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Abstract: Remotely sensed data-based models used in operational forest inventory usually give
precise and accurate predictions on average, but they often suffer from systematic under- or
over-estimation of extreme attribute values resulting in too narrow or skewed attribute distributions.
We use a post-processing method based on the statistics of a proper, representative training set to
correct the predictions and their probability intervals, attaining corrected predictions that reproduce
the statistics of the whole population. Performance of the method is validated with three forest
attributes from seven study sites in Finland with training set sizes from 50 to over 400 field plots.
The results are compared to those of the uncorrected predictions given by linear models using
airborne laser scanning data. The post-processing method improves the accuracy assessment linear
fit between the predictions and the reference set by 35.4–51.8% and the distribution fit by 44.5–95.0%.
The prediction root mean square error declines on the average by 6.3%. The systematic under-
and over-estimation are reduced consistently with all training set sizes. The level of uncertainty is
maintained well as the probability intervals cover the real uncertainty while keeping the average
probability interval width similar to the one in uncorrected predictions.

Keywords: statistical post-processing; uncertainty analysis; forest inventory; model-based;
remote sensing

1. Introduction

Recently, remotely sensed data such as aerial images, laser scanning, or satellite images provide
more accurate information of forests worldwide than has ever been available before. In the area-based
approach (ABA) of forest inventory using remotely sensed data, the forest attributes of interest are
predicted over the inventory campaign area at plot or grid cell level. A general goal of operational
forest inventory is to predict these attributes accurately and precisely in each plot/grid cell over
the whole forested area such that the whole range and statistical behaviour of the real values of the
attributes is reproduced in the predictions.

Common prediction methods in model-based or model-assisted forest inventory are e.g.,
linear models [1–5], non-linear models [6,7], random forest methods [8] and k nearest neighbour
(k-NN) [2,9–11] methods. Part of these methods include also information of the uncertainty in plot
level predictions of the attributes. A general problem among all these methods is poor prediction
of extreme values, especially for attributes for which the prediction precision is poorest, where the
smallest and largest values tend to be systematically over- or underestimated. This can be caused e.g.,
by poor correlation between extreme values of the attribute and used remotely sensed data based
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predictors, insufficient number of field measurements of the extreme attribute values in the available
training set, or excessive averaging behaviour of the used model. For instance, the above ground
biomass (AGB) can generally be predicted using LiDAR or satellite image data with good precision up
to some limit, but for AGB values larger than that the models tend to systematically under-estimate
the biomass compared to the real values, see e.g., [3,7,12].

Common statistics used to evaluate the performance of the method may show relatively good
behaviour for the predictions: the mean difference (MD) can be close to zero and the root mean square
error (RMSE) sufficiently small. However, the overall variance of the predicted attribute values can
be smaller than that of the reference set. The lack of model fit generally causes problems especially
with the largest and smallest values of the attribute, see Figure 1 for an example of linear model-based
point predictions and their 95% probability intervals of forest attribute total volume (V [m3/ha]) in
study site Loppi–Janakkala, which is one of the cases validated later in this study. Here, the prediction
errors are most likely a result of lack of correlation between remotely sensed data and the attribute
field measurements which can be partly caused by errors in used data.
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Figure 1. Panel 1a: Predictions of volume [m3/ha] versus the reference set (truth), 1:1 line in black,
linear fit between predictions and reference values in red. Panel 1b: The residuals of the predictions
with black dots, 95% probability intervals with the truth within the interval in gray, the truth outside
the interval in red, and the range of 95% probability interval of the predicted values (∼±1.96·root mean
square error) with dashed lines.

The large attribute values (>400 m3/ha) are systematically under-estimated and also the small
attribute values (<50 m3/ha) are under-estimated. Here, the smallest, close to zero attribute values are
even predicted to be negative, which is an unwanted property of linear models. The same properties
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of the predictions can be seen also in the accuracy assessment linear fit, also known as the geometric
mean functional relationship (GMFR), between attribute reference set (the field measurements) and
attribute point predictions. Here, the slope of the red linear fit line is less than one. In an optimal case,
the red linear fit line would have slope one (parallel with the 1-1 line), and intercept value equal to the
mean value of the attribute reference set.

Figure 1b shows a typical case of linear model-based probability intervals, which in this case
follow a normal distribution defined by the model formulation [13]. In many linear and non-linear
models the prediction distributions are assumed to be normally distributed, thus such a case is used
as an example here. In this set of predictions, 95% of the reference attribute values were within the
estimated 95% probability intervals of corresponding predictions, but the largest attribute values of
the reference set tended to be systematically underestimated and also outside the probability interval,
see red point predictions and probability intervals in Figure 1b. In an ideal case the 5% of the attribute
reference set values outside the probability interval should be relatively uniformly distributed along
the reference set attribute distribution and include both too small and too large predictions.

