experiments were conducted for two model 
scenarios imitating forest stands with high (LAI = 4 m2 m−2) and low (LAI = 1 m2 m−2) stock densities. 
We assumed tree species have the same height (10 m) but different vertical biomass distributions. 

 
Figure 2. The spatial distributions of birch and pine leaf area index (LAI) within the modeling 
domain for a scenario, assuming the same proportion of both tree species within the forest stand. 
Birch and pine trees are shown by green and yellow colors, respectively. 

The spatial distributions of the trees of different species were simulated using a random 
number generator. It was assumed that the forest stock density in case of LAI = 4 m2 m−2 was 600 
trees per hectare, and in case of LAI = 1 m2 m−2 was 155 trees per hectare. To specify the locations of 
the trees within the modeling domain, we generated in the first step 4 arrays of 400 random numbers 
via a built-in compiler function. We then took half of the numbers from each array as x coordinates 

Figure 1. The arrangement of the ray reflected from point rM and captured by the sensor located at
some height h above point r.

2.2. Scenarios of Numerical Experiments

To derive the possible effects of multispecies forest structure on PAR albedo (the ratio of PAR
irradiance reflected to the irradiance received by a surface) and angle distribution of reflected PAR,
we considered a mixed forest stand consisting of deciduous (Silver birch; Betula pendula Roth.) and
coniferous (Scots pine; Pinus sylvestris L.) tree species. Such species composition is very typical for the
Southern-European taiga.

All trees of different species were randomly distributed within the 100 m × 100 m modeling
domain (Figure 2). The proportion of each tree species based on aboveground biomass within the
modeling domain of our numerical experiments was assumed to vary between 0 and 1. Thus, the model
scenarios can imitate both monospecific (pine or birch) and mixed (pine and birch trees in different
proportions) forest stands. All numerical experiments were conducted for two model scenarios
imitating forest stands with high (LAI = 4 m2 m−2) and low (LAI = 1 m2 m−2) stock densities.
We assumed tree species have the same height (10 m) but different vertical biomass distributions.
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Figure 2. The spatial distributions of birch and pine leaf area index (LAI) within the modeling domain
for a scenario, assuming the same proportion of both tree species within the forest stand. Birch and
pine trees are shown by green and yellow colors, respectively.

The spatial distributions of the trees of different species were simulated using a random number
generator. It was assumed that the forest stock density in case of LAI = 4 m2 m−2 was 600 trees per
hectare, and in case of LAI = 1 m2 m−2 was 155 trees per hectare. To specify the locations of the
trees within the modeling domain, we generated in the first step 4 arrays of 400 random numbers
via a built-in compiler function. We then took half of the numbers from each array as x coordinates
of a point and the other half as y coordinates. This procedure defined 800 points. After that, we
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generated another 800 points by interchanging the x and y coordinates. We thus obtained 1600 points
for possible tree locations. As 1600 trees is too large an amount for 1 hectare we excluded some trees
from our consideration. For that we generated an array of 1600 markers. The value of 600 markers
(for LAI = 4 m2 m−2) related to the points of tree location were set to 1, while other markers were set
to 0. Tree location points were chosen on the principle that the distance between trunks was greater
than 2 m. Finally, we integrated the tree biomass distribution functions just for the tree trunk locations
at points with numbers corresponding to markers equaling to 1.

The spatial distribution of biomass for individual trees was parameterized as (Figure 3):

Ftree(R, z) =


max(Fleaves(R, z), kBFbranches(R, z)),

kB,

0,

0,

RT ≤ R ≤ RC(z), LT ≤ z ≤ z0;

R ≤ RT , 0 ≤ z ≤ LT ;

R > RC(z);

z > z0,

where R =
√
(x− xT)

2 + (y− yT)
2, (xT , yT) are the coordinates of each tree trunk location, z is the

height above the ground, z0 = 10 m is the tree height, RT = 0.05 m is the tree trunk radius similar for
all considered tree species, LT is the height of crown base counting from the ground, factor kB = 2/3
shows the difference in the reflection and transmission coefficients of leaves and branches for PAR,
RC(z) is a function specifying the crown radius at height z, Fleaves(R,z), Fbranches(R,z) are the function
of leaves and branches distribution within the tree crown, respectively. The expressions for these
functions and the values of parameters for both tree species are detailed in Appendix B.

The optical properties of the leaves for Silver birch and Scots pine were taken from a pilot
study [32]: the leaf (needle) reflection coefficient of Scots pine was 0.07, and the transmission coefficient
was 0.04. The corresponding values for reflection and transmission coefficients of the Silver birch
leaves were both 0.08.

Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 24 

of a point and the other half as y coordinates. This procedure defined 800 points. After that, we 
generated another 800 points by interchanging the x and y coordinates. We thus obtained 1600 points 
for possible tree locations. As 1600 trees is too large an amount for 1 hectare we excluded some trees 
from our consideration. For that we generated an array of 1600 markers. The value of 600 markers 
(for LAI = 4 m2 m−2) related to the points of tree location were set to 1, while other markers were set to 
0. Tree location points were chosen on the principle that the distance between trunks was greater 
than 2 m. Finally, we integrated the tree biomass distribution functions just for the tree trunk locations 
at points with numbers corresponding to markers equaling to 1. 

The spatial distribution of biomass for individual trees was parameterized as (Figure 3): 

 

      

 

0

0

max , ;

, 0 ;,

;0,

,0,

, , , ,

,

T C T

T T

leaves B branches

r e
B

C

t e

R R R z L zF R z

R R z Lk

R

z k F R z

R z

z

R z

z

F

   

  







 




  

where    2 2

T TR x x y y    ,  ,T Tx y  are the coordinates of each tree trunk location, z is the 

height above the ground, 0 10mz   is the tree height, 0.05mTR   is the tree trunk radius similar for 
all considered tree species, LT is the height of crown base counting from the ground, factor 2 3Bk   
shows the difference in the reflection and transmission coefficients of leaves and branches for PAR, 

 CR z  is a function specifying the crown radius at height z, Fleaves(R,z), Fbranches(R,z) are the function of 
leaves and branches distribution within the tree crown, respectively. The expressions for these 
functions and the values of parameters for both tree species are detailed in Appendix B. 

