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Abstract: Deep convolutional neural networks (CNNs) have been widely used and achieved
state-of-the-art performance in many image or video processing and analysis tasks. In particular,
for image super-resolution (SR) processing, previous CNN-based methods have led to significant
improvements, when compared with shallow learning-based methods. However, previous CNN-based
algorithms with simple direct or skip connections are of poor performance when applied to
remote sensing satellite images SR. In this study, a simple but effective CNN framework, namely
deep distillation recursive network (DDRN), is presented for video satellite image SR. DDRN
includes a group of ultra-dense residual blocks (UDB), a multi-scale purification unit (MSPU),
and a reconstruction module. In particular, through the addition of rich interactive links in and
between multiple-path units in each UDB, features extracted from multiple parallel convolution layers
can be shared effectively. Compared with classical dense-connection-based models, DDRN possesses
the following main properties. (1) DDRN contains more linking nodes with the same convolution
layers. (2) A distillation and compensation mechanism, which performs feature distillation and
compensation in different stages of the network, is also constructed. In particular, the high-frequency
components lost during information propagation can be compensated in MSPU. (3) The final SR
image can benefit from the feature maps extracted from UDB and the compensated components
obtained from MSPU. Experiments on Kaggle Open Source Dataset and Jilin-1 video satellite images
illustrate that DDRN outperforms the conventional CNN-based baselines and some state-of-the-art
feature extraction approaches.

Keywords: remote sensing imagery; super-resolution; ultra-dense connection; feature distillation;
video satellite; compensation unit

1. Introduction

In recent years, remote sensing imaging technology is developing rapidly and provides extensive
applications, such as object matching and detection [1-4], land cover classification [5,6], assessment of urban
economic levels, resource exploration [7], etc. [8,9]. In these applications, high-quality or high-resolution
(HR) imageries are usually desired for remote sensing image analysis and processing procedure. The most
technologically advanced satellites are able to discern spatial within a squared meter on the Earth surface.
However, due to the high cost of launch and maintenance, the spatial resolution of these satellite imageries
in ordinary civilian applications is often low-resolution (LR). Therefore, it is very useful to construct HR
remote sensing images from existing LR observed images [10].
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Compared with the general images, the quality of satellite imageries can be subject to additional
factors, such as ultra-distanced imaging, atmospheric disturbance, as well as relative motion. All these
factors can impair the spatial resolution or clarity of the satellite images, but video satellite imageries
are more severely affected due to the over-compression. More specifically, for the video satellite, since it
captures continuous dynamic video, in order to improve the temporal resolution, the optical imaging
system has to sacrifice spatial resolution. At present, the original data volume of the video satellite has
reached to the Gb/s level, but the channel transmission capacity of the spaceborne communication
system is only in Mb/s level. To adapt to the transmission capacity of the satellite channel, the video
acquisition system has to increase the compression ratio or reduce the spatial sampling resolution.
For example, taking the video imagery taken by “Jilin No. 1” launched in China in 2015 as an example,
although its frame rate reaches 25 fps, the resolution is only in 2048 x 960 pixels (equivalent to 1080P),
and hence the imagery looks very blurred. Therefore, the loss of high-frequency details caused by
excessive compression is a special concern for video satellite imagery SR.

To address the above mentioned problems, a series of SR techniques for the restoration of
HR remote sensing images have been proposed [10-14]. For example, Merino et al. proposed
the super-resolution with variable-pixel linear reconstruction algorithm, named SRVPLR [15],
which recombines a set of LR images in a linear nonuniform optimum manner. In [16], a hidden
Markov tree model is proposed to establish a prior model in the wavelet domain to regularize the
ill-conditioned problem for remote sensing image SR restoration. To fully use prior knowledge from
a given LR image, Gou et al. [17] presented a non-local pairwise dictionary learning (NPDL) based
model. In this model, the photometric, geometric, and feature information of the given LR image can
be considered to improve the quality of reconstruction.

However, these shallow learning-based frameworks, show poor reconstruction performance
when a high object resolution is required in practical applications. Recently, given the strength
of deep CNNs, many CNN-based methods have evolved to deal with complex tasks in various
applications [18-20], such as medical imaging, satellite imaging and video surveillance [21,22].
In particular, these effective architectures have achieved very good performance in general image
SR reconstruction. For example, Dong et al. [23] introduced a three-layer CNN into single image SR
(SISR) and achieved considerable improvement. Then, Kim et al. [24] proposed a residual network,
called VDSR by using adaptive gradient clipping and skip connection to alleviate training difficulty.
More recently, Sheng et al. [25] proposed the deep laplacian pyramid super-resolution network
(LapSRN) to reconstruct the sub-band residuals of HR images at multiple pyramid levels. In LapSRN,
a weight-sharing mechanism is implemented in the same structure, thus considerably reducing large
quantity of parameters. However, the incremental depth in a deep CNN framework causes loss of
information, thus weakening the continuity of information propagation. Moreover, these conventional
CNN-based or residual-learning-based structures fail to restore fine texture details with simply direct
or skip connections under complex imaging conditions. In particular, remote sensing satellite imageries
have a complicated degradation process, low ground object resolution, and weak textures, thus posing
considerable challenges for SR reconstruction.

Recently, Huang et al. [26] introduced the dense convolutional network (DenseNet) to strengthen
feature propagation and encourage feature reuse by connecting each layer to every other layer in
a feed-forward manner. Furthermore, in [27], the feature maps of each layer are propagated into all
subsequent layers, thus providing an effective method of combining the low- and high-level features to
boost reconstruction performance. Tai et al. [28] proposed memory blocks to build MemNet by heavily
using long-term dense connections in MemNet to recover more high-frequency information. Although
these methods can enforce information propagation by increasing nodes between layers with skip or
dense connections, the features are fused in the network with a concatenated manner and will lead to
large computational burden and high memory consumption.

Following the idea of sharing weights among recursive nodes, recursive learning networks have
been recently used to reduce redundancy parameters of the network. For example, Kim et al. [29]
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presented to use more layers to increase the receptive field of the network. It proposes a very deep
recursive layer to avoid excessive parameters. In addition, a skip-connection manner is used to
mitigate the training difficulty. Tai et al. [30] proposed a deep recursive residual network to address the
problems of model parameters and accuracy, which recursively learns the residual unit in a multi-path
model. More recently, Yang et al. [31] used the LR image and its edge map to infer sharp edge details
of an HR image during the recurrent recovery process. However, the simple-connection manner used
in these models [29,30] extremely limits the SR reconstruction performance.

In this study, a novel ultra-dense-connection manner is proposed to improve the reconstruction
performance along with recursive strategy to mitigate memory consumption. Compared with
the conventional skip- and dense-connection-based networks [24,26], the proposed UDB contains
approximately twice as many short and long paths as the conventional dense block given the same
convolution layers. Therefore, this will greatly enhance the representational power of the network.
In addition, parameters sharing strategy between UDBs can extremely release the memory burden.
We also find ferture distillation in different stages leads to better accuracy for deep SR networks.
Thus, we distill the feature maps by partly choosing output (with a special ratio) in different stages yet
retain its integrity. After getting feature maps in different UDBs, we aggregate these components for
gaining more abundant and efficient information in a multi-scale purification unit.

The strategy of feature distillation and compensation is obviously different from the knowledge
distillation in these studies [32,33]. They compacted deep networks by letting a small simple network
learn from a large complex network. In [34], the authors distilled a multi-model complex network
by retaining the necessary network knowledge while keeping close performance. In [35], Pintea et al.
showed substantially reduced parameters by recasting multiple residual layers in the large network
into a single recurrent simple layer. However, our proposed distillation and compensation strategy is
mainly used to compensate for the high-frequency details lost during information propagation rather
than model compression.

In summary, the main contributions of this work are as follows:

1.  We propose a novel deep distillation recursive network DDRN for remote sensing satellite image
SR reconstruction in a convenient and effective end-to-end training manner.

2. We propose a novel multiple-path residual block UDB, which provides additional possibilities for
feature extraction through ultra-dense connections, quite agreeing with the uneven complexity of
image content.

3. We construct a distillation and compensation mechanism to compensate for the high-frequency
details lost during information propagation through the network with a special distillation ratio.

The remainder of this paper is organized as follows. In Section 2, we introduce previous works
on CNN-based SR reconstruction algorithms, particularly network structures for feature extraction.
Section 3 particularly presents the framework of the proposed DDRN. Section 4 individually presents
the design of each key module under the proposed DDRN framework in details, including UDB,
MSPU, resolution lifting, and loss function. Experimental results are given in Section 5, and the
conclusions of this study are given in Section 6.

2. Related Work

We briefly review previously related works on structure-efficient networks [25,29,36-38],
from which our network draws inspiration. These previous deep networks are committed to learning
fine detail textures by designing a sophisticated structure. In this section, we focus on recent skip- and
dense-connection-based methods.