Excessive averaging and systematic under- or over-estimation—and even more the outright
qualitative prediction errors like negative values—have many unwanted consequences. For example,
in AGB prediction in incorporating carbon captured into tropical forest in climate financing schemes
like UN REDD+ [14–16], the plots with LiDAR data-based AGB predictions can be used as surrogate
plots in larger area AGB predictions based on satellite data. If the variance of surrogate AGB prediction
distribution is under-estimated, the problem is amplified in the final, larger area predictions. Also,
if the distribution scatter-grams are rendered flat by saturation for the largest AGB values, then any
gains in carbon capture are heavily damped by the statistics used in assessing them. The lack of fit and
under-estimation of large values can be accumulated to other levels of prediction also, such as stand
level predictions or large plot/grid cell predictions. If the forest is divided into stands according to the
homogeneity of the forest, it is likely that plot level attribute values of similar magnitude are located in
the same stand and the stand level prediction composed of a (weighted) average of predicted attribute
values in plots inside the stand will suffer from the same problems as plot level predictions.

It is a common procedure to use a suitable post-processing or transformation method to overcome
this type of problems, see e.g., [17–21]. Statistical post-processing methods like histogram matching or
quantile–quantile mapping transformation utilize the shape of the underlying attribute training set
distribution to correct new attribute predictions. The attribute training set data distribution shapes
can be estimated with parametrized, fixed shape distribution functions or arbitrary, non-parametric
distribution functions.

Histogram matching algorithms are commonly used to process satellite data [19,22], and
quantile–quantile mapping transformations are used for bias correction of regional climate
models [18,23]. It has shown its power also in correction of forest attribute predictions given by
k-NN method, see [20] for a parametric approach and [21] for a nonparametric approach. In the
forest inventory application, the non-parametric approach which is based on arbitrary shapes of
attribute distribution is a natural approach especially if we wish to have a method that generalizes
well to any forest attribute of interest in any study site. In regional climate models, a study of [23]
showed that nonparametric transformations had the highest skill in systematically reducing biases in
precipitation. Statistical transformations assume that the modelled relation holds also with new data,
thus the attribute distribution data used as the training set must be a proper probability sample of the
whole population.

The aim of this study is to develop a non-parametric quantile–quantile mapping transformation
based on empirical quantiles (QUANT) used e.g., in [18,21,23] for operational, plot level forest
inventory for both attribute point predictions and, as a novel approach, uncertainty analysis of
the predictions.

As an example case, we validate the performance of the QUANT post-processing method using a
linear model with LiDAR data based predictors to generate the raw predictions. The post-processing
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procedure would be similar for raw predictions estimated with any other method once they are based
on a training set, i.e., we have a sample of the real underlying distribution of the forest attribute of
interest. In this study we expand our transformation to the natural property of the linear model, the
prediction probability interval, as well. The proposed uncertainty analysis can also be adapted to
predictions of other models as well, as long as the model generates prediction distributions for the
raw predictions.

The performance of the post-processing method is validated both visually and numerically using
real forest inventory data with large training set sizes (over 400 field plots) and the robustness of the
proposed method is validated also for a reduced number of training set plots. Because of the challenges
linked to a small training set size combined with multidimensional, correlated predictors, we use
a formulation of the linear model which has shown to be efficient in such situations, the Bayesian
Principal Component Regression model (BPCR) introduced in [13].

This article is organized as follows: In Section 2, the details of the proposed method, the remotely
sensed data, the field data, the validation procedure, and the parameters that are used as indicators of
method performance are introduced. In Section 3, results for different test cases are given. The results
are discussed in Section 4 and then the conclusions about the performance and the pros and cons of
the proposed post-processing method are given in Section 5.

2. Materials and Methods

The forest inventory attribute of interest, given as a vector y, is assumed to have real, non-negative
values. In the area based approach, the forest attribute is predicted at a plot or grid cell level with a
suitable model. A training set of size n (plots) is used to estimate the model parameters. The training set
contains field measurements of the forest attribute, yt, and the remotely sensed data-based predictors,
X t, for each plot in the training set t. The attribute values are predicted in the validation set v that
consists of new plots or grid cells using the set of predictors Xv.

Here we use a linear model-based approach that uses singular value decomposition of predictors
and automatically emphasizes the use of those singular vectors that best explain the data, BPCR,
to estimate the model parameters [13]. The method is well suited for the cases with highly
multicollinear predictors, as if often the case with LiDAR predictors, and small number of field
sample plots.

Each new, individual plot/grid cell level prediction ỹi given by the used linear model follows
the normal distribution with estimated mean value µi and variance σ2

i , ỹi ∼ N(µi, σ2
i ). In general,

the point prediction for the plot is given as the expected value of the normal distribution, µỹi ,
and (1− α)% prediction probability interval is given as (α/2, 1− α/2)-quantiles of the symmetric
normal distribution.

2.1. Non-Parametric Quantile–quantile Mapping Transformation

In the QUANT post-processing method, the training set distribution of the attribute is treated as
the true distribution of the forest attribute values in the given area, and compared to the corresponding
distribution of the predictions in the training set plots. The distributions are represented by the
empirical cumulative distribution functions (ECDFs) where the distribution of a sample (given as an
ordered set from smallest to largest value) is represented as a cumulative function

F̂y(yj) = n−1

(
n

∑
k=1

I(yk ≤ yj)−
1
2

)
, j = 1, 2, . . . , n, (1)

where I(yk ≤ yj) is the indicator function which is equal to one if yk ≤ yj, and zero
otherwise. The values of F̂y(yj) vary between zero and one, scaled such that F̂y(yj) gets values
1
n

{
1
2 , 1 + 1

2 , 2 + 1
2 , . . . , n− 1

2

}
. The ECDF values between the measurements are estimated as a

piece-wise linear interpolation.



