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Abstract: Urban surface water mapping is essential for studying its role in urban ecosystems and
local microclimates. However, fast and accurate extraction of urban water remains a great challenge
due to the limitations of conventional water indexes and the presence of shadows. Therefore,
we proposed a new urban water mapping technique named the Two-Step Urban Water Index
(TSUWI), which combines an Urban Water Index (UWI) and an Urban Shadow Index (USI). These
two subindexes were established based on spectral analysis and linear Support Vector Machine (SVM)
training of pure pixels from eight training sites across China. The performance of the TSUWI was
compared with that of the Normalized Difference Water Index (NDWI), High Resolution Water Index
(HRWI) and SVM classifier at twelve test sites. The results showed that this method consistently
achieved good performance with a mean Kappa Coefficient (KC) of 0.97 and a mean total error (TE)
of 5.82%. Overall, classification accuracy of TSUWI was significantly higher than that of the NDWI,
HRWI, and SVM (p-value < 0.01). At most test sites, TSUWI improved accuracy by decreasing the
TEs by more than 45% compared to NDWI and HRWI, and by more than 15% compared to SVM.
In addition, both UWI and USI were shown to have more stable optimal thresholds that are close to
0 and maintain better performance near their optimum thresholds. Therefore, TSUWI can be used as
a simple yet robust method for urban water mapping with high accuracy.

Keywords: urban water mapping; water index; shadow detection; threshold stability

1. Introduction

Urban surface water such as rivers, lakes, reservoirs, and ponds, exerts a significant influence
on urban ecosystem services [1] and local microclimates [2]. As a consequence of Land Use/Land
Cover (LULC) and environmental changes and natural hazards, variations in urban surface water,
may result in a series of ecological, climate, health, and socioeconomic problems, such as water supply
shortages [3,4], biodiversity losses [5], aggravation of the urban heat island effect [6,7], and even
outbreaks of waterborne infectious diseases [8]. These problems tend to be more prominent in cities
with rapid urbanization [9–12]. With the development of urbanization, the urban space has been
expanded, leading to the shrinking of water bodies. Meanwhile, frequent human activities may lead to
the deterioration of water quality towards being turbid, stink, or black. Therefore, timely and accurate
mapping of urban surface water is crucial for urban planning and disaster assessments [13,14].

Remote sensing techniques, with their advantages of large area coverage, integration, speed,
and periodicity, have been widely used to delineate surface water and monitor surface water dynamics.
Various methods have been proposed to identify surface water bodies, which can be divided into
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four types: thematic classification [15,16], spectral unmixing [17–19], single band thresholding [20,21],
and spectral water index [22–24]. The last is the most widely used, due to its ease of use, relatively
high mapping accuracy, and low computational expense [25]. Over the past few decades, many
water indexes have been presented in the literature. McFeeters [23] proposed the first water index
called the Normalized Difference Water Index (NDWI) with a default threshold of 0, which utilized
the reflectance difference between water and vegetation and soil in the red and near-infrared (NIR)
bands. To suppress the signals from buildings, Xu [24] replaced the NIR band with the shortwave
infrared (SWIR) band in the NDWI formulation, creating the Modified Normalized Difference Water
Index (MNDWI). Although the MNDWI shows high accuracy, it was still unable to suppress shadows.
Therefore, Feyisa et al. [22] proposed an automated water extraction index (AWEI) and that has
been demonstrated to be effective in different environments, particularly in mountainous areas with
deep shadows.

However, mapping small and narrow urban surface water bodies requires the adoption of
high-resolution images [26]. Most high-resolution images, such as Gaofen-2 (GF-2), IKONOS, RapidEye
and Ziyuan-3 (ZY-3), have only visible and NIR bands and lack the bands necessary to compute most
of the conventional water indexes designed for low- or medium-resolution images. This condition
necessitates the development of a water index for fast and accurate mapping of urban surface water.
Compared to water detection in rural areas, the complex urban setting poses great challenges for
mapping water bodies with high-resolution imagery. Because urban water is greatly affected by human
activities, it may contain high amounts of pollutants, such as suspended solids, high levels of nutrients,
heavy metals, and sewage runoff. These pollutants make the spectral properties of urban surface
water quite different from those of unpolluted water [27]. In addition, abundant shadows cast by
tall buildings and trees are present in remotely sensed images in urban areas. Due to the similarity
in spectral patterns between shadows and water, it is difficult to remove shadow noise from urban
water maps.

NDWI and High Resolution Water Index (HRWI) are two water indexes commonly used for urban
water extraction. However, NDWI tends to misclassify buildings and shadows as water when applied
to high-resolution images [28]. HRWI is a water index that was proposed by Yao et al. [29]. HRWI also
exhibits limited ability to distinguish shadows and should be applied together with a shadow detection
model. Summaries of the aforementioned water indexes are presented in Table S1. To the best of our
knowledge, a water index for high-resolution images with four standard bands that can effectively
suppress all non-water pixels and extract urban water with high accuracy has not been proposed.