The optical properties of the leaves for Silver birch and Scots pine were taken from a pilot study 
[32]: the leaf (needle) reflection coefficient of Scots pine was 0.07, and the transmission coefficient 
was 0.04. The corresponding values for reflection and transmission coefficients of the Silver birch 
leaves were both 0.08. 

 
Figure 3. A schematic representation of the spatial distribution of photosynthesizing and 
non-photosynthesizing phytomass for (a) Silver birch and (b) Scots pine. Leaf area density (LAD) for 
Silver birch varied between 0.65 and 2.7 m2 m−2 and for Scots pine between 0.65 and 1.4 m2 m−2. 

Figure 3. A schematic representation of the spatial distribution of photosynthesizing and
non-photosynthesizing phytomass for (a) Silver birch and (b) Scots pine. Leaf area density (LAD) for
Silver birch varied between 0.65 and 2.7 m2 m−2 and for Scots pine between 0.65 and 1.4 m2 m−2.
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The PAR albedo and the angle distribution of reflected radiation for forest stands under
consideration was simulated under sunny weather conditions for different sun elevations (h0) that can
be observed in the mid latitudes in the northern hemisphere in summer.

The ratio between direct and total solar radiation was derived as a function of sun elevation (h0)
using results of long-term solar radiation measurements conducted at the meteorological station of
Moscow State University in Moscow, Russia [33]. These measurements showed the ratio between
direct (S) and diffuse (D) solar radiation can be very well described as a function of sin(h0) using a
second order polynomial function (r2 = 0.99, p < 0.01): S/D = 0.159 · sin2(h0) + 3.48 · sin(h0)− 0.122.

To derive the effects of soil optical properties on reflected and absorbed PAR, all modeling
experiments were conducted for both dark ($s = 0.01) and light ($s = 0.20) soils.

We also assumed in our numerical experiments that the atmospheric absorption term
is negligible [22].

2.3. The Numerical Scheme

The numerical scheme suggested by Myneni et al. [34] was used to solve the integro-differential
Equation (1). The equation was solved using discrete ordinates method. It is based on splitting the
angular variable Ω into a smaller number of directions. Here, the discretization was performed using
the Gauss–Markov quadrature formulae of the 17th order [35]. Equation (1) was solved for each of the
discrete ordinates Ωm, m = 0 . . . 109 via the iteration procedure [34].

We selected the following boundaries for our modeling domain considering the horizontal
and vertical dimensions of the selected forest plot (100 m × 100 m, tree height—10 m):
−54 m ≤ x, y ≤ 54 m, 0 m ≤ z ≤ 11.5 m. The choice of domain dimensions was governed by the
need to step back from the edges of the hectare domain under consideration to reduce the influence
of the boundary conditions. The choice of domain was also constrained by computer resources.
The entire modeling domain was also divided into uniform grid cells:

(
xi, yj, zk

)
, i = 0, Nx − 1,

j = 0 , Ny − 1, k = 0, Nz − 1 each of which was characterized by a specific density of photosynthesizing
and non-photosynthesizing phyto-elements (branches, stem) for each tree species. The OZ-axes was
directed from the top of our modeling domain to its bottom.

We use the notation Ix(n+1)
i− 1

2 , j, k
(Ωm), i = 0, Nx, j = 0, Ny − 1 and k = 0, Nz − 1 to specify the

radiance spreading along the direction Ωm at the face of (i,j,k) grid cell perpendicular to OX axis at
(n + 1)th iteration. Similarly, notations Iy(n+1)

i, j− 1
2 , k

(Ωm), i = 0, Nx − 1, j = 0, Ny and k = 0 , Nz − 1 for

radiance at the grid cell face perpendicular to OY axis; Iz(n+1)
i, j, k− 1

2
(Ωm), i = 0, Nx − 1, j = 0, Ny − 1,

and k = 0, Nz at the cell face perpendicular to OZ axis; and I(n+1)
i,j,k (Ωm) for the central-cell value.

Equation (1) can be rewritten in finite difference form as:

− µm
∆z

(
Iz(n+1)

i, j, k+ 1
2
(Ωm)− Iz(n+1)

i, j, k− 1
2
(Ωm)

)
+ ηm

∆y

(
Iy(n+1)

i, j+ 1
2 , k

(Ωm)− Iy(n+1)
i, j− 1

2 , k
(Ωm)

)
+

+ ξm
∆x

(
Ix(n+1)

i+ 1
2 ,j,k

(Ωm)− Ix(n+1)
i, j− 1

2 , k
(Ωm)

)
+ σ

(
ri,j,k, Ωm

)
I(n+1)
i, j, k = J(n)i, j, k(Ωm),

(2)

where ri, j,k =
{

xi, yj, zk
}

,

J(n)i, j, k(Ωm) =
∫

4π

I(n)i, j, k

(
ri, j, k, Ω′

)
σsλ

(
ri, j, k, Ω′ → Ωm

)
dΩ′ + σsλ

(
ri, j, k, Ω0 → Ωm

)
Q0,λ

(
ri, j, k

)
The value of the integral on the right-hand side was obtained numerically as:

∫
4π

I(n)i, j, k

(
ri, j, k, Ω′

)
σsλ

(
ri, j, k, Ω′ → Ωm

)
dΩ′ = 4π

109

∑
m′=0

I(n)i, j, k

(
ri, j, k, Ωm′

)
σsλ

(
ri, j, k, Ωm′ → Ωm

)
W(Ωm′ )
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with discrete ordinates Ωm and weights W(Ωm) taken according to Gauss–Markov quadrature formula
of 17th order [35].

In order to link unknown variables in (2) we used the equalities called the diamond difference
relations (DD method):

I(n+1)
i,j,k (Ωm) =

1
2

(
Ix(n+1)

i− 1
2 , j, k

(Ωm) + Ix(n+1)
i+ 1

2 , j, k
(Ωm)

)
, I(n+1)

i,j,k (Ωm) =
1
2

(
Iy(n+1)

i, j− 1
2 , k

(Ωm) + Iy(n+1)
i, j+ 1

2 , k
(Ωm)

)
,

I(n+1)
i,j,k (Ωm) =

1
2

(
Iz(n+1)

i , j, k− 1
2
(Ωm) + Iz(n+1)

i, j, k+ 1
2
(Ωm)

)
.