Remote Sens. 2018, 10, 1677 5 of 18

When using linear model-based raw predictions, some values of the raw predictions in new
plots may exceed the extreme values found in the training set raw predictions. In such a case, simple
extrapolation similar to [18] is used: outside the range of training set values, the same slope as between
the last two extreme points in the data is kept. For instance, the piece-wise linear interpolation curve
between the first two ordered points (y1, y2) with corresponding to ECDF values ( 1

2n ,
(

1 + 1
2

)
1
n ),

holds also for the ECDF range (0, 1
2n ), and similarly to to the upper tail of the ECDF.

The ECDF values for the training set field measurements of the attribute, yt, and for the raw
predictions of the training set, ỹt, are constructed separately using Equation (1), resulting to ECDFs
F̂yt

() and F̂ỹt
(), correspondingly. Figure 2a illustrates the ECDFs of certain values in training set

predictions, ỹt (which in this case correspond to the mean values of the prediction distributions, µt),
and corresponding training set field measurements, yt, of the case shown in Figure 1.

(a) ECDF’s (b) Transformation function

Figure 2. Panel 2a: ECDFs of the training set field measurements, F̂yt
(y), and of the raw predictions,

F̂ỹt
(y), and the QUANT process transforming raw prediction value ỹi to ỹi,corr. Panel 2b: QUANT

transformation curve (black line) with the dashed parts showing the extrapolation area transformation,
1-1 line with dots, transformation of ỹi to ỹi,corr in red.

The quantile–quantile mapping technique QUANT corrects the raw predictions according to
their ECDF values among the training set predictions. The cumulative distribution function value
P = F̂ỹt

(ỹi) of the prediction ỹi in new plot i is transformed such that the value, ỹi,corr, that gives
the same ECDF value among the training set field measurements yt, is found, i.e., F̂yt

(ỹi,corr) = P.
The transformation model Tyt ,ỹt

(ỹi) to transform ỹi from training set prediction distribution to training
set field measurement distribution is given by

ỹi,corr = Tyt ,ỹt
(ỹi) = F̂−1

yt

(
F̂ỹt

(ỹi)
)

. (2)

In the transformation model, similar extrapolation is applied also to the smallest values which
might be smaller than the first quantile of the training set predictions. However, only non-negative
values are accepted for the training set field measurement ECDF, as the real attribute values are always
non-negative, and thus the ECDF (and probability) of such points is set to zero. See the Figure 2b for
the transformation function corresponding to the distributions in Figure 2a.

2.2. Uncertainty Analysis for the Transformation

Plot level predictions given by models with possibly imperfect model fit and parameter
distributions estimated using a limited number of field measurements, include uncertainty. Linear
model-based plot level predictions, for instance, include this information of uncertainty as a normal
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distribution with estimated variance around the mean value (point prediction), which is used as the
“predicted value”. Thus, each new plot level prediction is given as a normal distribution.

In our post-processing procedure, the uncertainty for a new plot vi in the validation set can
be included by sampling from the attribute prediction distribution of the plot, ỹvi ,m ∼ N(µvi , σ2

vi
),

m = 1, 2, . . . , nsim,v, and then using the transformation function, Equation (2), for all the sampled
prediction distribution points. However, because of uncertainty in linear model-based predictions,
there is also uncertainty among the plot level predictions in the training set, which causes uncertainty
also in the transformation function. Thus, also the training set plot level predictions are sampled,
ỹt,l ∼ N(µt, σ2

t ), l = 1, 2, . . . , nsim,t, and the resulting ECDF function (1), F̂ỹt,l
(y), is used to generate

the new transformation function Tl(y) = Tyt ,ỹt,l
(y) for each sample set l. Thus the transformation of

the prediction distribution points is performed by sampling from the training set predictions which
are then used to generate the transformation of the sampled prediction distribution points.

In Figure 3, the transformation procedure is illustrated for one example plot. The normal
distribution of the raw prediction for a new plot, represented here as a sample generated from
the given plot level prediction distribution, is transformed using the samples of predicted training
set plots. The transformed distribution is no longer normal, but has an arbitrary shape. Also, the
transformation curve is not symmetric around the mean value transformation curve, Tyt ,ỹt

(). This is
caused by the ECDFs of training set prediction samples, where the spread of predictions is larger than
with the mean value predictions, which cause the sampled transformation curves to have a larger
spread on x-axis (original, raw predictions).

Figure 3. Sampling-based transformation of the raw prediction distribution: Prediction sample (red
histogram on x-axis) with mean value (red circle) and the 95% probability interval (thick red line on
x-axis), transformation curve with mean values (black line) and sampled transformation curves (gray
lines), three individual examples of raw distribution sample point transformation (blue dashed lines)
and their distributions (blue histograms), and the transformed prediction distribution (red histogram
on y-axis) with the transformed mean value (red square) and the 95% probability interval (thick red
line on y-axis).
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The asymmetry and arbitrariness of the transformed new plot prediction sample must be taken
into account when estimating the probability interval. By definition, for example, the 95% (α = 0.05)
probability interval is estimated by finding [a, b] such that

Pr(a ≤ y ≤ b) = 0.95. (3)

Here, Pr is the probability, which can be estimated using the sample point distribution. That is, 95%
of the sample points must be within the given interval, which is obviously not a unique interval.
In this paper, the narrowest interval that satisfies the condition (3) is chosen, similar to [24], and we
require also that the transformed mean value of the validation plot distribution is within the given
probability interval.