In this paper, a new urban water index, called the Two-Step Urban Water Index (TSUWI),
was proposed to map urban water bodies from high-resolution imagery based on the full utilization of
the spectral information from different objects in the visible and NIR bands. As one simple water index
may not address all issues at the same time, the TSUWI combines two subindexes of an urban water
index (UWI) and an urban shadow index (USI). The TSUWI proposed in this paper is expected to
improve the accuracy of urban water mapping by suppressing the signal from artificial construction and
shadows, and to be robust under various water conditions with stable thresholds and high accuracy.

2. Study Areas and Materials

2.1. Study Sites

Given the complex terrain and distinct climates over China, a total of twelve study sites with
variable environmental conditions and diverse types of water bodies were selected to establish and
validate the new urban water index. According to different application goals, these study sites were
divided into two types: training sites and test sites.

Training sites were used for pure pixel selection to formulate the new urban water extraction
index. Given that the features of urban surfaces are spatially variant, eight training sites characterized
by different surface water types, climates, topographies, and urban development levels were therefore
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deliberately chosen. The sites were selected from eight cities around China: Chengdu, Guangzhou,
Nanchang, Qingdao, Shanghai, Aksu, Lhasa and Shigatse (Figure 1). While covering all major
challenging issues affecting the accuracy of urban water extraction, such as shadows, low-albedo
buildings and black soil, these sites span across water bodies of different depths, turbidity levels,
chemical compositions, and surface appearances, including rivers, lakes, reservoirs, pools and seas.
The sites in Chengdu, Guangzhou, Nanchang, Qingdao and Shanghai are located in eastern China
within a dense water network. The water bodies in Chengdu, Guangzhou, and Nanchang are typical
inland waters and consist of several main rivers surrounded by many small ponds, regular or irregular
lakes and artificial reservoirs. The main rivers in Chengdu are relatively narrow, while those in
Nanchang are turbid with large amounts of fluid mud. Qingdao and Shanghai are coastal port cities
containing both marine and inland water bodies. The site in Qingdao has harbors, tidal creeks, and
a portion of the sea, and the main water body in Shanghai is a complicated mixture of suspended
sediment and intrusive seawater because of its special location in the turbidity maximum zone of the
Yangtze River Estuary. Aksu, Lhasa and Shigatse were selected to represent water bodies in China’s
western cities, which tend to be rare and shallow due to the arid or semiarid climates. The site in Aksu
primarily has a narrow river and a large shallow lake. Both sites in Lhasa and Shigatse have a narrow
river, but part of the river in Shigatse is semi-dry.

Test sites were selected to assess the accuracy and robustness of the TSUWI. The whole image at
each test site were used to delineate the true water body boundaries for the assessments. Considering
that the pure pixels sampled for the development of the TSUWI covered only an extremely small
portion of the image, the aforementioned eight training sites were also used as test sites. To enhance
the reliability of the assessments, another four test sites located in Fuzhou, Haerbin, Yinchuan,
and Dongguan were added to constitute the set of test sites. Fuzhou, Haerbin, and Dongguan are
located in Eastern China where there are plenty of water bodies, while Yinchuan is located in Western
China where water bodies are scarce. These twelve test sites are distributed across different regions of
China (Figure 1). The wide range of variability in water types and environmental conditions of the
twelve test sites imposes great difficulty for accurately mapping urban water bodies, which makes
these sites ideal test sites. Table 1 shows the detailed descriptions of these twelve study sites.
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Table 1. Characteristics of the twelve study sites.

Study Sites Main Water Types/Features Location Area (km2) Topography Climate

Guangzhou River c,t/lake c/pond c,t,e 23.11◦N,
113.33◦E 574.9 Plain/hills Subtropical oceanic monsoon

Aksu River c,n/lake s,t 41.19◦N,
80.31◦E 171.7 Basin Temperate continental arid

Chengdu River c,t,n/pond c,t/reservoir c 30.64◦N,
104.11◦E 521.9 Plain Subtropical humid monsoon

Lhasa River c,t/pond c 29.67◦N,
91.16◦E 54.0 Mountain/plateau Plateau mountain

Nanchang River t,w/lake c,t/pond c,t,e/reservoir c,t 28.69◦N,
115.82◦E 516.2 Plain/hills Subtropical humid monsoon

Qingdao Sea c/tidal creek t/river n,c,t/pond c,t 36.13◦N,
120.38◦E 561.8 Plain/hills Warm temperate monsoon

Shanghai Harbor w,t /river c,t/lake c,t/pond c,t 31.36◦N,
121.55◦E 504.9 Plain Subtropical oceanic monsoon

Shigatse River c,t/lake c,t/pond c,t 29.25◦N,
88.89◦E 84.0 Mountain/plateau Plateau mountain

Fuzhou River c,t,w/lake c,t/pond c,t/reservoir c 26.01◦N,
119.30◦E 522.2 Basin/hills Subtropical oceanic monsoon

Haerbin River t,w/lake c,t,e/ponds c,t,e 45.71◦N,
126.60◦E 468.3 Plain Temperate monsoon

Yinchuan Lake c,t/river c,n/pond c,t 38.48◦N,
106.24◦E 525.1 Plain Temperate continental

Dongguan River c,t/lake c,t/pond c,t,e/reservoir c 22.98◦N,
113.68◦E 288.9 Plain/hills Subtropical oceanic monsoon

Note: c means clear water, t means turbid water, e means eutrophic water, n means narrow water, and w means
wide water.

