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Abstract: Solar-induced chlorophyll fluorescence (SIF) is closely linked to the photosynthesis of
plants and has the potential to estimate gross primary production (GPP) at different temporal and
spatial scales. However, remotely sensed SIF at a ground or space level is usually instantaneous,
which cannot represent the daily total SIF. The temporal mismatch between instantaneous SIF
(SIFinst) and daily GPP (GPPdaily) impacts their correlation across space and time. Previous studies
have upscaled SIFinst to the daily scale based on the diurnal cycle in the cosine of the solar zenith
angle (cos(SZA)) to correct the effects of latitude and length of the day on the variations in the
SIF-GPP correlation. However, the important effects of diurnal weather changes due to cloud and
atmospheric scattering were not considered. In this study, we present a SIF upscaling method
using photosynthetically active radiation (PAR) as a driving variable. First, a conversion factor
(i.e., the ratio of the instantaneous PAR (PARinst) to daily PAR (PARdaily)) was used to upscale
in-situ SIF measurements from the instantaneous to daily scale. Then, the performance of the SIF
upscaling method was evaluated under changing weather conditions and different latitudes using
continuous tower-based measurements at two sites. The results prove that our PAR-based method can
reduce not only latitude-dependent but also the weather-dependent variations in the SIF-GPP model.
Specifically, the PAR-based method gave a more accurate prediction of diurnal and daily SIF (SIFdaily)
than the cos(SZA)-based method, with decreased relative root mean square error (RRMSE) values
from 42.2% to 25.6% at half-hour intervals and from 25.4% to 13.3% at daily intervals. Moreover,
the PAR-based upscaled SIFdaily had a stronger correlation with the daily absorbed PAR (APAR) than
both the SIFinst and cos(SZA)-based upscaled SIFdaily, especially for cloudy days with a coefficient of
determination (R2) that increased from approximately 0.5 to 0.8. Finally, the PAR-based SIFdaily was
linked to GPPdaily and compared to the SIFinst or cos(SZA)-based SIFdaily. The results indicate that
the SIF-GPP correlation can obviously be improved, with an increased R2 from approximately 0.65 to
0.75. Our study confirms the importance of upscaling SIF from the instantaneous to daily scale when
linking SIF with GPP and emphasizes the need to take diurnal weather changes into account for SIF
temporal upscaling.
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1. Introduction

Photosynthesis, which supports most life on earth [1], is a vital process driving the global
carbon cycle [2]. The explicit estimation of the photosynthetic exchange flux, known as gross
primary productivity (GPP), can offer key information for exploring and quantifying terrestrial
carbon fixation by plants [3]. The eddy covariance (EC) technique makes it possible to measure
the carbon dioxide (CO2) exchange between vegetation and the atmosphere and partition it into GPP
and ecosystem respiration [4]. However, EC flux towers are dispersed and only cover very limited
regions. Remote sensing offers the unique possibility of deriving the continuous global monitoring
of carbon exchange. Currently, global GPP can be estimated using a light use efficiency (LUE)
model, which combines reflectance-based remote sensing and climate variables [5,6]; a data-driven
method, which integrates EC flux observations, remote sensing and climate data [2,7]; process-based
models [8,9]. However, uncertainties in the diagnostic models, measured variables, and auxiliary
products all propagate into the global GPP estimation, which limits the monitoring power of these
methods [2,10].

The remote measurements of sun-induced chlorophyll fluorescence (SIF) offer a new tool for
monitoring vegetation photosynthesis. SIF refers to the emission of red and far-red light from
chlorophyll during the absorption of photosynthetically active radiation (PAR) under natural sunlight.
As a byproduct of photosynthesis, SIF has been shown to have more direct and strong links with the
GPP than with reflectance-based data [11–13]. Extensive studies have demonstrated that the spatial
and temporal patterns of space-based SIF have linear correlations with those of GPP, although the
correlations are biome specific [14–16]. In the last decade, several ground-based and simulation-based
studies have verified empirical SIF-GPP correlations but found that the correlations are highly
dependent on the spatial and temporal scales [17,18], plant functional type [19], canopy structure [20],
and illumination conditions [21]. More recently, with the successful retrieval of SIF from satellite
sensors (e.g., References [14,15,22–25]), the space-based SIF has been successfully used to estimate
GPP at global scales.

In diurnal or seasonal cycles, SIF and GPP are both highly variable and regulated by many
dynamic factors (e.g., the incident light intensity, solar zenith angle (SZA), canopy structure and
vegetation amount) and meteorological factors or species that affect the efficiency of light used for
photosynthesis and fluorescence. Therefore, the temporal scales of SIF and GPP should be noted when
investigating the SIF-GPP relationship. To date, satellites can only record very few SIF observations per
month. Tower-based systems combining continuous SIF and EC flux measurements are rare [26]. Thus,
most observed SIF signals and products are basically instantaneous (with a unit of mW/m2/nm/sr),
which cannot represent the real variation in photosynthetic capacity during an integrated time period.
However, detecting the global carbon cycle always requires the integrated GPP for one day (with a unit
of µmolCO2/m2/d or gC/m2/d). Previous studies have mainly investigated the relationship between
instantaneous SIF (SIFinst) and daily integrated GPP (GPPdaily) without regard to the differences
between the instantaneous and daily scales. The question arises as to whether the temporal mismatch
between SIFinst and GPPdaily impacts the spatio-temporal patterns of SIF-GPP correlations.