Although the transformed mean value of the validation plot distribution is no longer at the mean,
mode nor the median of the transformed probability distribution, it presents the corrected prediction
because it is estimated with the best information we have: the most likely value of the raw predictions
(the mean and the mode of the normal distribution), transformed with the most likely training set
prediction values (the mean values).

The whole algorithm is given as:

1. Estimate model parameters and corresponding model with training data yt, X t.
2. For each validation set plot vi:

(a) Estimate the prediction probability distribution with the given model. Estimate the point
prediction as the mean value ỹvi = µvi .

(b) Generate the post-corrected prediction ỹvi ,corr = Tyt ,ỹt
(ỹvi ) using ỹt = µt.

(c) Generate the sample of nsim,v prediction distribution points ỹvi ,m
∼ N(µvi , σ2

vi
),

m = 1, 2, . . . , nsim,v (here nsim,v = 1000).
(d) For l = 1, 2, . . . , nsim,t (here nsim,t = 100)

(i) Generate a new sample of n training set predictions ỹt,l ∼ N(µt, σ2
t ).

(ii) Generate ECDF function F̂ỹt,l
(y) and the corresponding transformation function

Tl(y) = Tyt ,ỹt,l
(y).

(iii) Transform all prediction distribution points: ỹvi ,m,l,corr = Tl(ỹvi ,m
).

(e) Use the nsim,v · nsim,t transformed prediction distribution points to analyze the (1− α)%
probability intervals as described above.

2.3. Study Sites

In this study, forest inventory data from seven separate study sites in different parts of Finland are
used to evaluate model performance and to validate the consistency of the results. The sites are located
at Matalansalo (Heinävesi), Juuka, Loppi–Janakkala, Pello, Lieksa, Kuhmo, and Karttula. For more
detailed information of the datasets used, see [25]. A total of 472, 511, 441, 553, 483, 470, and 538 field
plots were measured in each study site, respectively. These study sites belong to the boreal forest type
comprising mostly species like Scots pine (Pinus sylvestris), Norway spruce (Picea abies), and different
species of hardwoods, mostly birch.

2.3.1. Field Measurements

The sample plots of the study sites were selected with a number of different sampling strategies.
Some sites were equipped with a regular sample plot grid, some others were equipped with regularly
sampled plot clusters, and still others were equipped with randomly selected plots. Sample plots
were always circular plots with a 9-m radius. They were positioned at first with a hand-held global
positioning systems (GPS), and the exact position of the plot center was later calculated during
measurement and differentially corrected offline.
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In this article, we used field measurements of three forest attributes: median tree height
(Hgm, [m]), total volume (V, [m3/ha]), and stem number (SN, [number of stems/ha]). They were
estimated from the field measurements in a similar manner at each site, using models of Veltheim [26].

2.3.2. Remotely Sensed Data

The auxiliary data covering the whole study site areas consist of LiDAR measurements and aerial
images from each study site, except in Matalansalo where only LiDAR measurements were available.

LiDAR scanning of the different areas was conducted from 2004 until 2008. Three different
types of scanners were used, namely Optech ALTM 3600, Leica ALS50, and Leica ALS60. Flying
height varied between 700 m and 2000 m, and scanner pulse frequency varied between 58,900 Hz and
125,100 Hz. LiDAR data were clipped to plot extent before LiDAR predictors were extracted. A set of
38 candidate predictors were derived from LiDAR measurements for each sample plot used. This set
is similar to the set that has been used in [27]. It consists of percentile points and cumulative percentile
parts of the first and last pulse heights of non-ground hits (height > 2 m), percentile intensities of first
and last pulse intensities of non-ground hits, mean of first pulse heights > 5 m, standard deviation of
first pulse height, and the number of measurements < 2 m of first and last pulse heights divided by
the total number of the same measurements of each plot, depicting vegetation density.

The digital aerial photographs consist of pixel sizes of 0.5 m and three or four channels. Digital
ortho-rectified aerial images were used with 0.5 m spatial resolution. The channels used were in most
cases blue, green, red and near-infrared. Two candidate predictors, namely percentage of hardwoods
and percentage of conifers, were visually interpreted from these images using the approximately
1000 pixels in each plot: The pixels were classified as hardwood trees, conifer trees and hits to the
ground, and the resulting candidate predictors were the percentages of hardwood trees (Hwd) and
conifer trees (Cnf) in each plot.

As a result, a total of 38 candidate predictors were available for study site Matalansalo and
40 candidate predictors for the other study sites. These predictors were highly correlated with each
other with condition numbers between 6400 and 25,350 among different study sites, which means
severe multicollinearity.