Skip connection: A skip connection that directly connects input to output through an identity
map, as shown in Figure 1b, was pioneered for SISR by Kim et al. [24]. They proposed a 20-layer CNN
model known as VDSR. Instead of learning the actual pixel values, VDSR harnesses the global residual
learning paradigm to predict the differences between ground truth and bicubic interpolated image.
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This learning strategy makes the feature maps very sparse, enabling easy training and convergence.
Compared with the traditional methods [39-42], this learning strategy on the benchmark datasets
shows a significant superiority on reconstruction performance in terms of visual and quantitative
indicators. In addition, DRCN [29] constructes a recursive-supervision structure to alleviate the
difficulty in training a deep residual network further. Recently, Sheng et al. [25] proposed a deep
Laplacian pyramid super-resolution network (LapSRN) to reconstruct the sub-band residuals of HR
images at multiple pyramid levels with skip connection.

& &
(a) Flat-net
Input Conv Conv Conv
(3x3) (3x3) (3x3)
(b) Skip-net
Res N Res N Res
. |»$»
(c) Dense-net (d) UDB

Figure 1. Frameworks of the CNN-based modules. (a) Flat-net (e.g., SRCNN [23] and FSRCNN [43]):
Direct connections are commonly used to learn the features. (b) Skip-net (e.g., VDSR [24]) : An identity
map with connecting input to the output is pioneered for SISR. (¢) Dense-net (e.g., DenseNet [26] and
SRDenseNet [27]): The feature maps are directly passed from the preceding layers to the current layers
through the identity function with much richer connections. (d) UDB: Interacted multiple-path units

are embedded for extracting local feature maps with a richer ultra-dense connections. “C” and “ +
denote the concatenation and adding operation, respectively.

Dense connection: Enlightened by previous works, Huang et al. [26] recently represented an
intensive skip connection called dense connection. As shown in Figure 1c, the feature maps of
the current layer are connected to every subsequent layer in a feed-forward manner. With rich
local dense connections, the current layer can aggregate the information from all of the preceding
layers within the dense block for further selection and fusion. These strategies effectively address the
vanishing-gradient problem and enhance information propagation, thus strengthening the feature
expression and boosting the convergence. Subsequently, Tong et al. [27] proposed an enhancement
version called SRDenseNet. In SRDenseNet, the feature maps obtained from each dense block are
propagated into the deconvolution layers to reconstruct SR images, providing an effective way to
combine the low-level and high-level features, which further boosts the reconstruction performance.
In addition, the dense skip connections in the network enable short paths to be built directly linking
to the output from each layer, thus mitigating the vanishing-gradient problem. While considering
the research on feature extraction and fusion, the earlier work of Gao et al. [38] is also noteworthy.
They proposed a technique called multi-scale dense network for resource-efficient image classification.
Their main idea is to train multiple classifiers in different stages using a two-dimensional multi-scale
architecture, enabling them to preserve the coarse-and-fine level features all throughout the network.

Ultra-dense connection: These above mentioned strategies have been proven effective in addressing
vanishing-gradient problem, guaranteeing accurate feature extraction and fusion. However, the directly
concatenated operation on all layers in previous works [27,38] have led to high memory consumption
and computation burden. In addition, conventional dense-connection-based networks have to construct
a deeper network the more the skip paths required. Moreover, the increasing computational burden
and memory consumption are unacceptable.

As shown in Figure 1d, on the basis of the dense network [26], we propose a multiple-path residual
block called UDB. Compared with conventional skip or dense networks [24,26,27,29], UDB contains
richer short and long paths with the same convolution layers. In particular, given the multiple-path
units and transition layer, the feature channels becomes shallower, extremely reducing the parameters
and decreasing the computational burden and memory consumption.
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3. Network Architecture

As shown in Figure 2, the proposed model is a deep recursive neural network that can be roughly
partitioned into three substructures, namely, local feature extraction and fusion, feature distillation,
and feature compensation and SR reconstruction. Except for the upsampling operation, motivated by
previous works on SISR [24,25,27,43], the entire process of local feature extraction and fusion is in the
LR space. Ir g and Igg are considered the LR input and HR output of the proposed DDRN, respectively.
F; and B; refer to the output in the i, layer and the jy, block, respectively. In this work, the LR RGB
images are directly fed into the network and processed with the initial convolutional layers (two layers
with 3 x 3 kernel) to extract features as follows:

F; = H(I1r), @

FZZH(Fl)I )

where H(-) denotes the convolution operation. F; and F, represent the shallow feature maps extracted
through the initial convolutional layers, served as the input of the UDB. Moreover, the proposed
residual block UDB is used as a basic module for local feature extraction in DDRN. For each
UDB, the information cannot only be shared among layers and multiple-path units but also be
used as the input for the subsequent residual blocks with ultra-dense connections. These strategies
enforce information propagation and lead to fine feature expression by combining the multi-scale
coarse-and-fine features in different stages. The operation can be defined as follows:

B; = Hplock,i(Bi—1) + Bi—1, 3)

where Hy,. ; denotes the entire convolution operation in the iy, UDB and B;_; refers to the extracted
feature maps from the (i — 1);, UDB. As shown in Figure 1, compared with the conventional
CNN-based modules [24-26,29,30], whose commonly used residual block contains the simply direct
or skip connections between layers, the proposed UDB module is composed of several interactive
multiple-path units and parametric rectified linear units (PReLU). The dedicated architecture for UDB
enjoys more linking paths in the same layers and provides more possibilities for feature extraction
than do these previous strategies, thus matching the uneven content complexity of remote sensing
imagery. Specifically, the simple links are adapted to smooth areas, whereas complex connections are
suited for high-frequency texture details.

Feature distillation

% % % % HR Outut

LR Input o | Z\‘ b7

m SN \ F0( subpiel /T W K
} ),

},ﬂ Conv UDB ZEAN UDB < UDB \ff\ convolution /]

11
A I | Feature compensation| |
1 | L _ andreconstruction | _j

Bicubic

Figure 2. Outline of the proposed deep distillation recursive network (DDRN). The red distillation
symbol followed the UDB represents the distillation operation with a special distilled ratio of .

According to previous SISR algorithms [24,27,29,30], the output of the current stage is directly
transmitted to the next stage. Then the final residual maps are obtained at the top layer for SR
reconstruction. However, information loss is inevitable during its propagation in the network,
thereby weakening the continuity of information propagation. Previous works add a set of nodes to
shorten the transmission distance, thus boosting information propagation and reducing information
loss during propagation, so-called skip connections [24,29]. However, increasing the nodes between
the input and the output cannot only deepen the network but also increase computational burden
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and memory consumption. Differently, we facilitate information propagation with the multiple-path
residual module UDB. Furthermore, we also present a distillation and compensation strategy for
fine feature expression by compensating for extra-high-frequency details. As shown in Figure 3,
unlike the traditional network, whose output in each block is directly transmitted to the subsequent
part, our proposed method can adaptively distill and preserve the feature maps by partly choosing
information from the current output yet retain its integrety. Then, these feature maps collected from
different stages are aggregated and purified in MSPU to infer and compensate for the high-frequency
details before the reconstruction operation.

Bi-1 x a Bixa

Bi-2 Bi-1 Bi Bi+1

UDB > UDB _ﬁ UDB -é

Distillation and compensation

Figure 3. The distillation and compensation mechanism. The red components indicate that the distilled
feature maps B; x a in current UDB are adaptively preserved. « denotes the distillation ratio for current
UDB output B;. MSPU refers to the further purification operation.

In this study, we denote the preserved part from B; as the distillation unit (DU) with the ratio of «.
At the same time, B; is used as the input to the subsequent residual block for further extraction.
This process can be formulated as follows:

DU; = S(B;, ), 4)

where « refers to the distillation ratio, which indicates that the feature maps in each stage with the ratio
of a will be distilled and preserved. In our experiments, we set « to {0.0,0.125,0.25,0.5}. S(-) represents the
distillation operation, and DU; denotes the distilled information from the iy, residual block B;.

In addition, the reserved feature maps DU; in different stages are aggregated through
a concatenation operation, and then they are fed into the purified unit MSPU, where the HR components
lost in the previous blocks are reactivated as a compensation for SR reconstruction. In Equation (5),
Hc () denotes the concatenation operation adopted to collect the distillation information and M(-) refers
to the MSPU. Through the distillation and compensation mechanism, the high-frequency components
compensated from MSPU can further promote reconstruction performance.

At the end of the network, the feature maps extracted from the top UDB and the compensated
high-frequency details purified from MSPU are combined to infer and restore the HR components by
a transition layer with 3 x 3 kernel. Then, a sub-pixel upsampling operation is used to project these
features into HR space to obtain the residual image. The detailed operation is expressed as follows:

Isg = PS(Hg(Dn, P)) + Ip, (6)

where D, and P represent the feature maps extracted from the top UDB and the compensated details
from MSPU, respectively. Hg denotes a transition function that contains a 3 x 3 convolution layer
to fuse features and infer HR components, adaptively. Ip refers to the bicubic interpolated image.
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PS(-) represents the reconstruction operation performing a sub-pixel amplification to obtain the HR
residual image in the ending part of the network.