Despite the temporal mismatch between SIF and GPP existing in many SIF-GPP studies,
few studies have focused on this issue. According to Reference [27], SIFinst cannot be a substitute
for daily SIF (SIFdaily) in assessing the SIF-GPP relationship because the SIFinst-SIFdaily correlation
obviously changes with different seasons and latitudes. Considering that the diurnal variations in SIF
are mainly driven by PAR [17,20,28–30], the changes in the SIFinst-SIFdaily correlation can be attributed
to the variations in the correlation between instantaneous PAR (PARinst) and daily PAR (PARdaily) across
time and space. These variations are mainly caused by three factors: latitude, season, and weather
condition. The effects of the first two factors can be explained by the different instantaneous values
of the cosine of the solar zenith angle (cos(SZA)) and the length of days under different latitudes
and seasons (see Figure 1a,b). In addition, due to the cloud and atmospheric scattering effects on
PAR, the PARinst-PARdaily correlations are obviously not consistent among days with different weather



Remote Sens. 2018, 10, 1663 3 of 20

conditions (see Figure 1c). Thus, it is important to correct all of these factors when upscaling SIF
from the instantaneous to daily scale. However, current studies (e.g., References [14,27,31]) have
only considered the first two factors based on the assumption of sunny days and calculated the
correction factor for SIF upscaling using the ratio of instantaneous cos(SZA) to daily integrated
cos(SZA). This method does not reproduce the real SIFdaily because the diffuse component of the
total shortwave radiation at the surface ranges nearly 15–80% across latitudes from 19 to 80◦ [32,33].
It confirms the need for a more proper method for upscaling SIF from the instantaneous to daily scale
and to compare the potential performance of SIFdaily with SIFinst in constraining the estimates of GPP.
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Figure 1. The diurnal cycles of cos(SZA) or measured photosynthetically active radiation (PAR)
under three conditions: (a) Different latitudes on 1 July 2017, (b) different seasons, and (c) different
weather conditions on adjacent days in 2018 at the Xiaotangshan (XTS) site. The dashed line marks the
instantaneous time as 9:30 (solar time), which is the overpass time of the Global Ozone Monitoring
Experiment 2 (GOME-2) measuring sun-induced chlorophyll fluorescence (SIF).

This study focused on upscaling the SIF observations from the instantaneous scale (with a unit
of mW/m2/nm/sr) to a daily integrated scale (with a unit of J/m2/nm/sr/d). The upscaling of
SIFdaily in this study referred to adding the temporal daily information to the instantaneous in-situ
measurements. Using the tower-based high-frequency time series of the measurements, we aim to
(i) quantitatively evaluate the results of the SIF upscaling method using PAR as a driving variable
(hereafter named the PAR-based method) compared with those using cos(SZA) as a driving variable
(hereafter named the cos-based method) and (ii) investigate whether the SIF-GPP correlation can be
improved when comparing GPPdaily with the PAR-based upscaled SIFdaily instead of the SIFinst or
cos-based upscaled SIFdaily. Our findings may shed light on the importance of taking the temporal
scale of SIF into account when assessing SIF-GPP relationships and are expected to further serve as a
reference for the temporal upscaling of space-based SIF products.

2. Materials and Methods

2.1. Tower-Based Measurements

2.1.1. Site Descriptions

Two field sites in China were selected: the Xiaotangshan (XTS) and Daman (DM) sites (Table 1).
The XTS site was located in an open and flat area, with a homogeneous wheat cropland, at the
National Precision Agriculture Demonstration Base in the town of Xiaotangshan, Beijing. The Daman
superstation was located in the Daman irrigation district in the middle reaches of the Heihe River
Basin, which is a typical oasis with very flat terrain, approximately 8 km southwest of Zhangye City in
northwest China [34]. The dominant plant type grown at the DM site was single-crop maize, which was
sown in early May and harvested in mid-September. The main plant type grown at the XTS site was
winter wheat, which was sown in late October and harvested in mid-June. Conventional fertilizer and
irrigation management were used on these crops, which had a uniform growth status.
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Two tower-based systems combining continuous meteorology, flux, and SIF measurements were
deployed at the two sites. Table 1 lists the details of the measured height (denoted as the height above
canopy) and time window for the SIF, flux, and meteorological measurements. During the wheat and
maize growing seasons in 2017 and 2018, synchronous SIF, flux, and meteorological measurements
were completed, except for the absence of correct flux data at XTS due to an operating error in the EC
system. Although the flux and SIF may be measured with different footprints on the ground, the EC
measurements can be representative of a homogeneous cropland at these sites.

Table 1. Site descriptions and details of the measured height and time window.

Site Position Vegetation Type
Measured Height (m) Time Window

SIF Flux Meteorology SIF Flux Meteorology

XTS 116.44◦E 40.18◦N Wheat, C3 3 3 3
2017: 4/30–5/28

/
2017

2018: 4/10–5/21 2018

DM 100.37◦E 38.86◦N Maize, C4 20 5 5 2017: 6/9–9/20 2017 2017

2.1.2. Solar-Induced Fluorescence Measurements

An automatically long-term SIF observation system (AutoSIF) was designed and deployed
on the platforms of the towers at the two sites for long time series SIF measurements (Figure 2).
This system was included in the ChinaSpec network [35], which links in situ spectral measurements
with point EC observations for a better understanding of the atmosphere-biosphere interaction.
The AutoSIF operating height and time window are listed in Table 1. This system was designed
similarly to state-of-the-art systems around the world (e.g., the FluoSpec [21] and Piccolo systems [36]),
which are all based on a dual field-of-view (FOV) and hemispherical-conical configuration (for a review,
see Reference [37]). The main components integrated in AutoSIF include a customized Ocean Optics
QE65PRO spectrometer (Ocean Optics, Dunedin, FL, USA), with a spectral resolution of ~0.3 nm and
a signal-to-noise ratio (SNR) higher than 1000 in the range of 645–805 nm, a bifurcated optical fiber
(CPATCH, Ocean Optics, Inc., Dunedin, FL, USA), two optical shutters (FOS-1X1-TTL, Ocean Optics,
Inc., Dunedin, FL, USA), an automatic refrigeration system, and a controller PC for data collection
and storage. The spectrometer was connected to a bifurcated optical fiber with two optical shutters to
split the optical signal into two channels: One channel pointing at the zenith, with a cosine corrector
(CC3-3-UV-S, Ocean Optics, Inc., Dunedin, FL, USA) to capture downwelling incident radiance from a
180◦ FOV, and the downlooking channel, which points at nadir or off-nadir with a conical fore-optic
(bare fiber) to capture upwelling radiance from a smaller FOV (such as 25◦). The two optical shutters
separately switched between open and closed to measure the upwelling, downwelling and the systems’
dark current quasi-synchronously.
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Figure 2. AutoSIF observation systems in use at the XTS (a) and Daman (DM) (b) sites, in which
the downwelling measurements were hemispherical, and the upwelling measurements were conical.
Downwelling cosine corrected fore-optics (1), upwelling conical fore-optics (2) and the instrument
housing box (3) are labeled in their respective positions.
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The measuring mode was a ‘sandwich’ type: First, collect the solar irradiance by opening
the shutter of the downwelling channel; second, collect the canopy reflected radiance by opening
the shutter of the upwelling channel; finally, measure the solar irradiance again. With immediate
channel switching, the system presents a relatively low time delay between up- and downwelling
measurements (several seconds). We calculated the average of the two solar irradiance measurements
to decrease the effects of weather changes caused by the time delay. Before each of the three single
measurements, the integrated time (0.7–6 s) was optimized depending on the light intensity, and the
corresponding dark current was measured and finally corrected from the total signal. Generally,
the system completed a sandwich measurement cycle from 15 s (midday) to 2 min (sunrise or sunset).
The measurement was carried out at a time interval of 2 min. Through the radiometric calibrations,
which used a standard calibration light in a darkroom, the digital number (DN) value (with a unit of
counts) collected by the spectrometer was converted into radiance (with a unit of mW/m2/nm/sr).
Thus, the system automatically and continuously acquired the vegetation-reflected and corresponding
solar radiance spectra with high spectral and time resolutions.