2.4. Validation Procedure

Leave-One-Plot-Out (LOPO) cross-validation procedure is used to validate the performance of
the proposed method. In LOPO, from the total of N plots available, one plot at time is chosen into
the validation set, and the rest N − 1 plots serve as training set plots. The parameters of the linear
model used to generate the raw predictions are estimated with the training set data chosen (predictors
and measured attribute values of the training set plots), and the attribute prediction distribution of
the validation plot is estimated using the resulting model with the validation set predictor values.
The post-processing method uses the predicted training set distributions and the training set field
measurement values of the attribute to transform the raw validation plot point prediction and its
probability distribution. This procedure results in a vector of N point predictions for both raw
predictions, ỹ, and corrected predictions, ỹcorr, with corresponding probability intervals.

If a reduced number of training set plots is used, the training set plots are selected randomly
from the (N − 1) leave-one-out plots. This selection method is assumed to give proper, representative
samples. Thus, n < N plots are selected from the N − 1 plots available in each LOPO repetition.

2.5. Model Performance Estimates

Performance of the QUANT post-processing method is compared to the performance of the
BPCR method, i.e., we compare the quality of the post-processed predictions to the quality of the
raw predictions.

The first validation parameter is the relative mean difference between the predictions and
corresponding reference values,
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D% =
∑N

i=0 (ỹi − yi)

N
× 100(%)

y
, (4)

where ỹ is a vector of the point predictions (either raw predictions or post-corrected predictions) ,
y is the corresponding attribute values in the reference set, and y is the average of the reference set
values. The hypothesis of whether the mean difference deviance from zero is significant, is tested by
one sample mean t-test and deviances with p-values less than the given significance level α = 0.05 are
considered significant.

The second validation parameter is the relative root mean square error,

RMSE% =

√
∑N

i=0 (ỹi − yi)
2

N
× 100(%)

y
, (5)

which describes the standard deviation of the prediction residuals.
A validation parameter describing the linear relationship between the reference values and the

point predictions uses a linear model with the intercept and the reference vector as predictors and
the vector of predictions as the response. The linear model parameters c0 and c1 for the intercept and
the reference values are estimated. For perfect predictions, the intercept parameter c0 is equal to the
reference mean and the slope c1 is one. In practice, the difference between c0 and y is equal to mean
difference, D. Thus, only c1 is shown in this study.

We also validate the relative mean absolute error of the differences between the P:th quantiles
in the attribute point prediction distribution and the reference distribution, MAE%. Quantiles
p = {0.00, 0.05, . . . , 0.95, 1.00} are used. For perfect point predictions, MAE% is zero.

The probability intervals of each prediction distribution are also estimated. Here, the fraction of
reference set values that fall in the 95% percent probability interval of the corresponding prediction
distribution are calculated (P95), and with the 95% probability interval, this fraction should be
approximately 95%. Also, the average of the probability interval widths over the whole validation set
predictions is calculated (PIave).

3. Results

3.1. Large Training Set Size Results

Prediction error statistics for the forest attributes Hgm, V and SN are given in Table 1. The results
show that the optimal RMSE (and RMSE%) values are achieved by the raw, linear model-based
predictions (BPCR) for each attribute in each site, while the RMSE of post-processed predictions
(QUANT) is slightly larger in each case. The RMSE% for predictions of Hgm is 1.0–5.1% (3.4% on
average) larger for post-processed predictions than for the raw predictions, depending on the study
site. For attribute V the deterioration is −1.8–10.1% (4.2%) and for SN 4.6–22.3% (11.3%). On the
average, RMSE% is deteriorated 6.3% among different attribute values in different study sites.

The attribute Hgm represents here the attributes that are predicted with small RMSE% and good
fit even with the linear model only. Thus, there is not much to improve in the results. Attribute V
represents a typical attribute for which small problems with the low precision and model fit that need
improvement occur. Attribute SN represents the most challenging case, for which the precision is quite
low and the model fit is poor giving under-estimation for large values of the attribute.

For each attribute in each site, the mean difference, D%, of the predictions doesn’t deviate
significantly from zero. The linear model fit, on the other hand, is better for the QUANT method
in terms of the slope, c1: In each case, the slope is closer to one (|1− c1| closer to zero) than for the
BPCR model. The improvement is 43.5–51.8% for attribute Hgm, 44.2–47.8% for V and 35.4–45.7%
for SN. Also the parameter that describes the distribution of the predicted values compared to the
true distribution of the reference set, MAE%, is always substantially smaller for QUANT method than
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for BPCR model. For the attribute Hgm the improvement is 44.5–89.3%, for V 53.2–93.4% and for SN
74.0–95.0%.

Table 1. Plot level LOPO results for all the study sites and forest attributes. The relative changes in the
RMSE%, slope error |1− c1| and MAE% after the post-processing with QUANT method are shown
in brackets.