4. Feature Extraction and Distillation

In this section, we present the design of each key module under our DDRN framework in details,
including UDB, MSPU, and Resolution Lifting.

4.1. Ultra-Dense Residual Block (UDB)

It is acknowledged that rich dense connections can promote feature expression [26,27].
Therefore, we design a dense connection module for feature extraction. In this study, a multiple-path
residual block UDB is constructed to enforce the correlation among layers and blocks with rich dense
connections. Compared with existing skip- or dense-connection-based methods, UDB considers diverse
short and long linking paths (the multiple-path structure) and exhibits effective information-sharing
capability among the layers. Therefore, our network provides additional possibilities for feature
extraction, quite agreeing with the uneven complexity of image content. More precisely, simple links
are adapted to smooth areas, whereas complex connections are suited for high-frequency texture
details. As shown in Figure 1d, UDB includes several interactive multiple-path units, which can
fuse the feature maps extracted from parallel multiple convolution paths. The information-sharing
mechanism aggregates features in different levels to ensure a rich feature representation further.
The function of the iy, unit can be formulated as follows:

yi = He([Fio(x0), Fip(x1), -+, Fiu(xa)]), ()

sin = Hi(He(isSi—1,n))- 8)

Equations (7) and (8) formally show the operation process in a multiple-path unit. In Equation (7),
Fi ,(xy) and He([Fio(x0), Fi1(x1), -+, Fin(xn)]) refer to the single convolution operation and the
feature congregation of multiple convolution layers in each unit, respectively. In Equation (8),
y; denotes feature concatenation in the current unit. s; , indicates the transition output in the ny;, path of
the iy, unit, and s;_; ,, represents the output from the n;;, path of the (i — 1);, unit. Functionally, a group
of skip connections is used to enforce the correlation among the input and output feature maps,
where the transition layers represented as H; are embedded to reduce feature channels with 1 x 1
convolution kernel.

Unlike skip- or dense-connection-based algorithms [26-28], the proposed multiple-path ultra-dense
connection block can simultaneously explore and infer local and global features. In particular, the feature
maps in the multiple-path unit cannot only be shared among the layers in the current unit through
aggregation and dense connections but also be used as the input of other units with skip connections.
Given the simplicity, effectiveness, and robustness of this strategy, local features can be well expressed
through numerous short and long paths. Furthermore, owing to the effective structure for feature
extraction in UDB, the network can become shallow in the channels but wide for the convolution paths,
which extremely reduces the parameters and simultaneously boosts the reconstruction performance.

4.2. Multi-Scale Purification Unit (MSPU)

In [44], the authors focused on channels and proposed a novel architectural unit termed
“squeeze-and-excitation” (SE) block to recalibrate channel-wise feature responses adaptively by
explicitly modeling the interdependencies between channels. The SE block can learn to use global
information to emphasise informative features and suppress less useful features selectively. This model
won the first place in the classification contest ILSVRC2017 [45].

In this study, we adopt the SE module because of its promising efficiency and efficacy. On the
basis of this finding, we propose an applicable module MSPU for information compensation. The basic
structure of MSPU building unit is illustrated in Figure 4. Contrary to the squeeze-and-excitation
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network (SEN) [44], the redundant residual connections between SE blocks used for features
transmission are removed. In addition, given that the full connection layer can destroy the internal
structure of the image, we therefore replace it with a 1 X 1 convolution layer. Moreover, we adopt
a robust activation function, e.g., parametric rectified linear unit (PReLU), to replace the previous
version rectified linear unit (ReLU).

On the basis of MSPU process, we further propose a distillation and compensation strategy to
compensate for lost details. By partially distilling the components from B; with the distillation ratio
of «, as shown in Figure 3, we can obtain feature maps originating from UDB in different stages.
Then, these features are aggregated into MSPU to purify and gain more abundant and efficient information.
The extraction functions can be defined as follows:

MS = H(x), ©)

P = o(H;(Ap(MS))) x MS. (10)

In Equation (9), the input x denotes the concatenation of the distilled components in different
satges, equivalent to Hc (DU, - -- ,DUj, - - - ,DU,) in Equation (5), and H(-) represents a group of
convolutional operations (with 3 x 3 kernel) that is adopted to fuse the features distilled from different
levels. As expressed in Equation (10), Ap denotes the global average pooling, H; refers to the group of
transition layers that comprises the bottleneck structure, and ¢ represents the sigmoid function.

L| Conv || Conv | || Conv | || Menee | || Conv . Conv __)®_) Conv | ||
(3x3x64) | |(3x3x32)| ) |(3x3x256) pooling (1x1x64)| /| (1x1x256) (1x1x64)

17

@The top UDB

Y
Y

2]
g &
2 8
s =
= @
= &
2 g
.-
SN

MSPU

Figure 4. The Multi-scale feature purification unit (MSPU). The distillation components preserved
from the different stages are fused to obtain compensation information lost during the information
delivery. X denotes the matrix multiplication.

4.3. Resolution Lifting

To project a single LR image into HR space, the resolution of LR image must be increased to match
that of the HR image at a certain point. Osendorfer et al. [46] presented a computationally efficient
architecture for image SR by leveraging the fast approximate inference to increase the image resolution
in the middle of the network gradually. Another well-known approach can also achieve spatial
resolution enhancement by linear interpolation [23,24]. They obtained the same image resolution by
directly using the common bicubic interpolation before loading the dataset into the network.

In addition, the early work of Shi et al. [47] is noteworthy when considering the upsampling
operation. Contrary to authors of previous works, the researchers proposed an efficient sub-pixel
convolution layer to increase the image resolution only at the final layer, eliminating the need to
perform most of the SR operations in the large HR space. Compared with the transposed convolution
and bicubic interpolation, sub-pixel magnification [47] is actually a realignment of feature maps without
extra parameters, thus quite decreasing memory consumption and computational cost. These reasons
enable the network go deeper and be trained easily.

As expressed in Equation (11), PS is a shuffling operator that rearranges the elements of
a Hx W x C-r? tensor acquired in the top layer into a rH x rW x C tensor (where r is the
magnification factor of the network, and C refers to the feature channels of the input image).
Mathematically, the upsampling function can be expressed as follows:

PS(T)XJJ,C = T\_x/r_l,\_y/m(mOd<x/ 7’), mOd (yl 7’)), (11)
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where T indicates the output from the final layer with the size of W x H X Cr?, (x,y) denotes the
output pixel coordinate in the HR space, (x/r,y/r) represents the pixel area of r x r in the sub-pixel
space, and (mod (x,7), mod (y, r)) refers to the pixel coordinate in LR space. The Cr? channels of each
pixel in the same location in the LR space is rearranged into a region of 1r x 1r x C, which corresponds
to a subblock in an HR image, and the feature image is rearranged into an HR image of W x rH x C.
In this work, as in many CNN-based SISR methods [25,47,48], we adopt the sub-pixel upsampling
strategy to reconstruct the HR image at the top layer because of its promising efficiency and efficacy.

4.4, Loss Function

It is well known that SISR is an ill-posed problem whose solution from the reconstruction
constraint is not unique because of the insufficient number of LR images, ill-conditioned registration,
and unknown degradation process. In previous works, the loss function is commonly used to fit the real
target image by minimizing the distance between the reconstructed HR image and the ground truth.
The commonly used distance measurements include pixel-based /;-norm [25] and l,-norm [23,24,29],
and cosine distance based on feature level.

Most of the previous works [23,27,29] constrain the reconstruction image by minimizing the mean
squared error (MSE) or maximizing the peak signal to noise ratio (PSNR), which is a common measure
used to evaluate SR algorithms [49]. However, the capability of MSE to capture perceptually relevant
components, such as high-frequency texture details, is insufficient because they are defined on basis
of pixel-wise image differences [50]. For example, the previous works [23,29,43] use MSE loss as the
cost function and produce overly smooth reconstruction results that are inconsistent with human
vision. In [25,51], the authors proposed a novel optimal function charbonnier loss based on the /;-norm,
which can recover a large amount of realistic details, more faithful to the ground truth. In our work,
we therefore introduce the charbonnier penalty function to penalize the deviation of the prediction
from the residuals of ground truth. The loss function can be expressed as follows:

Loss(Isg, Inr,0) = arg min Y o(Iur — f(ILg,9)), (12)

where 6 denotes a set of model parameters to be optimized and p(x) = vx2 + €2 represents the
charbonnier penalty function (a differentiable variant of /;-norm). We empirically set the compensation
parameter € of 1072, Isg and IR refer to the predicted HR image and the ground truth.