The three band Fraunhofer line depth (3FLD) method [38] was used to extract the SIF signal from
the measured solar and vegetation-reflected radiances in the atmospheric absorption bands (O2-A band
at approximately 760 nm). This method has been proven to be robust and accurate for SIF retrieval in
the O2-A band (the RRMSE is ~10%) when using spectral measurements via a spectrometer with a
spectral resolution of ~0.3 nm and an SNR higher than 1000 [20,39]. The raw SIF data, which were
negative or larger than 5 mW/m2/nm/sr, were discarded in the following data process and analysis.
For each time period of 30 min (T30), we calculated the half-hour SIF (SIFT30) by averaging all valid
raw SIF measurements (SIF0) within a time range of 15 min before and after T30:

SIFT30 =
T30+15 min

∑
T30−15 min

SIF0(t)/N (1)

where N represents the number of SIF measurements for half an hour. SIFdaily was calculated by
integrating the SIF from sunrise to sunset for one day, as shown in Equation (2). The diurnal SZA
values at the two sites were calculated using a function that includes latitude (lat), longitude (lon),
date, and local time of day (t): f (lat, lon, date, t). The times of sunrise (Tsunrise) and sunset (Tsunset)
were determined according to an SZA of less than 90◦. Setting the temporal interval at 30 min (∆t30),
the summation form of SIFdaily can be expressed as follows:

SIFdaily =
∫ Tsunset

Tsunrise

SIF(t)dt ≈
Tsunset

∑
Tsunrise

SIFT30(t)× ∆t30. (2)

During the operating time window of AutoSIF, as listed in Table 1, on 17 and 20 June, 7 and 22 and
12–20 July, 22–31 August, and 1–5 and 7–8 September 2017, at the DM site, spectral measurements failed
due to power outages. As a result, we acquired the continuous solar irradiance, vegetation-reflected
radiance spectra, SIFT30 and SIFdaily for 71 and 72 days at the XTS and DM sites, respectively.

2.1.3. Meteorological and Flux Observations

The meteorological and flux variables were observed using an automatic weather station (AWS)
and EC system [34], which were fixed on the tower approximately 3, 5, and 20 m above the canopy at
the XTS and DM sites. The collected meteorological variables involved in this study included PAR,
broadband incoming shortwave radiation (Rin), air temperature (Ta), air pressure (p), wind speed (u),
vapor pressure deficit (VPD), and air humidity (Rh). These data were measured and recorded every
10 min with a CR1000 unit (Campbell Scientific Inc., Logan, UT, USA). Similar to the calculation of
SIFT30 in Equation (1), PAR and all other meteorological variables were averaged into 30 min intervals
to correspond to the flux and SIF observations.



Remote Sens. 2018, 10, 1663 6 of 20

Near the AWS, an EC system was deployed to measure the exchange of energy, water, and CO2

across the canopy-atmosphere interface. The AWS included a 3D sonic anemometer (CSAT3, Campbell
Scientific Inc., Logan, UT, USA) for measuring three-dimensional velocity and temperature and an
open-path infrared gas analyzer (Li-7500, Li-Cor, Lincoln, NE, USA) for measuring CO2 and H2O
density. The main output parameters involved in this study include the net ecosystem exchange of
CO2 flux (NEE), latent heat flux (LE), sensible heat flux (H), friction velocity (u*), and atmospheric
CO2 concentration (Ca). The data were stored in a CR3000 data logger (Campbell Scientific Inc., Logan,
UT, USA) and processed with an average time of 30 min at a sampling frequency of 10 Hz.

The GPP data at 30 min intervals (GPPT30) were calculated using the online tool available at
the Max Planck Institute for Biogeochemistry (MPI-BGC) website (http://www.bgc-jena.mpg.de/
~MDIwork/eddyproc/), with input variables including Rin, Ta, u*, rH, LE, and H. Gap filling of the EC
and meteorological data was performed with methods similar to those in Reference [40]. Daytime NEE
was partitioned into GPP and ecosystem respiration based on the night-time partitioning algorithm [41].
GPPdaily was calculated by integrating the GPP from sunrise to sunset for one day, which was similar
to the calculation of SIFdaily in Equation (2), and has a time-integrated unit of gC/m2/d.

2.1.4. Vegetation Indexes and FPAR Estimation

Canopy reflectance in the range from 645 nm to 805 nm was calculated with the measurements of
solar irradiance and vegetation-reflected radiance spectra. According to the study of Reference [42],
the soil-adjusted vegetation index (SAVI) had a close connection with the leaf area index (LAI) and
was insensitive to soil reflectance at a low LAI. In this study, the daily averaged SAVI was adopted to
estimate the LAI of the wheat canopy at the XTS site in 2017. The SAVI was defined by Reference [43] as:

SAVI = (1 + L)·(ρ801 − ρ670)/(ρ801 + ρ670 + L) (3)

where the constant L = 0.5 was adjusted to explain the first-order soil background variation.
The reflectance at 801 nm was replaced by reflectance at 795 nm in this study due to the limitation in
the spectrometer’s wavelength range.