(3)

Excluding Iz(n+1)
i, j, k+ 1

2
, Iy(n+1)

i, j+ 1
2 , k

, and Ix(n+1)
i+ 1

2 , j, k
from (2) and (3) we came to the following expression:

I(n+1)
i, j, k (Ωm) =

J(n)i, j, k(Ωm) + 2 |µm |
∆z Iz(n+1)

i, j, k− 1
2
(Ωm) + 2 |ηm |

∆x Iy(n+1)
i, j− 1

2 , k
(Ωm) + 2 |ξm |

∆x Ix(n+1)
i− 1

2 , j, k
(Ωm)

σ
(

ri,j,k, Ωm

)
+ 2 |µm |

∆z + 2 |ξm |
∆y + 2 |ηm |

∆x

. (4)

Then we completed the following steps:
(1) In the first step we determined the radiance spreading along the directions Ωm = {ξm, ηm, µm},

ξ2
m + η2

m + µ2
m = 1 with ξm > 0, ηm ≥ 0, µm ≤ 0 (the first octant). In this case the values Ix(n+1)

− 1
2 ,0,0

(Ωm),

Iy(n+1)
0,− 1

2 , 0
(Ωm), Iz(n+1)

0, 0,− 1
2
(Ωm) were known from the boundary conditions. Then the value of the radiance

for i = j = k = 0 was obtained from relation (4).
(2) Taking into account the known value I(n+1)

0, 0, 0 (Ωm) from (3) we expressed Iz(n+1)
0, 0, 1

2
(Ωm),

Iy(n+1)
0, 1

2 , 0
(Ωm), Ix(n+1)

1
2 , 0, 0

(Ωm)—the values for all indices i, j, and k fulfilling the condition i + j + k = 1.

(3) Now the central-cell values I(n+1)
i, j, k (Ωm) for the indices with i + j + k = 1 can be obtained from

(4). And so on: taking into account the known value I(n+1)
i, j, k (Ωm) from (3) we expressed Iz(n+1)

i, j, k+ 1
2
(Ωm),

Iy(n+1)
i, j+ 1

2 , k
(Ωm) and Ix(n+1)

i+ 1
2 , j, k

(Ωm) for all indices i, j, and k satisfying the relation i + j + k = c, where c

consistently takes the values 1, 2, . . . , Nx + Ny + Nz − 3.
The calculation procedure is schematically shown in Figure 4a.
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(5) The same procedure was used for calculating the second octant ordinates: ξm ≤ 0, ηm > 0, µm ≤ 0
with the values Ix(n+1)

Nx− 1
2 ,0,0

(Ωm), Iy(n+1)
Nx−1,− 1

2 , 0
(Ωm), Iz(n+1)

Nx−1, 0,− 1
2
(Ωm) taken from the boundary conditions.

We obtain I(n+1)
i, j, k (Ωm) from (4) at each step and then express Iz(n+1)

i, j, k+ 1
2
, Iy(n+1)

i, j+ 1
2 , k

, Ix(n+1)
i+ 1

2 , j, k
from (3) for

all indices i, j, k fulfilling the conditions Nx − 1− i + j + k = c, where c = 1, 2, . . . , Nx + Ny + Nz − 3.
(Figure 4b).

(6) The calculations were similarly carried out for other octants (see Figure 4c–h).
(7) The flux of solar radiation at each point

(
xi, yj, zk

)
was calculated as the total intensity of

scattered radiation in each direction Ωm and summed with the intensity of direct solar radiation.
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2.4. The Inverse Problem Statement to Retrieve the Forest Species Composition

Let us assume that (x, y) ∈ D is the modeling domain with randomly distributed trees of different
species. The functions ρ1(x, y) and ρ2(x, y) determine the spatial distributions of different tree species
(trees per hectare) (here the subscripts “1” and “2” indicate deciduous and coniferous tree species,
respectively) within the modeling domain. Let us also assume that we have known functions I1(ϕ, θ)

and I2(ϕ, θ) describing the radiation intensity that is reflected from some average tree of each species
in the direction determined by spherical coordinates (ϕ, θ).

Thus, for some very small pixel ds specified by coordinates (x, y) on which both types of trees
species are grown, we can calculate the radiation intensity that is measured by a PAR sensor located
at some point with coordinates (xs, ys, zs) along the corresponding solid angle dΩ under which the
surface element ds is visible: dΩ ≡ dΩ(x, y, xs, ys, zs, ds) ≡ k(x, y, xs, ys, zs)ds.

The total radiation intensity I reflected from the surface element ds is a function of angle

coordinates ϕ(x, y, xs, ys) ≡ arctan ys−y
xs−x and θ(x, y, xs, ys, zs) ≡ arctan

√
(xs−x)2+(ys−y)2

zs
:

I(ϕ(x, y, xs, ys), θ(x, y, xs, ys, zs))dΩ(x, y, xs, ys, zs, ds) =
= I1(ϕ(x, y, xs, ys), θ(x, y, xs, ys, zs))ρ1(x, y)ds + I2(ϕ(x, y, xs, ys), θ(x, y, xs, ys, zs))ρ2(x, y)ds.

In coordinates (x,y,z) this relation can be rewritten as:

I1(x, y, xs, ys, zs)ρ1(x, y)ds + I2(x, y, xs, ys, zs)ρ2(x, y)ds = I(x, y, xs, ys, zs)k(x, y, xs, ys, zs)ds. (5)

The inverse problem can be posed as follows: it is necessary to determine the functions
ρ1(x, y), ρ2(x, y) ∈ W2

2 (D) from measured values of the function I(ϕ, θ, xs, ys, zs) ∈ L2(D) along
some trajectory above a forest canopy (xs = xs(p), ys = ys(p), and zs = zs(p), p ∈ [p1, p2]).

2.5. The Model Algorithm for Inverse Problem Solving

The model algorithm can be divided into seven sequential steps:
1. In the first step we define the domain D on which model functions ρ1(x, y) and ρ2(x, y) are

retrieved as a rectangle with following dimensions:D ≡
{
(x, y) : Lx ≤ x ≤ Rx, Ly ≤ y ≤ Ry

}
.