5. Experimental Results and Analysis

In this section, first, we describe the experimental settings, including the data collection and
model parameters. Then, we assess the effect of the distillation ratio « and the network depth m on
the reconstruction performance. Subsequently, we compare our results with these state-of-the-art
techniques and provide a thorough analysis. We retrain the comparison algorithms with our training
dataset to ensure a fair comparison, including SRCNN [23] and VDSR [24]. Moreover, we directly
apply the original models [23-25] trained with general image datasets, as the anchors.

5.1. Data Collection

For general image SR, a large quantity of public training and assessing datasets, such as
DIV2K [52], BSD500 [53] and Yang291 [39], are used to evaluate the results. However, few available
datasets can be used as the training samples for satellite imagery SR because of the special requirements
of ground target resolution. We use two available satellite image datasets, namely, Kaggle Open Source
Dataset and J[ilin-1 video satellite imagery, to train and evaluate the proposed DDRN method.

1. The first imagery dataset is the Kaggle Open Source Dataset (https://www.kaggle.com/c/
draper-satellite-image-chronology/data), which contains more than 1000 HR images of aerial
photographs captured in southern California. The photographs were taken from a plane and


https://www.kaggle.com/c/draper-satellite-image-chronology/data
https://www.kaggle.com/c/draper-satellite-image-chronology/data

Remote Sens. 2018, 10, 1700 10 of 23

meant as a reasonable facsimile for satellite images. The images are grouped into five sets, each of
which having the same setld. Each scenario in a set contains five images captured on different
days (not necessarily at the same time each day). The images for each set cover approximately the
same area but are not exactly aligned. Images are named according to the convention (setld-day).
In this dataset, the scene has 3099 x 2329 pixels and 324 different scenarios. A total of 1720 satellite
images cover agriculture, airplane, buildings, golf course, forest, freeway, parking lot, tennis
court, storage tanks, and harbor. In this study, 30 different categories are selected for the test
and 10 for the evaluation. Meanwhile, a total of 350 images are used for the training. Regarding
the training dataset, the entire images are cropped into many batches with 720 x 720 pixels,
but only the central area of the testing images with size of 720 x 720 pixels is cropped for testing
and evaluation.

2. The second satellite dataset is from Jilin-1 video satellite imagery. In 2015, the Changchun
Institute of Optics, Fine Mechanics, and Physics successfully launched the Jilin-1 video satellite
which had 1.12 m resolution. To cover the duration of video sequences, we select one for every
five frames from each video and crop the central part with the size of 480 x 204 as test samples.
We select several areas in different countries with certain typical surface coverage types, including
vegetation, harbor, and a variety of buildings as the test images.

5.2. Model Parameters and Experiment Setup

In our experiments, we use an NVIDIA GTX1080Ti GPU and an Intel I7-8700K CPU for training
and testing, respectively. Our model is implemented on TensorFlow with Python3 under Windows10,
CUDAS.0, and CUDNNS5.1 systems. We mainly focus on the up-scaling factor of 4, which is usually
the most challenging case in image SR.

The original HR images are downsized by bicubic interpolation to generate LR images for training.
We augment the training patches by horizontal or vertical flipping and rotating 90°. By following
the settings presented in [54], we send one batch consisting of 16 LR RGB patches with the size of
32 x 32 from the training datasets to our network each time. The learning rate is initialized to 10~2 for
all layers and halved for every 10* steps up to 10~°. In our model, each convolution layer contains
64 filters, followed by PReLU. We empirically set the distillation ratio « to {0.0, 0.125,0.25, 0.5} and the
number of parallel convolution layers # in each multiple-path unit to 3. For the basic module DDRN,
the depth of UDB is 15. In our experiments, training a basic module consumes approximately 20 h
under the previously presented experimental settings.

5.3. Quantitative Indicators (QI)

Similar to many previous representative works [23,24,28,29], we also select two commonly used
evaluation metrics, i.e.,, PSNR and structural similarity (SSIM), to evaluate the model performance.
These evaluation metrics differ in terms of visual perception but involve reference images for
comparison. However, in real SR scenes, we have only LR images to be super-resolved, without the
corresponding HR reference image.Therefore, we need to introduce quantitative non-reference
image quality assessment methods. Quality with no reference (QNR) [55,56], generalized quality
with no reference (GQONR) [57] and average gradient (AG) [58] are commonly used image quality
evaluation algorithms without reference, which can reasonably assess the clarity of reconstructed image.
Nevertheless, QNR and GQNR are used for multispectral or hyperspectral images rather than ordinary
RGB images, which needs to calculate the spectral distortion index and spatial distortion index.
Thus, in this study, we propose to alternatively use AG for objective evaluation without reference.
This process can be expressed as follows:

G(X,]/) = dx(i,j) + dy(i,j)/ (13)

dxijy = i) — Ly (14)
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dyij) = Iijr1) — Ly (15)

where dx and dy refer to the horizontal and vertical gradients, respectively, and I(; ; denotes the pixel
value corresponding to the coordinate of (i, j).

The indicator of the AG can reasonably assess image clarity because it sensitively reflects content
sharpness, detail contrast, and texture diversity. Generally, the larger the AG, the richer the details.
Thus, the AG can be used to evaluate the reconstruction quality of satellite imagery in real-world scenes,
such as [ilin-1 video satellite imageries.

5.4. Validation of the Ultra-Dense Residual Block

We examine the effectiveness of the proposed deep recursive CNN network DDRN and the
multiple-path UDB. Given that SRCNN [23] and VDSR [24] are the most representative and most
effective deep-learning-based SR methods, in our experiments, we retrain these two models by using
the same training datasets and label them as SRCNN* and VDSR*. Figure 5 shows the comparison
results according to the iterations of DDRN, SRCNN, and VDSR. Comparatively, our DDRN
exhibits faster convergence and higher scores than do direct-connection-based SRCNN and
skip-connection-based VDSR. This superiority can be mainly attributed to the proposed multiple-path
ultra-dense connections which can readily capture local features. Thus, our framework significantly
boosts the SR efficacy of remote sensing imagery.

PSNR / dB
N
©
o
—

—— DDRN
28.0 - — VDSR*
—— SRCNN*

,

0 125 250 375 500 625 750 875 1000
iterations / k

Figure 5. Training process for different models with the scale of 4. On the top, the blue line denotes the
convergence process of the basic module DDRN with depth of 15 while the green and the red lines
at the bottom refer to the VDSR and SRCNN. The competitive algorithms marked by * denote the
retrained versions with our dataset.

In Figure 6, we show the evaluation results of the proposed DDRN method and the comparison
algorithms on the Kaggle Open Source Dataset to verify the usefulness of the ultra-dense connections
strategy further. The test set contains 30 different scenarios, which are labeled 1 to 30 in Figure 6.
The figure shows that by using ultra-dense connections, we obtain better reconstruction results than
do the conventional CNN-based methods, i.e., SRCNN [23] and VDSR [24]. For the average PSNR,
our DDRN shows substantial improvements, surpassing VDSR by 0.92 dB, and SRCNN by 1.94 dB.
Similarly, SSIM is also considerably improved.
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36.0 =— VDSR* = VDSR*
e SRONN*| o, | e SRCNN*

+ ——DDRN \ A —+— DDRN

2605 5 0 5 20 % 30 0.785 5 10 15 20 % 30
Label Label
Figure 6. The SR performance comparisons for 30 different scenarios (denoted by label) from
Kaggle Open Source Dataset. The competitive algorithms marked by * denote the retrained versions with
our dataset.

In summary, the proposed residual block UDB effectively captures realistic detail textures.
Although SRCNN and VDSR are effective, the well-designed deep recursive framework DDRN
is more suitable for satellite image SR reconstruction.

5.5. Influence of Parameters o and m

On the basis of the basic module DDRN, we implement a distillation and compensation
mechanism to compensate for the HR components lost during information propagation to infer
and restore more realistic high-frequency details. The improved model with MSPU embedment is
called DDRN . In particular, a couple of comparison simulation experiments are conducted to analyze
the influences of (i) the hyperparameter « in Equation (4) for partial feature maps distillation and
preservation, (ii) the depth value m of UDB on the reconstruction performance.

We report the training process of the proposed DDRN™ with respect to different distillation ratios
to verify the necessity of the proposed distillation and compensation mechanism. When « is set to 0,
no components are distilled in the current stage, whereas MSPU does not function. Figure 7 shows
the comparison results of the training process under different distillation ratios. From the figure,
we learn that the proposed DDRN ™ exhibits better training performance than the basic module DDRN.
In addition, we observe that, with an increase in the distillation ratio &, the module exhibits robust and
fast convergence. This result can be attributed to the increasing compensated high-frequency details
from the MSPU by an increased distillation ratio. However, we also observe that the performance
starts to decline when « is set to a large value, e.g., 0.5. This result can be mainly attributed to the
large distillation rate, which may result in information redundancy. In addition, excessive parameters
might lead to overfitting. All of these results indicate that the proposed distillation and compensation
mechanism show substantial improvements by compensating for high-frequency details. Therefore,
embedding MSPU into the basic module for satellite image SR reconstruction is an effective and
reliable choice.