The normalized difference vegetation index (NDVI) was used to estimate the diurnal FPAR.
According to previous studies [44,45], for a fixed observed geometry, the diurnal cycles of NDVI and
FPAR had similar responses and the FPAR-NDVI relationship was relatively invariant to the SZA.
The NDVI was defined as [46]:

NDVI = (ρ801 − ρ670)/(ρ801 + ρ670). (4)

Similarly, we used reflectance at 795 nm instead of 801 nm in this study. Based on the NDVI linear
stretching model reported in Reference [47] and Reference [48], the diurnal FPAR can be expressed as:

FPAR =
NDVI − NDVImin

NDVImax − NDVImin
·(FPARmax − FPARmin

)
(5)

where NDVImin and NDVImax were set at 0.3 and 0.925 for the crops in our study area and, generally,
FPARmin and FPARmax were 0.001 and 0.95, respectively [47]. Liu [19] compared the model-predicted
FPAR with the measured FPAR data and demonstrated that this NDVI-based model reliably estimated
FPAR and its diurnal variations. Then, the diurnal FPAR values for all measuring days were estimated
using the measured spectral data. Accordingly, the absorbed PAR (APAR) values were calculated as
the product of FPAR and PAR derived by the AWS. Similar to the calculation of SIFT30 in Equation (1),
half-hour APAR data (APART30) were derived. The daily APAR (APARdaily) was calculated by
integrating the APAR from sunrise to sunset for one day, which was similar to the calculation of
SIFdaily in Equation (2) and has a time-integrated unit of MJ/m2/d.

http://www.bgc-jena.mpg.de/ ~MDIwork/eddyproc/
http://www.bgc-jena.mpg.de/ ~MDIwork/eddyproc/
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2.2. GPP from SCOPE Model Simulations

Considering the absence of GPP data at XTS in 2017 and 2018 (the EC system was not operating
properly, and the flux data were incorrect), we used the Soil-Canopy Observation of Photosynthesis
and Energy (SCOPE) model v1.61 [49] to simulate GPP at 30 min intervals to relate the measured
SIF data. According to the global sensitivity analysis (GSA) of the SCOPE model in Reference [50],
apart from the meteorological inputs, the chlorophyll content density (Cab), LAI, and maximum
carboxylation rate (Vcmax) were the main driving variables that governed the simulated SIF and likely
the GPP. For GPP simulation at XTS in 2018, the input vegetation parameters, including Cab and
LAI, were measured from field experiments at 6–10 days intervals, as listed in Table 2. Cab was
determined using measurements from a SPAD-502 (Soil and Plant Analyzer Development) chlorophyll
meter [51], and the LAI was measured by the scanning method. For simulation at XTS in 2017,
daily LAI was estimated with the SAVI-LAI linear model that derived from the measurements in 2018;
then, Cab was retrieved with the model inverting method similar to Reference [52]. More specifically,
daily Cab was estimated by minimizing the difference between the measured and SCOPE-simulated
reflectance spectra in the region at 650–750 nm, with a lookup table (LUT) of input Cab values from
20 to 70 µg/cm2 and a step of 5 µg/cm2.

Table 2. The input chlorophyll content density (Cab) (unit: µg/cm2), leaf area index (LAI),
and maximum carboxylation rate (Vcmax) (unit: µmol/m2/s) values for the gross primary productivity
(GPP) simulation of the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) model during
the time window of the SIF measurements in 2017 and 2018.

2017 2018

4/29 5/9 5/19 5/24 5/28 6/1 4/9 4/16 4/24 5/3 5/13 5/23 5/31

Cab 65 65 60 55 30 20 47.5 47.4 58.4 63.4 65.1 59.8 33.6
LAI 2.10 2.00 1.91 1.81 1.52 0.75 1.09 1.57 1.71 2.28 1.77 1.64 1.03
Vcmax 110 90 80 70 55 40 50 60 70 110 90 70 50

Vcmax can be estimated from net CO2 flux measurements by inverting the commonly used
modeling paradigm of canopy CO2 and energy fluxes [53]. Based on this method and using the SCOPE
model, our previous study [54] successfully estimated the Vcmax values throughout the growing season
of wheat at XTS in 2015 and 2016. The estimated Vcmax values between the two years had consistent
seasonal values, with a range of 30–110 µmol/m2/s. According to a previous study [55], during the
crop’s growing season, Vcmax increased rapidly with time until it reached its maximum during the
mid-growing season and then declined toward the end of the growing season. Based on this prior
knowledge and considering that wheat has a similar growth status between adjacent years under
conventional fertilizer and irrigation management, the Vcmax values on different days of the year in
2017 and 2018 were set as their values on corresponding days of the year in 2015 and 2016. Table 2 lists
the retrieved or measured Cab, LAI, and Vcmax values for the model inputs during the time window of
the SIF measurements at 4–10 days intervals.

Meteorological variables that control the variations in GPP simulations (i.e., Rin, Ta, p, u, and VPD)
were derived from the AWS observations. All half-hour meteorological variables and seasonally
changed inputs (including Cab, LAI, and Vcmax, as shown in Table 2) were imported into the model
input files and loaded for the time series simulations of GPP with SCOPE. Meanwhile, the diurnal
SZAs were automatically calculated during the simulation using the inputs Julian day, time, and field
site longitude and latitude. Other parameters required by the SCOPE model were set to their default
values for each plant functional type (for details, see Reference [50]). With all of these directly measured
or indirectly retrieved inputs, the SCOPE model accurately interpreted the diurnal and seasonally
changed values of the GPP.
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2.3. Simulating SIF and APAR at Different Latitudes

Remote sensing often observes ground features across different latitudes that receive changed
levels of solar radiation. The latitudinal pattern of incoming solar radiation causes large uncertainties
in the application of remote sensing at the global scale. For the SIFinst observation, latitude is a large
factor that affects the relationships between SIFinst and SIFdaily (see Figure 1a) and, thus, may affect the
performance of SIF for the APAR or GPP estimation. However, this study only obtained data from two
sites distributed at similar latitudes, which was insufficient for the investigation of SIF applications
at different latitudes. To better understand the latitudinal effects on the SIF-APAR relationship,
we used the SIF, PAR, and FPAR measurements at limited sites with a latitude of ~40◦ to simulate
their corresponding values at other latitudes. As the latitudinal patterns of incoming solar radiation
were only attributed to the latitudinal variations in SZA, it was reasonable to neglect the weather
changes among different latitudes and, thus, to simulate PAR values at different latitudes based on the
latitudinal SZA changes. Similarly, based on the assumptions that the crop growth status and plant
physiological response to illumination are the same across latitudes, the SIF, FPAR, and thus APAR
values at these latitudes can be simulated. The spatial heterogeneities of environmental conditions
(e.g., weather, temperature, and precipitation), soil types, plant varieties, and vegetation growth status
were not taken into consideration because they were irrelevant to the analysis of latitudinal variations
in SIF-APAR relationships.