2. We divide region D into Nx × Ny grid cells, at the center of each we put the node. As a result,
we obtain a XNx ×YNy mesh with a step hx = (Rx − Lx)/Nx with respect to the variable x and the step
hy =

(
Ry − Ly

)
/Ny with respect to y:

XNx ×YNy ≡


(

xnx , yny

)
, 1 ≤ nx ≤ Nx, 1 ≤ ny ≤ Ny : xnx = Lx +

hx
2 + (nx − 1)hx,

yny = Ly +
hy
2 +

(
ny − 1

)
hy


3. We introduce a uniform grid on the part of the trajectory along which the measurements of

functions I1 and I2 were made. For simplicity, we assume that p ∈ [0, 1], xs = xs(p) ≡ Ls + (Rs − Ls)p,
ys = ys(p) ≡ ly = const, zs = zs(p) ≡ lz = const. Thus, the corresponding mesh is uniform and
co-oriented in space parallel to the coordinate axis Ox. The related mesh SNp with Np − 1 intervals of

length hs = (Rs − Ls)/
(

Np − 1
)

takes the form:SNp ≡
{

snp , 1 ≤ np ≤ Np : snp = Ls +
(
np − 1

)
hs

}
.

4. We calculate the values of the functions I1(ϕ, θ) and I2(ϕ, θ):

I1(ϕ(xnx , yny , snp , ly), θ(xnx , yny , snp , ly, lz)) ≡ I1nx ,ny ,np ,
I2(ϕ(xnx , yny , snp , ly), θ(xnx , yny , snp , ly, lz)) ≡ I2nx ,ny ,np ,
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where ϕ(xnx , yny , snp , ly) =


arctan

ly−yny
snp−xnx

, if ly − yny ≥ 0 and snp − xnx ≥ 0,

arctan
ly−yny

snp−xnx
+ 2π, if ly − yny < 0 and snp − xnx ≥ 0,

arctan
ly−yny

snp−xnx
+ π, if snp − xnx < 0,

θ(xnx , yny , snp , ly, lz) = arctan

√
(snp−xnx )

2
+(ly−yny)

2

lz
for all nx = 1, Nx, ny = 1, Ny, np = 0, Np.

5. We calculate the values of model functions ρ1(x, y) and ρ2(x, y) : ρ1(xnx , yny) ≡
ρ1nx ,ny , ρ2(xnx , yny) ≡ ρ2nx ,ny , for all nx = 1, Nx, ny = 1, Ny.

6. The main equation (5) can be rewritten as:

I1nx ,ny ,np ρ1nx ,ny hxhy + I2nx ,ny ,np ρ2nx ,ny hxhy = Ĩnx ,ny ,np ,

and for all nx = 1, Nx, ny = 1, Ny, np = 0, Np that provides the system of linear algebraic equations
(SLAE) in the form

AX = Y (6)

with matrix of operator A having a dimension Nx NyNp × 2Nx Ny and vector X of length 2Nx Ny, with
non-zero components as follows:

A(np−1)Nx Ny+(nx−1)Ny+(ny−1)+1, (nx−1)Ny+(ny−1)+1 = I1nx ,ny ,np hxhy,
for nx = 1, Nx, ny = 1, Ny and np = 1, Np,

A(np−1)Nx Ny+(nx−1)Ny+(ny−1)+1, Nx Ny+(nx−1)Ny+(ny−1)+1 = I2nx ,ny ,np hxhy,
for nx = 1, Nx, ny = 1, Ny and np = 1, Np,

Xn =

{
ρ1[(n−1)/Ny ]+1,{(n−1)/Ny}+1, if n = 1, Nx Ny,
ρ2[(n−1−Nx Ny)/Ny ]+1,{(n−1−Nx Ny)/Ny}+1, if n = Nx Ny + 1, 2Nx Ny.

Square brackets mean a whole part of the expression and figured brackets mean the decimal part.
As a result, via (6) using the model values of functions ρ1(x, y) and ρ2(x, y) on the introduced

grid XNx ×YNy as the components of vector Xmodel , we simulate a model vector Y of input data having
the length Nx NyNp according to the following algorithm:

(a) Error simulation of operator A elements (that means a model error):

Ah m,n = Am,n

(
1 +

ξh
100%

)
for all m = 1, Nx NyNp, n = 1, 2Nx Ny

where ξ is a uniformly distributed on the segment [−1,1] random value, h is a given error in percent.
(b) Calculation of vector Y from the ratio:

AhXmodel = Y

(c) Error simulation of Y components (that means the error of experimental data):

Yδm = Ym

(
1 +

ξδ

100%

)
for m = 1, Nx NyNp,

where ξ is a uniformly distributed random value on the segment [-1,1], δ is a given error in percent.
7. We seek for the solution of (6) with simulated vector Yδ by the least square method:

X = (AT A)
−1

ATYδ

If the solution of this equation is unstable, the regularizing algorithm can be used. It can be done,
for instance, by using the Tikhonov regularizing algorithm based on the minimization of smoothing



Remote Sens. 2018, 10, 1661 11 of 24

functional [36]. In this case the solution of (6) can be found as a minimum of Tikhonov functional
Mα[x] (smoothing functional):

Mα[X] = ‖AX−Yδ‖2 + α‖RX‖2,

where α is the regularization parameter, R is the “smoothing operator” (for simplicity while solving
the model problem, we shall use R = E, where E is a unit operator). The extremal of this functional can
be found as the solution of SLAE:

(AT A + αRT R)X = ATYδ−1ATYδ (7)

In case the solution of (7) is stable with respect to the model errors (h) and the errors of input
data (δ) we have α = 0. Otherwise if the solution of (7) is unstable with respect to the mentioned
errors, then the choice of the regularization parameter α must be consistent with the errors δ of
the input data Yδ and h of the operator A. Such a choice can be made using, e.g., the generalized
discrepancy principle [36]:

ρ(α) = 0, where ρ(α) = ‖AXα −Yδ‖2 − (∆ + H‖Xα‖)2 − µ2

Here Xα is the extremal of the functional Mα[X] (Mα[Xα] = infMα[X]); ∆ > 0 is the
root-mean-square error of the specification (Yδ) in right-hand side of (6):

∆2 =
Nx Ny Np

∑
m=1

(
Ym

ξδ

100%

)2
;

H > 0 is the root-mean-square error of operator A specification:

H2 =
Nx Ny Np

∑
m=1

2Nx Ny

∑
n=1

(
Am,n

ξh
100%

)2
;

where µ is the measure of incompatibility of SLAE (6), i.e., µ = inf‖AhX−Yδ‖ = {‖AhXα −Yδ‖α = 0}.