In light of the observations in these previous works [26-28], fine features can be well inferred
from a deep CNN framework. Thus, we gradually increase the depth of the network by simply adding
the number of the UDB (i.e., m is set to 10, 15, 20, 25, 30, and 35). We assess the performance of different
values of m. In Figure 8, we show the training details of the proposed DDRN™ method with different
depths. When simply increasing the value of m to 30, the improvement gradually increases and
surpasses the basic module by approximately 0.22 dB in the scale of 4. By contrast, the performance
declines when we continue to increase m to 35 and the network exhibits slow convergence. This result
can be mainly attributed to the overfitting, and the convergence of the network becomes more difficult
in such a depth.
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30.8 —DDRN
——DDRN+0.125
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Figure 7. Training process for different distillation ratios by the scale of 4. DDRN™ represents
the improved module with MSPU embedded at different ratios on the basis of the basic module.
In particular, DDRN denotes the improved module with the distillation ratio & of 0, which is actually
the basic module.

31.6
315
31.4]
31.3]
m -
312
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%3141
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31.0
i ——DDRN+m10
30.9 —— DDRN+m15
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Figure 8. Training process for different depths of DDRN™ with scale of 4 and the distillation ratio « of
0.25. We set UDB number m to 10, 15, 20, 25, 30 and 35 while keeping other parameters consistent.

On the basis of the experiments, we can obtain the optimal distillation ratio « and UDB depth m
for satellite image SR reconstruction, which are set to 0.25 and 30, respectively.

5.6. Comparison Results with the State-of-the-Art

We compare our basic model DDRN and the improved version DDRN™ (a = 0.25, m = 30) with
other SISR algorithms, including Bicubic, SRCNN [23], VDSR [24], and LapSRN [25], by the scaling
factors of x2, x3, and x4. The implementations of these anchor methods have been released online
and can thus be conducted on the same test datasets.

The reconstruction results obtained with above mentioned Kaggle Open Source Dataset for the
proposed approaches and the comparison methods are shown in Figure 9. We select several different
but representative scenarios (i.e., crossroads, factory, freeway, tennis court, and parking lot) to
produce a visual presentation. Experimentally, we crop these representative scenarios into a sub-batch
with the size of 120 x 120 pixels from each reconstructed SR image and compute PSNR and SSIM.
Notably, the proposed method DDRN and its improved version DDRN™ surpass these state-of-the-art
methods by a large margin. Moreover, the modules that we propose exhibit the most accurate and
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realistic image details from the visual effect. Most of the comparison methods produce noticeable
artifacts and blurred edges, whereas the proposed DDRN™ can recover sharper and clearer edges
because of successful feature extraction and fusion, more faithful to the ground truth. For example,
as shown in Figure 9, only our proposed modules restore the clear court boundary in the tennis court
scenario and the accurate and credible car outline in the four other scenarios. Therefore, all of the
proposed models exhibit solid performance improvements compared with the conventional direct- or
skip-connection-based algorithms [23-25].

Ground Truth Bicubic SRCNN SRCNN(Retrained; VDSR(Retrained} LapSRN DDRN-+(Our)

NI

PSNR/SSIM a 28.04/0.783 29.29/0.821 29.51/0.834 30.09/0.855 31.04/0.881 30.66/0.870 32.55/0.906 3 32.68/0.913

Crossroads

Hﬁﬁﬁﬁg

24.02/0.689 25.42/0.764 25.52/0.765 26.44/0.823 26.60/0.819 26.47/0.820

PSNR/SSIM 25.46/0.742 27.54/0.817 27.34/0.808 31.14/0.912 30 69/0.903 30. 87/0 910 32. 65/0 928 33. ]2/() 933

‘lllﬂﬂﬂﬂm

PSNR/SSIM 26.98/0.696 27.93/0. 751 27.49/0.726 28. 50/0 790 29.20/0. 812 28.. 83/0 797 31.15 () 869 32. 32/0 893
3 v ¥ ¥ 7 ]

Tennis court

Parking lot

PSNR/SSIM 25.57/0.791 27.37/0.850 27.60/0.851 28.13/0.872 29.35/0.894 28.36/0.877 29.96/0.909 29.98/0.909

Figure 9. The reconstruction results on Kaggle Open Source Dataset and by the scale of 4. We select
several different but representative scenarios, i.e., crossroads, factory, freeway, tennis court and parking
lot, and then crop them into small image batches in size of 120 x 120 for demonstration. Red and blue
indicate the best and the second best performance, respectively.

Objectively, Tables 1, 2 and 3 tabulate the detailed evaluating results in terms of PSNR, SSIM and
AG with the magnification scales of X2, x3, and x4, respectively. From these records, we learn that raw
CNN-based or skip connection methods, such as SRCNN [23] and VDSR [24], exhibit lower scores than
do DDRN-based methods (i.e., in terms of PSNR, the proposed DDRN* surpasses SRCNN and VDSR
retrained by approximately 2.16 and 1.14 dB with the scale of 4 in the first test dataset, respectively.).
Among these comparison methods, the basic module DDRN shows the best performances because of its
ultra-dense-connection-based effective framework for local spatial information extraction. In addition,
through the compensated high-frequency details obtained from the MSPU, the improved version
DDRN™ can produce fine detail textures. With regard to PSNR and SSIM, Figure 6 shows an more
intuitive result that the proposed modules outperform these state-of-the-art methods [23-25] by
a large margin. For the metric AG, the proposed DDRN and DDRN™ are also better than previous
works on average. In particular, in the comparison results shown in the three tables, our methods
exhibit remarkable advantages when the upsampling factor is large, as reported at the bottom of the
three tables. These results indicate the advantages of the proposed ultra-dense-connection manner in
modeling the relationship between LR and HR images with lager magnification factors.
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Table 1. Quantitative evaluation of the proposed DDRN approach and its improved version DDRN* against some state-of-the-art SISR algorithms on Kaggle Open

Source Dataset with 30 different scenarios for the scale factor of x2. Bold indicates the best performance. Particularly, * refers to the modules retrained by us with
Kaggle Open Source Dataset.

Labels Methods Bicubic SRCNN [23] SRCNN * VDSR [24] VDSR * LapSRN [25] DDRN (Our) DDRN™ (Our)