In this study, we picked three different latitudes, including −20◦, −40◦, and 60◦, to perform
simulations based on the measurements at each of the two sites. These latitudes were selected because
they are spatially representative and the minimum SZA values at these latitudes were lower than the
minimum SZA values at a latitude of 40◦ during our measuring period. Figure 3 displays an example
of the simulation of SIF at different latitudes. Using the diurnal SIF measurements at a latitude of 40◦

(gray line in Figure 3), the diurnal SIF values on the same day at other latitudes (green and red lines in
Figure 3) were calculated based on the latitude-dependent SZA values. Specifically, the SIF value of
time t1 at a latitude of 60◦ or −40◦ equaled the SIF value of time t2 at a latitude of 40◦, where t1 and t2
correspond to the same SZA and both occur in the morning or afternoon. For instance, the SIFT30 value
at 10:00 at a latitude of 60◦ (see the green arrow in Figure 3) can be simulated as follows: (1) calculate
the range of SZA (∆SZA) corresponding to the time range [9:45 10:15] at a latitude of 60◦, (2) search for
the set of SIF0 measurements at a latitude of 40◦ in the morning that satisfy the condition where their
corresponding SZA values are within ∆SZA (the green frame in Figure 3), and (3) average the searched
SIF set in the previous step as the SIF value at 10:00 at a latitude of 60◦. The simulation of the SIFT30

value at 15:00 at a latitude of −40◦ (see the red arrow in Figure 3) was similar but the searched time
window was in the afternoon. By repeating these steps for each half-hour time for all days and other
latitudes, 12 time series of continuous SIF, PAR, and APAR datasets at 30 min intervals were generated
at four different latitudes at two sites.
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2.4. Temporal Upscaling from Instantaneous to Daily SIF 

Figure 3. The simulation of diurnal SIF values at the latitudes of 60◦ and −40◦ with continuous SIF
measurements at a latitude of 40◦ at the XTS site on 27 April 2018. The green and red frames denote
the sets of SIF values to be averaged for the simulation of SIF at 10:00 at a latitude of 60◦ and at 15:00 at
a latitude of −40◦.
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2.4. Temporal Upscaling from Instantaneous to Daily SIF

SIF can be expressed as a product of PAR, FPAR, and the quantum yield for fluorescence (LUEf),
given that fesc is almost constant for a given vegetation species [16]. As LUEf and FPAR have much
smaller diurnal variations compared to the diurnal variation in PAR [19,27], the SIF was regarded as
approximately linear related to the PAR at a diurnal scale. Several studies have also demonstrated
that there is a significant linear correlation between the SIF and PAR at the diurnal scale using in
situ measurements [17,20,28,29]. Therefore, the SIF value at any time of a day can be approximately
calculated using the ratio of SIF to PAR for a given instantaneous time and with continuous diurnal
PAR data, which is expressed as:

SIF(t) ≈ SIFinst

PARinst
·PAR(t). (6)

By integrating SIF(t) with time from sunrise to sunset over one day, the daily integrated SIF can
be approximately calculated as follows:

SIFdaily ≈ SIFinst·
PARdaily

PARinst
(7)

where PARdaily was calculated by integrating the half-hour PAR from sunrise to sunset for one
day, which was similar to the calculation of SIFdaily in Equation (2) and had a time-integrated
unit of MJ/m2/d. PARdaily/PARinst can be regarded as the temporal conversion factor from SIFinst

(mW/m2/nm/sr) to SIFdaily (J/m2/nm/sr/d).
Recent studies (e.g., References [14,27,31]) used an approximate clear-sky PAR proxy (cos(SZA))

to replace PAR in Equation (7) for SIF upscaling from the instantaneous to daily scale. This cos-based
method for SIF temporal upscaling assumes that the diurnal variation in SIF only depends on the SZA
values and did not consider cloud and atmospheric scattering effects. In this study, we upscaled SIFinst

at a given time of 9:30 to SIFdaily using these two upscaling methods (i.e., the cos-based and PAR-based
methods) with the tower-based measurements at the two sites and then investigated whether the
PAR-based SIFdaily can improve the SIF-GPP correlation instead of using SIFinst or cos-based SIFdaily.

3. Results

3.1. Evaluating the Accuracy of Upscaled SIF with Long-Term Measurements

To quantitatively assess the accuracies of the PAR-based method and cos-based method for SIF
upscaling from the instantaneous to daily scale, the tower-based SIF measurements at the two sites were
regarded as the reference data for comparison with the upscaled SIF at half-hour and daily intervals.

First, for each measurement day, we evaluated the accuracy of the predicted SIFT30 at two sites.
The predicted SIF values using the two upscaling methods were compared with the measured SIF
values to investigate whether the predicted SIF reliably tracked the diurnal cycles of SIF measurements.
We also calculated the corresponding relative root mean square error (RRMSE) values between the
measured and predicted SIF values for each day. The measurement days were divided into two
weather conditions, sunny and cloudy days, by judging whether the coefficient of determination
(R2) between PAR and cos(SZA) was larger than 0.9. Figure 4 displays the results for the XTS site in
2018 as an example. On sunny days with clear sky conditions (labeled with solid bars in Figure 4b),
the diurnal SIF values predicted by both methods were quite consistent with the measured SIF values:
The RRMSE values of the two methods were comparable and less than 40%. However, on cloudy days
with unstable weather conditions (labeled with hollow bars in Figure 4b), only the SIF values predicted
by the PAR-based method can reliably track the diurnal cycles of the measured SIF. The RRMSE values
of the SIF predicted by the cos-based method were larger than 60% for most cloudy days due to the
effects of clouds and scattering light.