2.6. Modeling Design for Inverse Problem Solution

To retrieve the forest species composition within our modeling domain D (Figure 2) with spatial
dimensions (in meters) Lx = −50, Rx = 50, Ly = −50, Ry = 50, let us select the segment of the straight
line defined by the parameters Ls = −60, Rs = 60, ly = 10, lz = 200. This could correspond to the
flight line of a helicopter, aircraft or drone carrying a PAR sensor 200 m above the forest (Figure 5).

The distribution of each tree species in a mixed forest stand is usually discrete. In our case, in order
to test the suggested algorithm, we assumed the smoothed discrete distributions of different tree species
within the modeling domain and described them by functions ρ1(x, y) and ρ2(x, y) specifying the
density (trees per hectare) of each type of tree species (Figure 6).
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Figure 5. The modeling domain D for which the model functions ρ1(x, y) and ρ2(x, y) were
reconstructed. It was assumed that deciduous and coniferous tree species were uniformly distributed
within the modeling domain. Dashes indicate the grid cells for which the ratio of different tree species
was retrieved.
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Figure 6. Smoothed spatial patterns of tree density distribution ρ1(x, y) (a) and ρ2(x, y) (b) of deciduous
and coniferous tree species within the modeling domain D ≡ {(x, y) : −50 ≤ x ≤ 50,−50 ≤ y ≤ 50}.

The values of functions I1(ϕ, θ) and I2(ϕ, θ) where I1,2(ϕ, θ) ≡
I1,2(ϕ(xnx , yny , snp , ly), θ(xnx , yny , snp , ly, lz)) ≡ I1,2nx,ny,np for each sensor position (snp , ly, lz) along
the selected trajectory and for each node of the mesh

(
nx, ny

)
were determined as radiation scattered

by single trees along the direction (ϕ, θ), 0 ≤ ϕ < 360◦, 0 ≤ θ < 90◦ into the upper hemisphere.
The reflected radiation was calculated using the 3D model, based on the assumption that the sun
elevation was 30◦ (h0 = 30◦) and the sun rays were incident from the south.
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3. Results and Discussion

3.1. Reflection of PAR for Mixed Forest Stand

Numerous experimental and modeling studies during recent decades showed that PAR albedo
measured by different remote sensing equipment or by devices installed at meteorological towers can
be broadly used to estimate canopy structure and architecture, surface net radiation, gross and net
primary production, etc. [25,37–40]. Let us consider the possible effects of the change of forest species
composition on variation of reflected PAR.

The numerical experiments provided using the 3D radiative transfer model showed a clear
dependence of PAR albedo of both monospecific and mixed forest stands on canopy density (LAI),
sun elevation, and soil reflection properties (Figure 7). The canopy albedo for sparse forest canopy
and dark soils reached maximal values under low sun elevation, and minimal values under high
sun elevation. This is because sunbeams travel longer distances through the forest canopy before
interacting with the soil surface. This results in higher scattered direct solar radiation within the plant
canopy; therefore, there is a higher vegetation contribution to the total forest reflection. The overall
canopy reflection also increased with a higher proportion of birch trees in the forest canopy. This is
mainly due to higher birch leaf reflection and transmission coefficients compared with pine. In the case
of light soil, the dependence of forest albedo on sun elevation has the opposite effect. Simulated local
minimums of forest albedo at h0 = 20◦ can be explained by a reduced contribution of reflected direct
solar radiation from light soils to the total forest albedo, joint effects of canopy architecture, and the
optical properties of the soil and plant phyto-elements (leaves, branches, stem).

1 
 

 

Figure 7. Dependence of canopy albedo on sun elevation and the fraction of deciduous and coniferous
tree species in a mixed forest stand of different stock densities (LAI = 1 and 4 m2 m−2). All modeling
experiments were completed for dark ($s = 0.01) and light ($s = 0.20) soils.
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In the case of a dense forest canopy (LAI = 4.0 m2 m−2), the albedo gradually increases with
increasing sun elevation. The rate of this increase is slightly higher for dark soils. The clear dependence
of albedo on species composition mainly manifested under high sun elevations. The forest canopy
with a higher proportion of birch trees was characterized by higher albedo. Under low sun elevation
(h0 < 20◦), the albedo was less dependent on species composition. A local minimum of canopy
reflection under a sun height of ~45◦ can be caused by the influence of forest canopy architecture
(spatial leaf area distribution; orientation of leaf blades) and the optical properties of the tree species
and soil surface.

Summarizing all obtained results, it is possible to emphasize a high sensitivity of PAR albedo
to forest canopy density, soil properties, and sun conditions. The dependence of forest albedo on
the proportion of deciduous and coniferous species in a forest stand, except at low sun elevations
(h0 < 25–30◦), was also shown. The results of our numerical experiments agreed well with available
experimental and modeling data obtained by different scientific teams for various plant canopy types.
In particular, Knyazikhin et al. [22] and Gravenhorst et al. [23] showed a clear impact of sun elevation
on the PAR albedo of monospecific old-grown spruce forest in Solling, Germany. Maximal albedo was
observed in the morning and evening, and the minimal values were close to noon. The soil had a minor
impact on albedo because of a very dense overstory and grassy understory that almost completely
covered the soil surface. Similar results were also obtained during the field observations provided by
Pinker et al. (1980) [41] in a tropical dry evergreen forest in Southeast Asia and by Giambelluca et al.
(1997) [42] at several forest and shrub locations in Amazonia.