Hgm Method RMSE RMSE% D% |1− c1| MAE% PIave P95

Matalansalo BPCR 1.48 8.71 −0.01 0.08 1.72 5.79 94.07
QUANT 1.53 8.99 (3.2%) −0.02 0.04 (−48.4%) 0.23 (−86.8%) 5.72 94.92

Juuka BPCR 1.38 9.43 0.00 0.14 1.96 5.39 95.50
QUANT 1.42 9.69 (2.8%) 0.02 0.07 (−48.7%) 0.22 (−88.7%) 5.34 95.30

Loppi−Janakkala BPCR 1.93 11.06 −0.01 0.13 2.03 7.52 94.33
QUANT 1.99 11.38 (3.0%) −0.02 0.07 (−48.1%) 0.48 (−76.4%) 7.39 94.33

Pello BPCR 1.15 9.83 0.02 0.19 2.96 4.47 94.21
QUANT 1.21 10.33 (5.1%) 0.03 0.10 (−48.4%) 0.72 (−75.6%) 4.49 94.21

Lieksa BPCR 1.43 9.03 0.00 0.08 1.94 5.61 94.82
QUANT 1.48 9.35 (3.6%) −0.04 0.04 (−43.5%) 1.08 (−44.5%) 5.49 94.62

Kuhmo BPCR 1.32 8.37 0.01 0.27 2.15 5.15 95.74
QUANT 1.38 8.77 (4.8%) 0.01 0.14 (−47.1%) 0.46 (−78.5%) 5.12 95.32

Karttula BPCR 1.60 9.03 0.01 0.09 2.04 6.25 93.68
QUANT 1.62 9.12 (1.0%) 0.02 0.04 (−51.8%) 0.22 (−89.3%) 6.14 93.49

V

Matalansalo BPCR 40.43 19.88 −0.03 0.15 8.87 157.58 94.07
QUANT 42.46 20.88 (5.0%) 0.12 0.08 (−47.8%) 1.98 (−77.7%) 152.14 95.97

Juuka BPCR 26.44 18.18 0.00 0.10 3.00 102.67 92.76
QUANT 27.44 18.86 (3.8%) 0.05 0.06 (−47.2%) 1.40 (−53.2%) 97.55 92.95

Loppi–Janakkala BPCR 53.37 26.26 −0.08 0.21 10.69 206.17 95.01
QUANT 56.23 27.67 (5.4%) 0.11 0.11 (−47.0%) 0.70 (−93.4%) 196.07 96.60

Pello BPCR 26.09 25.38 0.02 0.22 8.17 100.76 93.67
QUANT 26.79 26.07 (2.7%) −0.09 0.12 (−44.2%) 0.60 (−92.7%) 95.83 93.13

Lieksa BPCR 52.04 26.71 0.03 0.16 10.61 202.96 92.96
QUANT 57.28 29.40 (10.1%) 0.31 0.09 (−46.3%) 1.39 (−86.9%) 188.08 94.62

Kuhmo BPCR 48.48 24.82 0.02 0.28 8.15 188.25 93.62
QUANT 50.45 25.83 (4.1%) 0.08 0.15 (−45.7%) 1.61 (−80.2%) 179.25 93.62

Karttula BPCR 54.37 26.41 −0.08 0.19 11.29 210.48 94.61
QUANT 53.41 25.94 (−1.8%) −0.08 0.10 (−47.5%) 1.53 (−86.4%) 188.86 95.54

StemNo

Matalansalo BPCR 409.57 27.18 −0.09 0.35 9.04 1600.67 93.43
QUANT 428.56 28.44 (4.6%) −0.03 0.19 (−45.7%) 1.18 (−86.9%) 1501.50 94.28

Juuka BPCR 370.39 28.83 −0.01 0.40 12.81 1450.98 93.93
QUANT 389.68 30.33 (5.2%) 0.14 0.22 (−44.8%) 1.92 (−85.0%) 1364.73 93.74

Loppi–Janakkala BPCR 423.69 38.21 −0.03 0.42 14.97 1647.06 95.24
QUANT 467.26 42.13 (10.3%) 0.03 0.26 (−39.5%) 1.51 (−89.9%) 1477.50 94.56

Pello BPCR 730.64 55.14 −0.09 0.65 27.70 2877.51 96.02
QUANT 831.57 62.75 (13.8%) 0.04 0.42 (−35.4%) 1.39 (−95.0%) 2513.21 95.12

Lieksa BPCR 367.16 30.98 −0.00 0.42 13.29 1433.14 94.62
QUANT 408.99 34.51 (11.4%) 0.13 0.25 (−40.3%) 1.68 (−87.4%) 1337.33 94.82

Kuhmo BPCR 331.15 32.99 −0.04 0.46 15.14 1290.36 94.89
QUANT 369.87 36.85 (11.7%) 0.25 0.27 (−42.7%) 2.68 (−82.3%) 1226.67 96.81

Karttula BPCR 473.65 41.16 −0.11 0.49 26.09 1843.31 95.72
QUANT 579.19 50.34 (22.3%) 0.47 0.32 (−35.9%) 6.79 (−74.0%) 1635.42 96.47
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There are two cases where the MAE% is not improving as much as in the other cases: Juuka
attribute V and Lieksa attribute Hgm. The raw prediction (BPCR) MAE% for attribute V in study
site Juuka is very good, 3.00%, compared to the other study sites with over 8% MAE%, and thus
the post-processing method that results in similar scale QUANT MAE% in Juuka as in other study
sites, shows less improvement. Also the improvement of MAE% for attribute Hgm in Lieksa, 44.5%,
is smaller than for the other study sites with over 75% improvement. Although QUANT method
corrects the Hgm prediction distribution close to zero quantile differences from the reference set
distribution, the largest Hgm value of the reference set distribution is not corrected as much, and
thus the mean absolute error of quantiles remains larger after correction. In Lieksa, ECDF of the Hgm
reference set distribution grows rapidly until the second largest value of measured Hgm, after which
the growth is much slower to the largest measurement. Thus, when there is no measurement for
the largest value included in the training set, the training set sample does not represent the whole
population and the extrapolated ECDF tail does not include the extreme values, see Figure 4.