Remote Sens. 2018, 10, 1663 10 of 20
Remote Sens. x, x, x FOR PEER REVIEW  10 of 21 

 

 

Figure 4. Comparison of diurnal cycles (a) and relative root mean square error (RRMSE) values (b) 

between the measured SIF and predicted SIF using the cos-based and PAR-based methods at 30 min 

intervals on sunny and cloudy days in 2018 at the XTS site. 

Secondly, for all measurement days, we evaluated the accuracy of the predicted SIF at the two 

sites at both half-hour and daily intervals. Figure 5 shows the correlation analysis between the 

predicted SIF using the PAR-based and cos-based methods with the measured SIF at the two sites at 

two temporal scales: half-hour and daily. In general, the predicted SIF values using the PAR-based 

method at both half-hour and daily temporal scales match the reference values well: The points 

were located close to the 1:1 line, the R2 values were higher than 0.9, and the RRMSE values were 

25.6% at the half-hour interval and 13.3% at the daily interval. However, the predicted SIF values 

using the cos-based method were not as robust as those predicted by the PAR-based method, with 

significantly lower R2 values and larger RRMSE values at both half-hour and daily intervals. 

 

Figure 5. Scatter diagrams between the measured SIF and predicted SIF using the cos-based and 

PAR-based methods at half-hour (a) and daily (b) intervals at two sites. The black dotted line 

represents the 1:1 line. 

From the accuracy assessment on SIF upscaling for both individual days and all measuring 

days, we can conclude that the PAR-based method can predict diurnal and SIFdaily more accurately 

than the cos-based method. The main reason for this lies in the effects of large weather changes on 

cloudy days. For more accurate SIF upscaling from the instantaneous to daily scale, the diurnal 

changes in weather should be taken into account by integrating the continuous PAR data for SIF 

upscaling. 

Figure 4. Comparison of diurnal cycles (a) and relative root mean square error (RRMSE) values
(b) between the measured SIF and predicted SIF using the cos-based and PAR-based methods at 30 min
intervals on sunny and cloudy days in 2018 at the XTS site.

Secondly, for all measurement days, we evaluated the accuracy of the predicted SIF at the two sites
at both half-hour and daily intervals. Figure 5 shows the correlation analysis between the predicted SIF
using the PAR-based and cos-based methods with the measured SIF at the two sites at two temporal
scales: half-hour and daily. In general, the predicted SIF values using the PAR-based method at both
half-hour and daily temporal scales match the reference values well: The points were located close to
the 1:1 line, the R2 values were higher than 0.9, and the RRMSE values were 25.6% at the half-hour
interval and 13.3% at the daily interval. However, the predicted SIF values using the cos-based method
were not as robust as those predicted by the PAR-based method, with significantly lower R2 values
and larger RRMSE values at both half-hour and daily intervals.
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Figure 5. Scatter diagrams between the measured SIF and predicted SIF using the cos-based and
PAR-based methods at half-hour (a) and daily (b) intervals at two sites. The black dotted line represents
the 1:1 line.

From the accuracy assessment on SIF upscaling for both individual days and all measuring days,
we can conclude that the PAR-based method can predict diurnal and SIFdaily more accurately than the
cos-based method. The main reason for this lies in the effects of large weather changes on cloudy days.
For more accurate SIF upscaling from the instantaneous to daily scale, the diurnal changes in weather
should be taken into account by integrating the continuous PAR data for SIF upscaling.
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3.2. Comparison between Instantaneous SIF and Daily SIF Across Space and Time

To investigate whether the upscaled SIFdaily can reduce the variations in the SIFins-SIFdaily
correlation across space and time, we compared SIFins (at 9:30) and the upscaled SIFdaily using two
upscaling methods (i.e., the cos-based and PAR-based methods) with the measured SIFdaily under
different weather conditions and different latitudes (simulated data).

Figure 6 displays the correlations between SIFins and upscaled SIFdaily with the measured SIFdaily
for sunny and cloudy days at the two sites. On sunny days (labeled with blue symbols in Figure 6),
the SIFins-SIFdaily correlations for different days were relatively stable, with R2 values larger than 0.9.
In this case, the relevance of the measured SIFdaily with upscaled SIFdaily was similar to that with
SIFinst: the R2 values for the three kinds of SIF were basically the same and the RRMSE values for
SIFdaily using the two upscaling methods were comparable and both less than 15%. On cloudy days
(labeled with black symbols in Figure 6), the SIFins-SIFdaily correlations changed remarkably across
different days; R2 was approximately 0.7. Note that these variations can only be reduced by upscaling
SIFinst using the PAR-based method; R2 for the PAR-based upscaled SIFdaily was significantly larger
than that for SIFinst. However, upscaling SIFinst using the cos-based method made no improvement for
the SIFins-SIFdaily correlation on cloudy days; R2 for this method was almost equal to that for SIFinst,
and the corresponding RRMSE value was significantly greater than that for the PAR-based method.
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Figure 6. Scatter diagrams between the measured SIFdaily with SIFinst (a) and the upscaled SIFdaily

using the cos-based (b) and PAR-based (c) methods for sunny and cloudy days at two sites, as indicated
by the colors. The black dotted line represents the 1:1 line.