Lower albedo at higher sun elevations can be explained by deeper penetration of solar photons
into the vegetation cover under a lower solar zenith angle, more frequent interaction of solar photons
with plant components, and higher probability to be absorbed by plant elements and soil surface
before escaping back into the atmosphere [43,44]. Another factor contributing to the change in surface
albedo with solar elevation angle is the soil surface fraction illuminated by direct solar beams. At the
highest sun positions (i.e., highest sun elevation angle or lowest solar zenith angle), the contribution of
directly illuminated soil surface into the total reflected solar radiation reach maximum values. As solar
zenith angle and shadow fraction increase, the proportion of directly illuminated soil surface decrease
and the contribution of the soil surface to surface albedo also decrease.

In discussing the possible effects of forest canopy architecture on radiative transfer characteristics,
it is also necessary to consider the influence of leaf inclination on light reflection. In particular, Simioni
et al. (2013) [45] showed that the light reflection and absorption of mixed deciduous and coniferous
forests is highly sensitive to leaf blade inclination of different tree species, and erroneous assumptions
about leaf inclination lead to larger uncertainties when modeling heterogeneous mixed canopies.
In our numerical experiments we assumed that both our model trees (birch and pine) have the same
spherical angular orientation of phyto-elements. Thus, possible uncertainties in estimating the canopy
albedo, due to differences in angular orientation of phytoelements between different species in our
numerical experiments, can be ignored.

Another factor that can highly influence the forest canopy albedo is the surface topography.
Kranigk et al. (1994) [46] and Knyazikhin et al. (1996, 2005) [21,31] performed experimental and
modeling studies on radiation regime in a spruce forest stand growing in the Harz Mountains in
Central Germany. It was shown that complex topography can result in strong redistribution of
reflected and penetrated solar radiation depending on the surface slope and aspect characteristics,
and in turn, can influence forest net primary production and tree growth. In our numerical experiments,
we considered the modeling scenario assuming only a flat topography. Thus, any uncertainties in
radiation reflection characteristics, due to complex topography, can be ignored.

3.2. Retrieving Species Composition of a Mixed Forest Stand from Canopy Reflectance Properties

The results of numerical experiments to retrieve the density of deciduous and coniferous tree
species (ρ1(x, y) and ρ2(x, y)) in a mixed forest stand from canopy reflection properties are shown in
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Figures 8–10. As can be seen, with an increase of the error δ and h with which the canopy reflection
measurements that can be carried out, the retrieving accuracy of the unknown functions drastically
decreases. Figures 8 and 9 represent examples of species composition retrieved for measurement error
levels of (δ; h) = (1; 1)% and (δ; h) = (5; 6)% (the last is consistent with the model error mentioned
in [23]) with a similar number of measurement points Np). However, even with a sufficiently large
error level in the measured signal and model error, it is possible to retrieve the unknown functions
when measurements are carried out at a larger number of points. Figures 9 and 10 show a comparison
of the results for the same error levels of (δ; h) = (5; 6)% in the experimental data with Np = 10 and
Np = 500 measurement points.

The statements made above are supported by the following results. Figure 11 shows the
dependence of the root-mean-square error (s = ‖Xinv−Xmodel‖√

2Nx Ny
) for the components of the reconstructed

vector Xinv =
(

AT A + αRT R
)−1 ATYδ in case α = 0 on the error levels δ of the input data and h of the

model (for a fixed number of measurement points Np). From this graph it can be seen that a decrease
in the error δ with which the canopy reflection measurements are carried out, and the model error
h, resulted in increase of the accuracies of vector Xinv reconstruction, and hence, the grid values of
functions ρ1(x, y) and ρ2(x, y). This means that Xinv → Xmodel when (δ; h)→ 0. So, the suggested
inverse problem statement is stable and the corresponding algorithm is therefore regularizing [36].
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Figure 11. The root-mean-square errors s in the components of reconstructed vector Xinv of the error
levels δ in the input data and the model error h for the fixed number of measurement points Np = 10
(a) and Np = 500 (b).



Remote Sens. 2018, 10, 1661 17 of 24

Figure 12 shows the dependence of the root-mean-square error in the components of the
reconstructed vector Xinv on the number of measurement points Np (for a fixed error level δ in
the input data and h in the model). From this graph it is clearly seen that an increase of the input
data volume (determined by the number Np of the measurement points) resulted in an increase of
accuracies of vector Xinv reconstruction and hence, the grid values of functions ρ1(x, y) and ρ2(x, y).
These results support the notion of increasing the number of measuring points as much as possible.
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3.3. Other Possible Ways to Reconstruct the Proportions of Different Tree Species in a Mixed Forest from
Canopy Reflection Using the 3D Model

During recent decades, many algorithms have been suggested to quantify structural and
optical aspects of vegetation canopies from remote sensing [25,28,45–48]. The problem of mapping
forest composition in mixed forest stands using remote sensing data is still open. Several studies
used hyperspectral and/or LiDAR data from LiCHy (Hyperspectral sensors, LiDAR and CCD
(Charge-Coupled Device) camera) airborne systems to classify tree species composition in mixed
forests [49] or high-resolution imagery for mapping forest cover types [50–53].

As shown in the previous section, the task to retrieve forest species composition from LAI, canopy,
and soil reflection is not trivial, due to the multivariate relationships between solar radiation reflection,
scattering coefficients, and tree species composition (different proportions of deciduous and coniferous
trees in mixed forest stand) under various LAI and soil reflection. The mean canopy albedo is relatively
insensitive to changes in the proportion of different species in a forest stand—especially in the case
of dense forest and low sun elevations (Figure 7). However, the main conclusion that can be drawn
from Section 3.2 is that the forest stand species composition can be reconstructed from information on
canopy reflection properties.

Let us consider some other possibilities to solve this inverse problem using this 3D model and
find effective numerical algorithms that would allow us to reconstruct forest species composition from
other structural and optical properties of a plant canopy and soil (LAI, leaf reflection and transmission,
soil reflection, etc.).

1. The functions ρ1(x, y), ρ2(x, y) ∈ H(D) are known from measurements of intensity
I(ϕ, θ, xs, ys, zs) ∈ L2(D) at a single fixed point (xs, ys, zs).
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This formulation of the problem is physically undetermined because it restores two functions
ρ1 and ρ2 of two variables (x, y) with one function I of two variables (ϕ, θ). In other words, for a
fixed set of parameters (x, y, xs, ys, zs), we can write only one equation with two unknown values.
Thus, for all possible (x, y) ∈ D determining all viewing angles (ϕ, θ) after digitization of the
corresponding domains we obtain a system of equations with twice as many unknown values as
equations. Consequently, this formulation will be incorrect according to Hadamard, regarding the lack
of uniqueness of the solution.