24 25 26 27 28 29 30 31 32 33

Hgm

0.96

0.97

0.98

0.99

1

E
C

D
F

all plots

all plots except the one with the largest Hgm

Figure 4. Largest values of attribute Hgm reference set ECDF’s in case Lieksa with and without the
largest value.

Results for the attribute plot level prediction uncertainties are reasonable good for both methods.
The fractions of plots for which the truth is within the estimated 95% probability interval, is roughly
95% for all the cases. Thus, the estimated probability interval widths are wide enough to cover the real
uncertainty, but on the other hand, not too wide. The probability interval widths for both methods are
on the average quite similar. For attributes V and SN, the average probability intervals of the proposed
method, QUANT, are slightly narrower, meaning less uncertainty for the plot level predictions on the
average. This could be partly explained by removing of the negative values from the transformed
probability intervals.

As an example of the corrected point predictions and the corresponding probability intervals,
see Figure 5 for the case of attribute V in study site Loppi–Janakkala. As seen in Table 1, the RMSE%
and D% of the corrected predictions in this case are nearly equal to those of the raw predictions.
The distribution of the corrected predictions follow much better the distribution of the attribute field
measurements, the truth (MAE% close to zero and c1 close to one), which can be also seen in Figure 5a.
Within this sample, 97.3% of the true attribute values were within the given probability intervals of
corrected predictions, and those points that were outside this interval were distributed more uniformly
along the distribution of the attribute reference values, see Figure 5b. The probability intervals show
heteroscedastic behaviour, i.e., the interval is smaller for small attribute values, and increases for larger
values. Almost all large attribute reference values are within the corrected probability intervals, unlike
in the case of raw predictions, where the largest attribute reference values were systematically outside
the given probability intervals, compare to Figure 1. Examples of cases with only little correction effect
(attribute Hgm) and large correction effect (attribute SN) are shown in Figures 6–8.
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Figure 5. Panel 5a: Corrected predictions of volume [m3/ha] versus the reference set (truth) volume
[m3/ha], 1:1 line in black, linear fit between predictions and reference values in red. Panel 5b:
The residuals [m3/ha] of the corrected predictions with black dots, 95% probability intervals with the
truth within the interval in gray, the truth outside the interval in red, and the range of 95% probability
interval of the predicted values (∼±1.96·root mean square error) with dashed lines.

In the case of Hgm, the precision of the original, raw predictions is good and they correlate well
with the reference set attribute values, and thus the transformation function does not include much
transformation, see Figure 6a. This can be seen also in the raw and corrected predictions accompanied
with the probability intervals, see Figure 7, where not much change occurs. On the contrary, the
transformation function of attribute SN causes larger changes in the point predictions and probability
intervals. Especially for the large values of raw predictions, the transformation function has a large
effect and also the uncertainty increases, see Figure 6b. Figure 8 shows that the largest values are
systematically under-estimated among the raw predictions such that the reference set attribute values
are not even within the probability intervals and the linear model is unable to predict those values.
After correction, the uncertainty of these values is better registered, as the wider probability intervals
and transformed predictions cover a higher percentage of these plots. However, even the corrected
predictions do not manage to completely overcome the under-estimation of the largest values. On the
other hand, the small values of SN are well covered with the narrower probability intervals of the
corrected predictions. In practice, these two cases represent the two extremes of typical transformations
and the resulting behaviour of corrected point predictions and probability intervals.
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(a) Hgm (b) SN

Figure 6. Transformation functions including uncertainty for Hgm and SN.
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(a) Hgm [m], raw predictions
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Figure 7. Hgm: Raw predictions, 7a, and corrected predictions, 7b with their 95% probability intervals
(gray lines). The predictions for which the truth is outside the given 95% probability interval are shown
with red color.
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(a) SN [stems/ha], raw predictions
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Figure 8. Stem number: Raw predictions, 8a, and corrected predictions, 8b with their 95% probability
intervals (gray lines). The predictions for which the truth is outside the given 95% probability interval
are shown with red color.
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3.2. Reduced Training Set Size Results

Figure 9 shows the estimated validation statistics as a function of reduced training set size in the
example study site Loppi–Janakkala. In the tests, the behaviour of error statistics was similar in all the
study sites, thus here we show results of only one study site.
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Figure 9. Results of raw predictions (black), corrected predictions (red) with baseline results from large
training set LOPO (dashed lines) as function of training set size.

Overall, the results remain close to the baseline results, i.e., the attribute predictions estimated
with a large training set size, even with training set sizes as small as 100–150 plots depending on
the attribute of interest. As seen in the the sub-figures, the relative difference RMSE%, slope c1 error,
MAE% and PIave between the raw predictions and the post-processed predictions remain similar as
in Table 1 for all the training set sizes. The mean difference of the predictions, D%, did not differ
significantly (this was validated with t-tests using α = 0.05) from zero for any of the attributes at any
site and training set size. Also the coverage of the probability intervals, P95 shows to be consistent.