Apart from weather conditions, latitudes were also an influential factor on the variations in
SIFins-SIFdaily correlations across space and time (see Figure 1). Figure 7 displays the correlations
between SIFins and upscaled SIFdaily with the measured SIFdaily for four different latitudes simulated
using the observations at the XTS and DM sites. Considering that the R2 value of the regression
without an intercept is very close to that with an intercept, we conducted the regression with a zero
intercept to better compare the slopes of the SIFins-SIFdaily correlations among the four latitudes.
The corresponding R2 values and coefficient of variation (CV) of the regression slopes for the four
latitudes were also calculated. The variations in the SIFins-SIFdaily correlations across different latitudes
can be significantly reduced by upscaling the SIFinst to a daily scale using both the cos-based and
PAR-based methods. Specifically, the regression slopes for the upscaled SIFdaily exhibited substantially
smaller variations than those for the SIFinst (CV = 0.034 for the cos-based method). For the PAR-based
method, the regression slopes tended to be normalized at a constant value, with a CV of 0.01. However,
for individual latitudes, only the PAR-based method corrected the influence of weather conditions
on the SIFins-SIFdaily correlations, with impressively larger R2 values than those of the SIFinst but the
cos-based method did not achieve this effect with nearly the same R2 values as those for the SIFinst.
It results in a relatively lower increase in R2 for the SIFins-SIFdaily overall correlation across all latitudes
when using the cos-based method (increasing the value of R2 from 0.789 to 0.842) than that when using
the PAR-based method (increasing the value of R2 from 0.789 to 0.942).
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In view of the above results, latitude and weather conditions were two important factors affecting
the variations in SIFinst-SIFdaily correlations and, thus, the SIF-APAR and SIF-GPP relationships across
space and time, respectively. The effects of latitude can be reduced by upscaling SIFinst to a daily scale
using the cos-based method, whereas the effects of weather conditions cannot be corrected by this
method due to clouds or scattered lights. SIFinst may not be a substitute for SIFdaily when assessing the
SIF-GPP relationship across space and time unless considering both latitudinal and diurnal weather
changes via SIF upscaling using the PAR-based method.

3.3. Comparison between SIF and APAR Across Space and Time

The SIFinst-SIFdaily correlations changed substantially with different latitudes and weather
conditions. How does this result affect the relationship between SIF and APAR or GPP? whether the
SIF-APAR or SIF-GPP relationships via SIF upscaling from instantaneous to daily scales should be
further verified. APAR is a bridge that links SIF to GPP [11,13,30] and has been proven to dominate
the SIF-GPP relationship [56]. Therefore, the investigation of SIF-APAR correlations across space and
time is required to better understand the SIF-GPP relationships, which is demonstrated as follows.

Figure 8 shows the correlations between APARdaily with the SIFins and upscaled SIFdaily, using the
two methods for sunny and cloudy days at the XTS and DM sites. Similar to the correlations shown in
Figure 6, at both sites on sunny days, the R2 values for the three kinds of SIF all exhibit weak changes,
whereas, on cloudy days, the R2 values can be greatly increased when comparing APARdaily with
PAR-based SIFdaily instead of SIFins or cos-based SIFdaily. Figure 9 reports the correlations between
SIFins and the upscaled SIFdaily with APARdaily for four different latitudes simulated using observations
at the XTS and DM sites. The large variations in the regression slopes for SIFins-APARdaily across
different latitudes could be reduced by SIF upscaling at both sites, especially when using the PAR-based
method, which was also similar to the correlations shown in Figure 7.

In conclusion, the variations in the SIFinst-SIFdaily correlations are important reasons for the
changes in the SIF-APAR relationship across space and time. At the spatial scale, the SIF-APAR
relationship was impacted when using SIFinst due to the effect of different latitudes. At the temporal
scale, the SIF-APAR relationship had uncertainties when using both SIFins and cos-based SIFdaily due to
the effect of different weather conditions. Both of these effects can be reduced and, thus, the SIF-APAR
relationship across space and time can be effectively improved by upscaling SIFinst to a daily scale
using the PAR-based method.
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3.4. Performance of Upscaled Daily SIF to Track GPP at the Seasonal Scale

As demonstrated above, the effects of changed weather conditions on the differences between
the instantaneous scale and daily scale can be reduced by upscaling SIFinst to the daily scale using
PAR data. As the GPP is a product of APAR and LUE, the improvement in the SIF-APAR relationship
caused by SIF upscaling using the PAR-based method may produce a better correlation between
GPPdaily and SIF.

Figures 10 and 11 display the seasonal cycles of GPPdaily and upscaled SIFdaily, respectively,
using two methods at the XTS and DM sites. To obtain a better understanding, the SIFT30 and GPP data
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on some representative days are emphatically shown in the figures. We did not exhibit the seasonal
cycles of the SIFinst values because they were almost the same as those of the cos-based upscaled
SIFdaily. In general, the upscaled SIFdaily using both methods can reliably track the seasonal changes
in GPPdaily at the two sites. Specifically, the GPPdaily and upscaled SIFdaily using the two methods all
exhibit similar seasonal cycles across the growth seasons for wheat and maize; they all increase at first
with crop revival and growth and then decrease with the crop senescence. However, for several days
that experienced substantial changes in weather (e.g., the 125th day in 2017 and the 136th and 137th
days in 2018 at the XTS site (see Figure 10) and the 178th, 183th, 229th, and 230th days at the DM site
(see Figure 11)), the diurnal cycles of the PAR-based SIF agreed better with the diurnal GPP changes
and, thus, the PAR-based upscaled SIFdaily values were more accurate than the cos-based upscaled
SIFdaily. This result made the seasonal cycles of PAR-based upscaled SIFdaily more consistent with the
seasonal GPPdaily than the cos-based upscaled SIFdaily. Note that both the upscaled SIFdaily by the two
methods and the measured SIFdaily will underestimate GPPdaily on those cloudy days (see Figures 10
and 11), especially for the data at the DM site.
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cos-based and PAR-based methods during the growth season for maize at the DM site in 2017 and 2018
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Figure 12 reports the quantitative assessment of the SIF-GPP correlations at half-hour and daily
intervals for C3 and C4 crops at the XTS and DM sites, respectively. At the half-hour interval,
the predicted SIF using the PAR-based method has a stronger correlation with the GPP than that using
the cos-based method, with an increasing R2 from 0.658 to 0.785 at the DM site and from 0.807 to 0.875
at the XTS site. More importantly, at daily intervals, the upscaled SIFdaily using the PAR-based method
also had an obviously stronger correlation with GPPdaily than with SIFinst or the cos-based SIFdaily;
the R2 values increased from approximately 0.68 to 0.76 at the DM site and from approximately 0.78 to
0.87 at the XTS site. However, the cos-based method did not reduce the differences between SIFinst and
SIFdaily at the seasonal scale, with nearly the same R2 values as those for SIFinst. Note that the higher
R2 values of the SIF-GPP correlation at the XTS site than those at the DM site were caused by the
simulated GPP at the XTS site as opposed to the measured GPP at the DM site, which was independent
of the different vegetation functional types for the C3 and C4 crops. In conclusion, at the seasonal
scale, the SIF-GPP correlations can be obviously improved when comparing the PAR-based SIFdaily
with the GPPdaily instead of SIFinst and the cos-based SIFdaily at both half-hour and daily intervals.
This improvement was important for more reliable GPP estimation at the seasonal scale.Remote Sens. x, x, x FOR PEER REVIEW  16 of 21 
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4. Discussion