However, in case of the available and sufficiently precise a priori information about the functions
ρ1 and ρ2 belonging to a certain space (class of functions) H, we can reformulate the problem
as determining the functions ρ1(x, y), ρ2(x, y) ∈ H(D) that realize minimum of the functional
F[ρ1, ρ2] =

∫
D
(I1ρ1 + I2ρ2 − Ik)2ds with the assumption that H(D) is some compact set of functions,

e.g., monotonic functions, piecewise-convex functions, functions of bounded variation, etc. Examples
of analogous problem statements using a priori information on the desired functions are available in
some studies [36,54–56].

Thus, the task to find ρ1(x, y), ρ2(x, y) ∈ H(D) can be rewritten in the following form:

{ρ1, ρ2} = argmin
ρ1,ρ2∈H(D)

F[ρ1, ρ2] ≡ argmin
ρ1,ρ2∈H(D)

∫
D

(I1ρ1 + I2ρ2 − Ik)2ds.

The advantage of this approach is that (i) it is possible to find a solution to the problem having
the function of radiation intensity distribution measured at a single point, and (ii) the formulation
of the problem can be correct both in terms of uniqueness and in terms of stability of the solution.
The disadvantages of this approach is that (i) for the case of each compact set H(D) it is necessary to
conduct theoretical analysis of the corresponding problem correctness with respect to the uniqueness
and stability of its solution; (ii) the a priori information on the form of the set H(D) may not be available.

This approach is not yet physically undetermined because we obtain basic additional information
from the assumption that the recoverable functions have certain physical properties.

2. The functions ρ1(x, y), ρ2(x, y) are known from measured values of function I(ϕ, θ, xs, ys, zs) ∈
L2(D) at the two fixed points (xs, ys, zs)

1 and (xs, ys, zs)
2.

We have in this case a physically determined problem because it demands recovery of two
functions ρ1 and ρ2 of two variables (x, y) from two known functions of I1 and I2 of two variables
(ϕ, θ): In is the set of radiation intensities values obtained from point (xs, ys, zs)

n, n = 1, 2.
Within this approach, it is no longer necessary to consider faithful a priori information about the

form of the set H(D). It is sufficient to assume that ρ1(x, y), ρ2(x, y) ∈ W2
2 (D) and the problem to

determine ρ1 and ρ1 can be solved in a classical way (e.g., the least square method):

{ρ1, ρ2} = argmin
ρ1,ρ2

F[ρ1, ρ2],

where
F[ρ1, ρ2] =

∫
D
((I1(x, y, x1

s , y1
s , z1

s )ρ1(x, y) + I2(x, y, x1
s , y1

s , z1
s )ρ2(x, y)−

−I1(x, y, x1
s , y1

s , z1
s )k(x, y, x1

s , y1
s , z1

s ))
2ds + (I2(x, y, x2

s , y2
s , z2

s )ρ2(x, y)+
+I2(x, y, x2

s , y2
s , z2

s )ρ2(x, y)− I2(x, y, x2
s , y2

s , z2
s )k(x, y, x2

s , y2
s , z2

s ))
2ds.

However, if the problem is ill-posed in terms of instability of the solution (see, for example [36]), it
is necessary to build a regularizing algorithm to solve it, for example an algorithm based on Tikhonov
functional minimization:

{ρ1, ρ2} = argmin
ρ1,ρ2

Mα[ρ1, ρ2],

where Mα[ρ1, ρ2] = F[ρ1, ρ2] + α(‖ρ1‖2
W2

2
+ ‖ρ2‖2

W2
2
).
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For any regularization parameter α > 0, there is a unique extreme of Tikhonov functional
realizing the minimum Mα[ρ1, ρ2]. To select the regularization parameter, one can use the generalized
discrepancy principle algorithm (see [36]). We then have γ(α) ≡ F[ρα

1
, ρα

2
]− δ2 = 0, where δ is an

input error for the values I1, I2 and
{

ρα
1 , ρα

2
}

tend to exact solution in the norm of W2
2 , and hence it is

uniform in D when δ→ 0 .
3. The functions ρ1(x, y), ρ2(x, y) ∈ W2

2 (D) are known from measured values of the function
I(ϕ, θ, xs, ys, zs) ∈ L2(D) at some surface (for example, xs = xs(p1, p2), ys = ys(p1, p2), zs = zs(p1, p2),
{p1, p2} ∈ P).

We have in this case a more over-determined problem than in all of the cases mentioned above,
because it requires retrieving two functions ρ1 and ρ2 of two variables (x, y) from one known function
I of four variables (ϕ, θ, p1, p2).

4. The functions ρ1(x, y), ρ2(x, y) ∈ W2
2 (D) are known from measured values of the function

I(ϕ, θ, xs, ys, zs) ∈ L2(D) in a certain volume (xs, ys, zs) ∈ V.
This retrieval problem is much more over-determined than the previous problem, because it

demands the recovery of two functions ρ1 and ρ2 of two variables (x, y) from one known function I of
five variables (ϕ, θ, xs, ys, zs).

4. Conclusions

The results of numerical experiments using the 3D radiative transfer model showed that albedo
of a mixed forest stand consisting of deciduous (birch) and coniferous (pine) was highly sensitivity
to LAI, optical soil properties, and sun elevation. The highest sensitivity of forest albedo to species
composition of the forest stand occurred under high sun elevations (higher than >30◦) whereas at low
solar elevations (<25–30◦) this dependence was less pronounced. It was also shown that albedo of the
dense forest stand (LAI = 4) was less sensitive to species composition changes than the sparser forest
stand (LAI = 1). This dependence was pronounced for both light and dark soil types. These findings
agreed well with results of prior experimental and modeling studies of radiative regimes in various
types of forest canopies.