4. Discussion

In general, the largest interest in operational forest inventory campaigns in boreal forests in
Nordic countries and Canada lies in the largest trees which are most valuable for timber use, or in case
of carbon credits in tropical forests, hold the most carbon. As discussed in this article and references
given, the commonly used remotely sensed data-based prediction methods tend to under-estimate
the height and volume in plots containing such trees. The results given here show that the QUANT
post-processing method gives reliable and accurate predictions for plots within forest that contains
tall trees and a large timber volume and covers the uncertainty connected to such cases better than
the raw predictions. Although the RMSE% values of the post-processed predictions tend to be larger
than those of the raw predictions, the difference is relatively small, which supports the results given
in [21]. The gain in the preservation of the attribute distribution characteristics and range combined
with the better model fit without under- or over-estimation of values in any range can be considered
more important than the small reduction in the average prediction precision. The proposed method is
applicaple to different models using different predictor data sources and predicting different attributes
as its performance depends only on the quality of the raw attribute predictions compared to the
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training set attribute measurements. In case of e.g., tropical forest biomass estimation, the precision of
the raw predictions based on LiDAR data generally tends to be of similar scale and form as those of
the stem number predictions studied here. In our unpublished study, we found that for linear method
based predictions of above ground biomass in Nepal (see [16] for more information about the data)
the RMSE% increased 8.6%, the slope error decreased 42.5% and the MAE% decreased 86.4% and
the uncertainty estimation gave correct probability intervals with slightly decreased interval widths.
These relations held with training set sizes between 50–737 plots, and the results remained close to
optimal for training set sizes as small as 100–150. These results align well with the results shown above
for other forest types.

The QUANT post-processing method did not introduce any significant, additive deviation from
zero in the mean difference of the predictions. This is reasonable as the post-processing fits the
transformed attribute prediction distribution to the attribute distribution of the training set. If the
training set is a proper, representative probability sample of the whole population, also the predictions
fitted to that sample should, having approximately the same mean value, have zero mean difference
compared to the truth.

Important property of the prediction methods, the ability to estimate the plot level (1− α)%
probability interval together with the point estimate, is retained in the post-processing procedure.
The post-processed probability intervals appear to be more reasonable than those of the of the
raw predictions generated by e.g., a linear model, for which the interval shows behaviour of a
homoscedastic variance. The probability intervals of the raw attribute predictions tend to be too wide
for the near zero values of the attribute, while they can easily be under-estimated for large values of
the attribute. The post-processed probability intervals tend to be smaller for small attribute values and
larger for the large attribute values.
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Figure 10. Correlation between the attributes Hgm, V and SN in study site Loppi–Janakkala:
the histograms (diagonal panels) and correlations (off-diagonal panels) of the reference set and the
QUANT predictions.
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The proposed post-processing method shows to be robust against reduction in the training
set size, i.e., number of used field plots. The performance of the QUANT method depends on the
performance of the prediction method used for the raw predictions, and the relation between the raw
and post-processed prediction results remains similar for all the training set sizes tested.

The correlation between attributes is not incorporated into the proposed post-processing method.
However, as shown in Figure 10, the post-prosessing of the raw predictions is not violating the
correlation structure of the attributes much in our test case, but since this property is not included
intrinsically in the proposed method, one must be careful with the impossible or unacceptable
correlations among the predictions.

5. Conclusions

The results of this study show that the proposed post-processing method, QUANT, can be used
to correct the statistical defects in the predictions generated with some common remotely sensed
data-based methods used in forest inventory. Here, the raw predictions were estimated with a
linear model, but the method could be applied to other approaches as it uses only the attribute
field measurements available and compares them to their predictions. For uncertainty analysis,
the uncertainty of the raw predictions must be estimated. The post-processing method produces
predictions from the whole range of the true distribution of the attribute values and corrects the
skewness in the distribution so that within any range of attribute values, there is no systematic over-
or under-estimation. The precision of the post-processed predictions can be slightly worse than the
precision of the raw predictions.

The proposed post-processing procedure is based only on the distribution of the attribute values
in the selected training set plots. No assumptions on the shape of the attribute distributions are needed
since the method is based only on the empirical cumulative distribution function of the available field
sample of the attribute. The method is general; it can be used to any shape of distributions and for any
attribute of interest, as long as a proper, representative probability sample of the attribute values exists.

In this study only a random training set plot selection procedure was tested in order to validate
the effect of reduction of the training set size. The formulation of QUANT method makes it
sensitive to defects in the field sample, i.e., training set, selection. If the training set is not a proper,
representative probability sample of the true population in the study site, it will probably effect also
the post-processing procedure such that the mean difference of predictions can deviate significantly
from zero. Thus, when using this method, special care should be given to training set quality and the
field plot selection criteria.

Different forest attribute values were predicted as individual, separate outputs in this study. In
the real world, there is a correlation among different attributes, even some rules, such as in case of
species-specific attributes for which the corresponding total attribute is a sum of the species-specific
values. In future research, the post-processing method should be extended to use and preserve also
the correlation structures of the attributes of interest.
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