4.1. Prospects of Improving GPP Estimation by SIF Upscaling

Based on the biome-specific SIF-GPP correlations, the space-based SIF has been successfully used
to estimate the GPP at global scales [16]. In most studies that link the SIF to GPP, the SIF occurred at
an instantaneous scale but the GPP occurs at a time-integrated scale, which caused uncertainties in the
SIF-GPP model and, thus, affected the GPP estimation. It has been demonstrated in Reference [27]
that upscaling the GOME-2 monthly product from the instantaneous to daily scale can improve its
correlation with the monthly GPP product across different biome types because the effects of latitude
on SIFins-GPP variations have been corrected. Furthermore, this study upscaled the SIFinst to a daily



Remote Sens. 2018, 10, 1663 16 of 20

scale using PAR as a driving variable. Long-term SIF and GPP measurements have validated that this
PAR-based method can reduce not only the latitude dependency but also the weather dependency
of the SIF-GPP model, which is likely to improve the accuracy of GPP estimation at the ground and
spatial scales.

Further opportunities are available to evaluate the advantages of PAR-based SIF upscaling for GPP
estimation at a global scale using the space-based SIF product (e.g., the GOME-2 monthly SIF product or
the TROPOspheric Monitoring Instrument (TROPOMI) SIF product [57]) and the global PAR and GPP
products. To date, most global SIF products are gridded monthly averages of valid SIF observations
within one month. As satellites can only derive no more than one SIF observation per day, and valid SIF
observations mainly occur on sunny days, the monthly SIF averages cannot represent the real monthly
SIF to estimate the monthly GPP due to the contributions of photosynthesis and SIF emissions during
cloudy weather conditions. Using continuous PAR data for SIF upscaling may solve this problem.
If the effects of FPAR and fluorescence efficiency changes on SIF within one month are neglected,
the upscaled monthly SIF can be calculated as a product of the instantaneous mean SIF validly observed
at 9:30 (local time) and the ratio of the monthly averaged PAR to the corresponding instantaneous PAR.
The calculated results will have an additional error due to neglecting the fluorescence efficiency and
FPAR changes. Considering the variations in FPAR and fluorescence efficiency with the vegetation
growing in one month, SIF products at higher temporal resolutions (e.g., daily or weekly) can be
also derived using the data-driven method by integrating reflectance-based products (reflectance,
vegetation index, FPAR) and PAR data. Similar to the approach in the studies of References [58,59],
a neural network can first be trained using the instantaneous SIF observations and the instantaneous
driven-variables (including PAR, reflectance-based products); then the high-temporal resolution SIF at
a daily or weekly resolution can be calculated by using the trained neural network and its key driven
variables, including reflectance-based vegetation products (reflectance, vegetation index, FPAR) and
the daily or weekly PAR dataset.

4.2. Uncertainty Analysis

Using tower-based spectral measurements combined with flux measurements is an efficient way
to investigate SIF upscaling and SIF-GPP links. In this study, the result that upscaling SIFinst to the
daily scale reduces the effects of latitude on the SIFins-SIFdaily and SIFins-APARdaily relationships agree
with the results of the SIF-GPP correlations in [27]. Therefore, although the SIF and APAR data at
different latitudes were obtained from simulations rather than measurements, this does not affect the
analysis on the influence of latitude on SIF-GPP variations. In addition, the results of the SIF-GPP
correlations indicate that the slope of the GPP–SIF relationship was much higher for C4 crops, which is
consistent with the results in [19], demonstrating that this phenomenon is due to similar fluorescence
efficiency but a large difference in LUE between C3 and C4 crops.

There are some uncertainties and limitations in this study. First, the PAR-based SIF upscaling
method considered that the diurnal SIF is only driven by diurnal PAR variations. Although diurnal
variations in FPAR and fluorescence efficiency are much smaller compared to the diurnal variation
in PAR, it also affects the diurnal cycles of SIF [20,56] and, thus, brings some errors in the PAR-based
predicted SIF values and upscaled SIFdaily. Second, the GPP data at the XTS site were simulated using
the SCOPE model by measuring or retrieving the main driving variables (e.g., Cab, LAI, and Vcmax) for
GPP simulation. The measuring and retrieving uncertainties bring some errors for the parameterization
of the SCOPE model and, thus, for the accuracy of the GPP. More GPP observations corresponding to
SIF measurements should be collected to support the results in this study.

5. Conclusions

The temporal mismatch between SIFinst and GPPdaily causes uncertainties in the spatio-temporal
patterns of SIF-GPP correlations; therefore, the upscaling of SIF from the instantaneous to daily scale is
important for investigating the link between the SIF and GPP. In this paper, we upscaled the in-situ
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SIF measurements from an instantaneous to daily scale using the ratio of the PARinst to PARdaily as a
temporal conversion factor. With the continuous tower-based spectral observations, combined with
meteorological and flux measurements at two sites, the accuracy of the PAR-based method and the
performance of upscaled SIF to track GPP were evaluated, which was also compared to the commonly
used cos-based upscaled SIF. The conclusions are summarized as follows.

First, the PAR-based method gives more accurate diurnal and SIFdaily predictions than the
cos-based method because the PAR-based method considers diurnal weather changes on cloudy
days. In addition, the upscaled SIFdaily using the PAR-based method shows a more robust and
significant relationship with the APARdaily under different weather and latitudinal conditions. Finally,
the upscaled SIF based on PAR has a stronger linear correlation with the GPP at both half-hour
and daily scales than with either SIFinst or upscaled SIFdaily based on cos(SZA) at the seasonal scale.
These results confirm the importance of upscaling SIF from the instantaneous to daily scale and the
advantage of our SIF upscaling approach.
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