Our proposed algorithm provided a feasible approach to determine species composition of a
mixed forest stand from PAR reflectance properties. This approach allowed us to quantify the density
of at least two forest types from series the measurements from a theoretical helicopter, aircraft or drone
with installed equipment for measuring reflected solar radiation. The accuracy of assessing vegetation
species using this method depended on the number of points for canopy reflection measurements.
An increase of the input data volume (determined by the number of the measurement points) resulted
in higher accuracies for prediction of the proportions of different tree species. One limitation with this
approach is that tree species with similar optical properties (reflection, transmission and absorption
coefficients) cannot be readily differentiated. In this case, the method for retrieving forest species
composition cannot be correctly applied.

The study introduced one way to solve the inverse problem and to quantify the proportions of
different tree species in a forest stand using information on forest reflection properties, known LAI,
and the optical properties of different tree species. Additional studies are needed to develop stable
numerical algorithms for retrieving forest species composition. Moreover, it is crucial that each method
be tested and compared with experimental field data. If successful, these algorithms might be a very
useful tool for remote description of forest canopy characteristics and can be applied to various tasks
of modern forest ecology and micrometeorology.
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Appendix A. Algorithms for Calculation of the Total Cross-Section of the Interaction of
Sunbeams with Vegetation Elements and the Differential Cross-Section for Sunbeam Scattering

According to Knyazikhin and Marshak [8] the cross-sectional area of the interaction of
sun beams with vegetation volume in direction Ω at location r is expressed as σ(r, Ω) =

1
2π

∫
2π+

gL(r, ΩL)|(Ω, ΩL)|dΩL, where gL(r, ΩL) is the probability density of the leaf normal orientation

with respect to the upper hemisphere (2π+). In the case of uniform distribution of leaves by the tilt
angles, gL ≡ 1 and σ(r, Ω0) = 0.5 · LAD(r) where LAD(r) is the leaf area density function at point
r = {x, y, z} [31].

The differential cross-section σsλ(r, Ω′ → Ω) is defined as in [8] from the expression:

σsλ

(
r, Ω′ → Ω

)
=

1
2π

LAD(r)
∫

2π+

∣∣(Ω′, ΩL
)∣∣(γLD

(
ΩL, Ω′, Ω

)
+ γLS

(
ΩL, Ω′, Ω

))
dΩL,

where γLD(ΩL, Ω′, Ω) =

{
π−1rLD|(Ω, ΩL)|, (Ω, ΩL)(Ω′, ΩL) < 0,
π−1tLD|(Ω, ΩL)|, (Ω, ΩL)(Ω′, ΩL) > 0,

is a phase function of leaf

scattering: the part of the energy intercepted by photons initially falling in the direction Ω′ and scattered
after collision of photons with a leaf surface with an external normal ΩL into a solid angle Ω; rLD is a
leaf reflection coefficient; tLD is a leaf transmission coefficient; and γLS(ΩL, Ω′, Ω) = Fr(n, α′)δ2(Ω, Ω∗)
is a mirror reflection component:

Fr(n, α′) = 1
2

(
sin2(α′−θs)

sin2(α′+θs)
+

tg2(α′−θs)
tg2(α′+θs)

)
, sin α′ 6= 0;

Fr(n, α′) =
(1− 1

n )
2

(1+ 1
n )

2 = (n−1)2

(n+1)2 , sin α′ = 0.

Here, α′ is an angle between the incident sunbeams and the perpendicular to the leaf surface,
θs = arcsin

(
sin α′

n

)
; n = 1.5 is the wax refraction index; δ2 is a Dirac delta function; and Ω∗ is the

direction of corresponding leaf normal for the mirror scattering of the incident and reflected sun
beams. According to Knyazikhin and Marshak [8], the equation for mirror scattering can be written
as: 1

2π

∫
2π+

|(Ω′, ΩL)|Fr(n, α′)δ2(Ω, Ω∗)dΩL = 1
8π Fr(n, α∗), where cos α∗ = |(Ω′, Ω∗L)|, Ω∗L = (µ∗L, ϕ∗L),

µ∗L = |µ′−µ|√
2(1−(Ω,Ω′))

, cos ϕ∗L =

√
1−µ′2 cos ϕ′−

√
1−µ2 cos ϕ√

2−µ′2−µ2−2
√

1−µ′2
√

1−µ2 cos(ϕ−ϕ′)
.

Appendix B. Parameterization of Tree Crown Structure

To create the appropriate crown shape, we used the following expression for functions RC(z),
specifying the crown radius at height z:

RC(z) = Rmax · exp
(
−1

2
kS · (z− LT − kM · (z0 − LT))

2
)

The functions describing leaves and branches distributions within the tree crown (Fleaves(R, z)
and Fbranches(R, z), respectively) is expressed as:

Fleaves = kD

{
Fshape(R, z), R2

T ≤ R2 ≤ Rmax, kM(z0 − LT) + LT ≤ z ≤ z0,
Fshape(R, z) · exp(kL(z− LT − kM · (z0 − LT))), LT ≤ z ≤ kM(z0 − LT) + LT ,
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where Fshape = exp

(
−kU

(√
R2 + (z− kCz0)

2 −
√

R2
C + (z− kCz0)

2
)2
)

,

Fbranches =


(

1− R
Rmax

)
exp

(
−kS · (z− LT − kM · (z0 − LT))

2
)

, kM(z0 − LT) + LT ≤ z ≤ z0,(
1− R

Rmax

)
, LT ≤ z ≤ kM(z0 − LT) + LT ,

Rmax is the maximal radius of tree crown for both tree species (assumed in our study to be equal
2 m), kD, kM, kS, kU , kL and kC are coefficients specifying structural properties of the trees of different
species. The coefficient kD is the normalizing factor. Factor kM describes the location of the part of tree
crown with the largest cross section, factor kS is a coefficient describing the outer shape of tree crown,
and factors kU and kL are coefficients describing the leaf distribution in the upper and lower parts of
tree crown, respectively. Factor kC describes the location of the tree crown part with maximal density
of the leaves.

The model parameters for Silver birch have the following values: LT = 6 m, kD = 2.7, kM = 1/3,
kS = kU = 20, kL = 2, and kC = 0.4. Corresponding parameters for Scots pine are LT = 2 m, kD = 1.35,
kM = 1/3, kS = kU = 5, kL = 0.5 and kC = 0.5.
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