Scale PSNR/SSIM/AG  PSNR/SSIM/AG  PSNR/SSIM/AG  PSNR/SSIM/AG  PSNR/SSIM/AG  PSNR/SSIM/AG  PSNR/SSIM/AG  PSNR/SSIM/AG
1) 2 36.77/0.960/3.468 39.17/0.973/3.878 39.49/0.974/3.849 40.52/0.978/3.887 40.83/0.979/3.881 40.65/0.979/3.881 41.33/0.980/3.958  41.38/0.981/3.958
2) 2 31.97/0.919/4.729  35.27/0.953/5.848 35.21/0.951/5.791 35.99/0.959/5.907 36.58/0.962/5.838 35.95/0.959/5.879 37.10/0.965/5.915  37.23/0.965/5.920
3) 2 37.42/0.945/2.700 39.20/0.959/3.176  39.31/0.960/3.100 40.20/0.965/3.197 40.36/0.966/3.170 ~ 40.34/0.966/3.177 40.77/0.968/3.216  40.82/0.968/3.220
4) 2 36.78/0.953/3.698 39.07/0.968/4.172  38.97/0.966/4.119 39.47/0.969/4.174 39.70/0.970/4.147 39.61/0.970/4.158 39.95/0.971/4.194  40.05/0.971/4.201
) 2 31.97/0.948/6.149 35.63/0.970/6.808 35.54/0.969/6.846 36.75/0.974/6.821 37.23/0.976/6.860 36.84/0.975/6.808 37.16/0.977/6.921  37.66/0.978/6.903
6) 2 33.81/0.913/3.614 35.78/0.936/4.238 35.91/0.935/4.192 37.16/0.944/4.346 37.26/0.945/4.269 37.20/0.945/4.310 37.57/0.946/4.357  37.73/0.947/4.373
@) 2 35.80/0.924/3.474 37.26/0.941/4.020 37.10/0.939/3.908 37.50/0.943/4.037 37.56/0.944/3.986 37.59/0.944/4.022 37.72/0.945/4.054  37.79/0.945/4.061
8) 2 36.66/0.953/2.538  39.05/0.968/3.050 38.88/0.966/3.022 40.00/0.971/3.067 40.02/0.971/3.048 39.96/0.971/3.041 40.66/0.973/3.097  40.74/0.973/3.104
) 2 33.39/0.962/5.090 37.62/0.982/5.652 38.29/0.982/5.785 39.77/0.987/5.604 40.02/0.988/5.705 39.72/0.987/5.576  40.81/0.989/5.748  41.10/0.990/5.737
(10) 2 3291/0.922/3.573 35.15/0.950/4.470 35.35/0.950/4.440 36.29/0.957/4.540 36.90/0.960/4.525 36.25/0.957/4.499  37.96/0.964/4.622  37.88/0.964/4.608
(11) 2 37.05/0.951/2.866 39.42/0.966/3.352 39.27/0.964/3.290 39.81/0.967/3.353 40.07/0.968/3.304 39.92/0.968/3.325 40.35/0.969/3.356  40.38/0.969/3.360
(12) 2 38.34/0.949/2.916 40.53/0.967/3.486 40.40/0.966/3.422 40.91/0.968/3.510 41.04/0.970/3.499 41.06/0.969/3.497 41.24/0.970/3.543  41.31/0.971/3.548
(13) 2 36.20/0.941/3.775 38.55/0.959/4.353 38.51/0.958/4.306 38.93/0.960/4.364 39.07/0.962/4.368 38.99/0.961/4.355 39.33/0.963/4.399  39.36/0.963/4.405
(14) 2 33.84/0.945/4.742  36.50/0.964/5.355 36.43/0.963/5.305 37.18/0.967/5.349 37.64/0.969/5.348 37.44/0.968/5.333 38.15/0.970/5.424  38.17/0.970/5.427
(15) 2 31.83/0.936/6.327  35.17/0.966/7.572  35.60/0.967/7.550 36.46/0.972/7.548 37.21/0.975/7.534 36.72/0.974/7.532  38.02/0.978/7.652  38.08/0.978/7.660
(16) 2 31.26/0.920/5.463 34.63/0.956/6.625 34.61/0.955/6.569 36.14/0.964/6.717 36.44/0.966/6.648 35.99/0.964/6.701 37.19/0.969/6.740  37.35/0.969/6.747
17) 2 33.78/0.933/4.433  36.88/0.959/5.294 36.82/0.958/5.199 37.56/0.963/5.300 37.86/0.964/5.247 37.69/0.964/5.270 38.22/0.966/5.355  38.35/0.966/5.362
(18) 2 34.00/0.944/4.304 37.17/0.967/5.066 37.15/0.966/4.986 38.28/0.972/5.065 38.51/0.973/5.022 38.40/0.973/5.029  39.04/0.975/5.085  39.21/0.975/5.085
(19) 2 31.33/0.924/6.328 34.07/0.957/7.558 33.80/0.954/7.620 34.77/0.963/7.567 34.76/0.963/7.619 34.72/0.963/7.518 35.15/0.966/7.659  35.32/0.967/7.664
(20) 2 32.37/0.926/4.947 35.42/0.956/5.800 35.75/0.959/5.739  37.20/0.968/5.867 37.56/0.970/5.786 37.17/0.968/5.828 38.07/0.972/5.890  38.19/0.972/5.897
(21) 2 29.57/0.905/5.137  32.84/0.945/6.269 32.72/0.944/6.186 34.62/0.959/6.412 35.03/0.961/6.308 34.29/0.958/6.324  36.10/0.967/6.434  36.08/0.967 /6.430
(22) 2 35.46/0.931/3.450 37.54/0.954/4.091 37.45/0.952/3.990 38.33/0.959/4.103 38.41/0.960/4.065 38.34/0.959/4.082 38.72/0.962/4.153  38.80/0.962/4.157
(23) 2 31.57/0.934/5.460 35.06/0.964/6.485 34.96/0.963/6.549 36.23/0.970/6.487 36.63/0.972/6.499 36.32/0.971/6.445 37.32/0.975/6.553  37.47/0.975/6.560
(24) 2 38.26/0.965/3.085 40.78/0.976/3.375 40.47/0.974/3.367 41.25/0.977/3.362 41.17/0.977/3.391 41.44/0.978/3.358 41.63/0.978/3.437  41.69/0.979/3.437
(25) 2 34.75/0.948/3.281 37.61/0.968/3.958 37.70/0.967/3.946  39.04/0.974/4.018 39.37/0.975/4.014 39.12/0.974/3.991  40.31/0.978/4.097  40.20/0.978/4.098
(26) 2 32.86/0.946/3.699 34.87/0.966/4.312 34.75/0.964/4.242  36.62/0.976/4.480 37.29/0.978/4.310 36.98/0.977/4.314 39.34/0.983/4.514  39.86/0.984/4.535
(27) 2 34.43/0.944/3.425 37.35/0.965/4.132 37.36/0.963/4.092 38.35/0.967/4.176  38.80/0.969/4.143 38.37/0.968/4.136  39.14/0.970/4.188  39.21/0.970/4.193
(28) 2 33.36/0.930/4.591 36.51/0.959/5.420 36.25/0.957/5.359 37.56/0.965/5.411 37.73/0.967/5.364 37.57/0.966/5.367 38.13/0.968/5.417  38.19/0.969/5.422
(29) 2 32.19/0.929/4.881 35.30/0.959/5.782 35.53/0.959/5.813 36.52/0.967/5.819 37.07/0.969/5.804 36.59/0.967/5.778 37.61/0.971/5.881  37.70/0.972/5.886
(30) 2 31.26/0.941/5.749 34.69/0.964/6.484 34.43/0.963/6.527 35.69/0.969/6.513 36.54/0.971/6.559 35.76/0.970/6.486  37.10/0.974/6.605  37.23/0.974/6.604
Avg 2 34.04/0.938/4.263  36.80/0.961/5.004 36.80/0.960/4.970 37.83/0.966/5.033 38.15/0.968/5.008 37.90/0.967/5.000 38.70/0.970/5.080  38.81/0.970/5.085
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Table 2. Quantitative evaluation of the proposed DDRN approach and its improved version DDRN* against some state-of-the-art SISR algorithms on Kaggle Open

Source Dataset with 30 different scenarios for the scale factor of x3. Bold indicates the best performance. Particularly, * refers to the modules retrained by us with
Kaggle Open Source Dataset.

Labels Methods Bicubic SRCNN [23] SRCNN * VDSR [24] VDSR * DDRN (Our) DDRN™ (Our)

Scale PSNR/SSIM/AG  PSNR/SSIM/AG  PSNR/SSIM/AG  PSNR/SSIM/AG  PSNR/SSIM/AG  PSNR/SSIM/AG  PSNR/SSIM/AG
(1) 3 33.06/0.915/3.021 34.58/0.935/3.579  35.07/0.940/3.586 36.22/0.953/3.616 36.65/0.955/3.599 37.63/0.961/3.653  37.70/0.962/3.663
2) 3 28.25/0.821/3.717  30.10/0.871/4.911 30.12/0.870/4.941 31.68/0.903/5.274 31.86/0.903/5.047 32.97/0.919/5.333  33.12/0.920/5.346
3) 3 34.30/0.897/2.256  35.38/0.913/2.796  35.76/0.918/2.737  36.56/0.930/2.812  36.57/0.930/2.798  37.51/0.938/2.868  37.68/0.939/2.864
(4) 3 32.88/0.901/3.197 34.68/0.926/3.825 34.89/0.925/3.780 35.58/0.934/3.796 35.71/0.935/3.766  36.40/0.940/3.881  36.49/0.941/3.884
(5) 3 27.86/0.885/5.309 30.35/0.921/6.439 30.87/0.923/6.403 32.11/0.940/6.345 33.31/0.945/6.531  34.68/0.953/6.502  34.43/0.953/6.452
(6) 3 31.17/0.852/3.031 32.44/0.880/3.686 32.38/0.879/3.728 33.72/0.901/3.803 34.03/0.902/3.731 35.13/0.912/3.843  35.27/0.914/3.870
(7) 3 32.92/0.870/2.979 34.18/0.893/3.548 34.15/0.891/3.474 34.83/0.902/3.546 34.67/0.900/3.519 35.11/0.905/3.589  35.25/0.906/3.609
(8) 3 33.32/0.907/2.070  34.90/0.930/2.593  34.93/0.929/2.566 35.89/0.939/2.611 35.74/0.938/2.573 36.48/0.943/2.668  36.70/0.944/2.680
) 3 29.16/0.897/4.537 32.80/0.945/5.666 32.79/0.943/5.643  34.18/0.964/5.508 34.90/0.966/5.432 36.07/0.974/5.563  36.29/0.974/5.578
(10) 3 29.89/0.843/2.766  31.04/0.878/3.594 31.04/0.877/3.579 31.79/0.894/3.743 32.21/0.897/3.710  33.06/0.906/3.803  33.05/0.907/3.793
(11) 3 33.43/0.903/2.384 35.52/0.930/2.971 35.44/0.928/2.961 36.16/0.937/2.988 36.23/0.937/2.927 36.87/0.942/3.050  37.01/0.943/3.062
(12) 3 34.62/0.888/2.311 35.95/0.913/2.991 35.97/0.912/2.937 36.47/0.919/3.007 36.50/0.919/2.972 36.86/0.923/3.070  36.93/0.923/3.078
(13) 3 32.70/0.881/3.189 34.14/0.908/3.837 34.22/0.908/3.804 35.17/0.916/3.871 35.35/0.917/3.860 35.81/0.920/3.927  35.88/0.921/3.940
(14) 3 30.20/0.888/4.099 32.03/0.919/4.961 32.24/0.919/4.888 33.07/0.931/4.898 33.50/0.933/4.900 34.37/0.940/4.947  34.58/0.942/4.966
(15) 3 27.84/0.844/5.081 29.70/0.893/7.098 30.40/0.907/6.934 31.27/0.924/7.059 31.69/0.927/7.010 32.46/0.942/7.138  33.49/0.948/7.104
(16) 3 27.70/0.822/4.472  29.21/0.872/5.548 29.29/0.872/5.605 30.99/0.902/5.901 31.20/0.904/5.744 32.33/0.916/5.947  32.60/0.918/5.969
(17) 3 29.95/0.854/3.684 31.87/0.896/4.683 32.18/0.897/4.620 33.26/0.916/4.722 33.22/0915/4.644 33.98/0.924/4.793  34.13/0.925/4.807
(18) 3 30.15/0.875/3.615 32.14/0.913/4.622  32.36/0.913/4.540 33.61/0.933/4.625 33.66/0.931/4.550 34.52/0.940/4.699  34.68/0.941/4.703
(19) 3 27.82/0.829/5.063 29.49/0.886/6.717 29.46/0.884/6.934 30.36/0.907/6.705 30.07/0.901/6.727 30.79/0.915/6.951  30.97/0.918/6.957
(20) 3 28.97/0.842/4.186 30.99/0.891/5.177 31.20/0.895/5.132  32.50/0.921/5.324 32.68/0.923/5.276  33.62/0.934/5.392  33.85/0.936/5.397
(21) 3 26.45/0.808/4.169 28.29/0.865/5.253  28.30/0.863/5.204 29.87/0.900/5.555 30.04/0.901/5.449 31.57/0.920/5.623  31.59/0.921/5.637
(22) 3 32.43/0.866/2.898 33.84/0.895/3.522 33.77/0.893/3.453 34.45/0.905/3.524 34.38/0.904/3.488 34.81/0.909/3.572  34.91/0.911/3.586
(23) 3 27.88/0.852/4.529  30.12/0.900/5.799 30.11/0.898/5.763  31.24/0.919/5.785 31.40/0.920/5.731 32.41/0.932/5.829  32.53/0.932/5.833
(24) 3 34.58/0.927/2.702  36.80/0.948/3.215 36.72/0.947/3.185 37.82/0.956/3.164 37.66/0.955/3.191 38.46/0.960/3.199  38.64/0.961/3.210
(25) 3 31.05/0.891/2.640 32.75/0.921/3.440 33.19/0.923/3.448 34.36/0.938/3.549 34.60/0.938/3.467 35.75/0.947/3.575  35.97/0.949/3.592
(26) 3 29.70/0.884/3.075 30.66/0.912/3.843 30.90/0.913/3.724  31.01/0.923/3.967 31.55/0.928/3.747 32.31/0.940/3.991  33.16/0.948/4.009
(27) 3 30.89/0.880/2.747 32.44/0.909/3.499 32.70/0.909/3.452  33.80/0.922/3.584 34.07/0.923/3.538 34.83/0.929/3.623  34.92/0.929/3.632
(28) 3 30.14/0.862/3.958 32.37/0.905/4.850 32.09/0.900/4.838 33.41/0.923/4.877 33.21/0.920/4.801 34.02/0.930/4.731  34.18/0.932/4.747
(29) 3 28.67/0.851/4.072  30.74/0.899/5.104 30.92/0.900/5.130  32.09/0.924/5.207 32.33/0.926/5.162 33.23/0.936/5.277  33.41/0.938/5.294
(30) 3 27.62/0.876/4.913  29.80/0.916/5.971  29.86/0.915/5.927 31.03/0.933/5.969 31.91/0.937/6.018  33.74/0.949/6.097  33.49/0.948/6.065
Avg 3 30.52/0.870/3.555 32.31/0.906/4.457 32.44/0.906/4.430 33.48/0.923/4.511 33.69/0.924/4.463 34.59/0.933/4.571  34.76/0.935/4.577
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Table 3. Comparison results of the proposed DDRN approach and its improved version DDRN™ with some state-of-the-art algorithms on Kaggle Open Source Dataset for

the scale factor of 4. Bold indicates the best performance. Particularly, * refers to the modules retrained by us with Kaggle Open Source Dataset.

Labels Methods Bicubic SRCNN [23] SRCNN * VDSR [24] VDSR * LapSRN [25] DDRN (Our) DDRN* (Oun)

Scale  PSNR/SSIM/AG PSNR/SSIM/AG PSNR/SSIM/AG  PSNR/SSIM/AG  PSNR/SSIM/AG  PSNR/SSIM/AG  PSNR/SSIM/AG  PSNR/SSIM/AG

1) 4 30.84/0.867/2.664 32.15/0.892/3.234 32.41/0.897/3.150 33.29/0.917/3.281 33.69/0.922/3311 33.50/0.920/3.263 34.60/0.934/3.343  34.74/0.936/3.354
V) 4 26.41/0.739/2.997 27.80/0.792/4.129 27.77/0.788/3.924  28.92/0.834/4.438 29.27/0.839/4.290 28.96/0.835/4.328 30.51/0.868/4.547  30.67/0.872/4.680
) 4 32.35/0.852/1.929 33.31/0.873/2.475 33.81/0.878/2.349 34.49/0.895/2.502 34.58/0.898/2.474 34.72/0.899/2.469 35.33/0.907/2.467  35.67/0.910/2.551
(4) 4 30.52/0.847/2.809  32.19/0.880/3.432 32.13/0.875/3.385 32.94/0.893/3.452 33.11/0.894/3.387 33.06/0.895/3.404 33.72/0.904/3.362  33.95/0.906/3.365
(5) 4 2531/0.816/4.522 27.18/0.861/5.814 27.75/0.867/5.655 28.30/0.888/5.735 30.92/0.909/6.079 28.39/0.890/5.738  32.32/0.926/6.258  31.94/0.924/6.364
(6) 4 29.57/0.799/2.610  30.85/0.836/3.258 30.51/0.825/3.169 31.41/0.856/3.440 32.04/0.865/3.393 32.03/0.865/3.331 33.33/0.886/3.401  33.55/0.888/3.485
@) 4 31.03/0.822/2.635 32.32/0.849/3.171 32.20/0.845/3.105 32.95/0.864/3.205 32.89/0.862/3.177 33.07/0.865/3.173 33.30/0.870/3.137  33.45/0.873/3.276
8) 4 31.58/0.871/1.771 32.81/0.895/2.196 32.84/0.894/2.138 33.66/0.908/2.208 33.63/0.908/2.177 33.76/0.909/2.188 34.22/0.916/2.187  34.45/0.918/2.189
) 4 26.90/0.831/4.097 30.23/0.904/5.256 29.94/0.898/5.059 31.51/0.935/4.986 31.42/0.933/4.864 31.69/0.938/4.957 32.81/0.950/5.094  33.18/0.954/5.228
(10) 4 28.47/0.783/2.246  29.26/0.816/2.947 29.37/0.817/2.864 29.77/0.835/3.061 30.09/0.839/3.004 29.71/0.834/3.013 30.86/0.856/3.153  30.88/0.856/3.182
(11) 4 31.32/0.858/2.041 33.19/0.891/2.586 33.03/0.887/2.518 33.81/0.903/2.637 33.87/0.904/2.549 33.94/0.905/2.605 34.49/0.913/2.554  34.71/0.915/2.552
(12) 4 32.49/0.830/1.867 33.53/0.856/2.479 33.53/0.854/2.360 33.99/0.866/2.529 34.05/0.865/2.554 34.01/0.867/2.481 34.31/0.870/2.408  34.52/0.873/2.394
(13) 4 30.75/0.822/2.745 31.95/0.853/3.404 32.04/0.853/3.320 32.59/0.865/3.412 32.68/0.865/3.344 32.62/0.866/3.358 33.32/0.874/3.340  33.55/0.876/3.333
(14) 4 27.94/0.830/3.570  29.52/0.868/4.509 29.60/0.865/4.340 30.29/0.884/4.413 30.72/0.889/4.437 30.51/0.888/4.414 31.49/0.903/4.555  31.79/0.907/4.601
(15) 4 25.70/0.744/4.120  27.11/0.805/6.071 27.29/0.808/5.721 28.16/0.842/6.114 28.27/0.845/6.140 28.33/0.850/6.032 29.11/0.872/6.271  29.37/0.875/6.326
(16) 4 25.98/0.738/3.809  27.29/0.797/4.809 27.29/0.796/4.712  28.00/0.827/4.964 28.15/0.830/4.890 28.02/0.828/4.894 29.33/0.857/5.089  29.84/0.863/5.152
17) 4 27.91/0.784/3.139  29.49/0.832/4.069 29.51/0.930/3.904 30.56/0.862/4.130 30.60/0.862/3.997 30.63/0.864/4.101 31.37/0.878/4.083  31.61/0.881/4.100
(18) 4 28.10/0.810/3.091 29.65/0.855/4.082 29.72/0.853/3.910 30.81/0.884/4.117 30.93/0.885/4.172 30.90/0.886/4.072 31.73/0.899/4.083  31.89/0.902/4.108
(19) 4 25.79/0.734/4.064 27.01/0.802/5.738 27.00/0.796/5.497 27.55/0.827/5.677 27.48/0.823/5.552 27.57/0.829/5.684 27.96/0.846/5.910  28.17/0.852/5.999
(20) 4 27.06/0.766/3.612  28.50/0.818/4575 28.69/0.821/4.411 29.57/0.854/4.643 29.90/0.864/4.606 29.64/0.858/4.621 30.77/0.886/4.753  31.18/0.893/4.787
1) 4 24.87/0.733/3487  26.18/0.792/4.517 26.32/0.794/4.429 27.12/0.831/4.737 27.70/0.841/4.798 27.07/0.832/4.684  29.20/0.875/4.943  28.96/0.873/5.042
(22) 4 30.72/0.811/2.541 31.96/0.844/0.050 31.91/0.840/2.941 32.37/0.855/3.066 32.42/0.854/3.003 32.41/0.855/3.025 32.77/0.862/2.945  32.87/0.864/2.935
(23) 4 25.85/0.779/3.834 27.52/0.832/5.104 27.73/0.833/4.950 28.47/0.860/5.037 28.62/0.862/4.988 28.60/0.862/4.991 29.42/0.879/5.049  29.67/0.882/5.120
(24) 4 32.16/0.883/2.382  34.09/0.912/2.929 33.91/0.906/2.800 35.09/0.926/2.902 34.82/0.922/2.872 35.18/0.927/2.877 35.16/0.927/2.904  35.86/0.934/2.909
(25) 4 29.08/0.839/2.174  30.34/0.872/2.898 30.38/0.871/2.819 31.50/0.898/3.091 31.97/0.901/3.140 31.59/0.901/3.075 33.09/0.917/3.149  33.39/0.919/3.173
(26) 4 27.96/0.824/2.586 28.89/0.864/3.433 29.01/0.861/3.194 28.89/0.877/3.787 29.78/0.888/3.629 29.13/0.879/3.489 30.20/0.901/3.626  30.82/0.910/3.629
7) 4 29.06/0.824/2.275 30.30/0.855/2.943 30.25/0.854/2.885 31.15/0.873/3.054 31.45/0.875/2.987 31.23/0.874/2.995 32.17/0.885/3.012  32.35/0.887/3.001
(28) 4 28.33/0.800/3.517 30.02/0.850/4.333 29.87/0.844/4.237 30.93/0.874/4.340 30.74/0.871/4.310 31.02/0.876/4.289 31.47/0.887/4.352  31.72/0.891/4.357
(29) 4 26.80/0.783/3.483 28.46/0.837/4.489 28.56/0.836/4.439 29.41/0.868/4.537 29.61/0.872/4.440 29.47/0.870/4.509 30.38/0.891/4.610  30.65/0.895/4.709
(30) 4 25.46/0.810/4.213 27.40/0.863/5412 27.34/0.862/5.313 28.18/0.888/5.406 30.00/0.904/5.599 28.26/0.891/5.428  31.39/0.922/5.756  31.26/0.920/5.729
Avg 4 28.54/0.808/3.028 30.01/0.850/3.911 30.06/0.848/3.783 30.86/0.873/3.963 31.08/0.875/3.60 30.97/0.875/3.916 32.00/0.892/4.018  32.22/0.895/4.064
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Another group of comparison experiments are conducted with the Jilin-1 satellite imagery to
illustrate the effectiveness and applicability of the proposed ultra-dense strategy and distillation and
compensation mechanism further. Compared with the first dataset Kaggle Open Source Dataset, the test
images obtained from J[ilin-1 show lower quality (small ground objects and weak textures) but more
realistic satellite imagery characteristics. Unlike the images in the training dataset, the test images
have completely different imaging conditions, including ultra-high imaging distance, atmospheric
scattering, relative motion between satellite and moving ground targets, and compression distortion.
These severe imaging conditions pose substantial demands to SR networks.

With an operation similar to the previously presented preprocessing of the testing images,
we crop the test images with the size of 480 x 204. The reconstruction results obtained from our
proposed approaches and the comparison methods are shown in Figure 10. For the first and second
images, most of the comparison methods produce noticeable artifacts and blurred edges. By contrast,
the proposed DDRN and DDRN™ can recover sharp and clear edges because of fine feature expression
that is faithful to the ground truth. At the bottom of the figure, only our proposed modules can
reconstruct a clear outline of the warships and dock, whereas the other conventional methods fail to
restore the realistic details. These results further indicate the effectiveness of the proposed method.

Furthermore, we perform a set of realistic SR reconstruction experiments for the unknown real
degradation process (i.e., using the observed LR images instead of the downscaled LR images as input).
These test images are randomly selected from Jilin-1 satellite imagery using the same preprocessing
to acquire the test images with the size of 480 x 204. Then, the processed images used as the LR
input are directly transmitted to the network to obtain the reconstructed HR images. The comparison
results with other state-of-the-art algorithms are shown in Figure 11 (we show only one example due
to space constrains). Evidently, most of compared methods [23,24] produce noticeable artifacts and
blurred building outlines, whereas the proposed DDRN and DDRN™ yield better results with fewer
jagged lines and ringing artifacts. Instead of the commonly used evaluation metrics PSNR and SSIM
(because the original HR images are unavailable), we introduce the AG to measure the sharpness of
the SR results. As shown in Figure 11, the proposed modules DDRN and DDRN™ enjoy the second
and first highest AG scores, respectively. The results for real video satellite imagery indicate that
our model is more robust than the comparison methods in super-resolving the image with unknown
degradation process.

In brief, the SR reconstruction experiments on different test datasets and magnification scales
show the advantages of feature expression and indicate the robustness of our modules against images
of unknown degradation models.

Bicubic
SRCNN(Retrained)

VDSR(Retrained)
DDRN(Our)

DDRN+(Our)
Ground Truth

33.06/0.904/2.917

Figure 10. Cont.
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SRCNN(Retrained)

DDRN(Our)

DDRN-+(Our)
Ground Truth

23.67/0.723/5.654 PSNR/SSIM/AG

Figure 10. The reconstruction results on Jilin-1 dataset with the scale of 4. We select several different but
representative scenarios, i.e., aircraft carrier, city suburb, and military harbour to make comparisons.
Red and blue indicate the best and the second best performance, respectively.

e T
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SRCNN:AG(6.500) VDSR:AG(6.480)

Figure 11. Cont.
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DDRN+:AG(6.703) LR INPUT

Figure 11. An example for the reconstruction results on Jilin-1 imagery by the scale of 4. The experiment
is performed with real low satellite images rather than simulation degradation. Red and blue
respectively indicate the first and the second best performance in terms of AG. Note that the enlarged
details are shown in the boxes on the bottom left and bottom right in each image.

6. Conclusions

In this study, we propose a simple but very effective technique for remote sensing image SR
reconstruction. In particular, we present a multiple-path UDB for local feature extraction and fusion.
Unlike in the conventional methods, rich dense connections between layers and units promote
information interaction and improve reutilization. In addition, we further promote feature expression
by advocating a distillation and compensation mechanism. The feature maps distilled from different
stages with a special distillation ratio a are aggregated to compensate for the high-frequency details
lost during information propagation in MSPU. Extensive experiments on the test datasets indicate that
the proposed DDRN and its improved version DDRN™ outperform existing state-of-the-art feature
extraction techniques, including conventional direct- and skip-connection-based methods. In particular,
when the image degradation model is unknown, the proposed algorithm can still obtain competitive
reconstruction results compared with the comparison algorithms.
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Abbreviations

The following abbreviations are used in this manuscript:

CNNs  Convolutional neural networks

SR Super-resolution

SISR Single image super-resolution
LR Low resolution

HR High resolution

DDRN  Deep distillation recursive network
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UDB

Ultra-dense residual block

MSPU  Multi-scale purification unit
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