2.2. GF-2 Imagery

As a civil land observation satellite with currently the highest resolution in China, GF-2 is
equipped with two multispectral scanners and characterized by submeter spatial resolution, high
positioning accuracy and rapid posture maneuverability. With a revisit cycle of 5 days and a swath
width of 45 km, GF-2 is a critical data source for urban remote sensing applications. The basic
characteristics of GF-2 satellite is shown in Table 2.



Remote Sens. 2018, 10, 1704 5 of 21

Twelve GF-2 images were ordered from the website of the China Center for Resources Satellite
Data and Application (available at http://cresda.com/CN/index.shtml). One image was used
for each site. When choosing images, all available data were inspected to avoid the influence of
clouds on the water bodies. The GF-2 images contain one panchromatic band and four multispectral
bands (comprised of blue, green, red, and near-infrared bands). All images were Level 1A products,
which contain enough information for further image preprocessing, such as radiometric correction
and geometric correction. The detailed information on these GF-2 images is presented in Table 3.

Table 2. Basic characteristics of GF-2 satellite. NIR: near-infrared.

Spectral Bands Wavelength
(µm)

Resolution
(Nadir Point) Swath Width Side-Swing

Ability Revisit Cycle

Panchromatic 0.45–0.90 0.8 m

45 km ±35◦ 5 days
Band1—Blue 0.45–0.52

3.2 m
Band2—Green 0.52–0.59
Band3—Red 0.63–0.69
Band4—NIR 0.77–0.89

Table 3. Characteristics of the twelve study sites.

Study Sites GF-2 Scene Supplementary Reference Data
Acquisition Date Path Row

Guangzhou 4 November 2016 1016 185
Google Earth™ image acquired on
5 October/5 November/9 December 2016, ©Digital
Globe

Aksu 29 February 2016 102 135 Google Earth™ image acquired on 17 April 2016,
©Digital Globe

Chengdu 21 March 2015 27 164
Google Earth™ image acquired on
11 February/21 March 2015, ©Digital Globe,
CNES/Airbus

Lhasa 3 December 2016 63 167 Google Earth™ image acquired on 3 December 2016,
©Digital Globe

Nanchang 28 November 2016 1013 170
Google Earth™ image acquired on
24 September/1 December/31 December 2016,
©Digital Globe

Qingdao 16 February 2016 1006 149 Google Earth™ image acquired on 16 January 2016,
©Digital Globe

Shanghai 2 January 2015 999 162
Google Earth™ image acquired on
18 December 2014, and 24 January/18 February 2015,
©Digital Globe

Shigatse 12 January 2017 69 168 Google Earth™ image acquired on 21 May 2018,
©CNES/Airbus

Fuzhou 7 December 2016 1001 177
Google Earth™ image acquired on
21 January/1 March 2017, © Digital Globe,
CNES/Airbus

Haerbin 10 September 2015 997 122
Google Earth™ image acquired on
19 June/9 July/16 September/24 October 2015, ©
Digital Globe

Yinchuan 4 January 2017 27 142

Google Earth™ image acquired on 30 October/2
November/
13 November 2016, and 21 January 2017, ©Digital
Globe

Dongguan 15 February 2017 1015 186 Google Earth™ image acquired on 12 February 2017,
©Digital Globe

2.3. Reference Data

The true water body boundaries of all twelve study sites were manually digitized on-screen to
evaluate the accuracies of the extracted water surface. In consideration of the inevitable bias caused
by the time span between GF-2 images and other data sources, the digitization was implemented

http://cresda.com/CN/index.shtml
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on the GF-2 images, which was sharpened by the panchromatic band with higher spatial resolution.
Water conditions are sometimes extremely complicated, and small urban water bodies adjacent to tall
buildings, especially dark and quadrangle-shaped buildings, could easily be confused with building
shadows due to their similar spectra and morphology. Google EarthTM images, which were acquired
on dates as close as possible to the GF-2 images, were supplied to assist with the visual interpretation
by providing another different overview of the urban surfaces. Table 3 lists the detailed information
about these supplementary reference data.

2.4. Image Preprocessing

The GF-2 images in the form of raw digital number (DN) values were calibrated to the top of
atmosphere (TOA) reflectance via radiometric calibration. Atmosphere scattering and absorption could
bring unexpected spectral bias, leading to significantly reduced image quality. As a consequence, an
atmospheric correction was applied to the obtained TOA reflectance using the Fast Line-of-Sight
Atmospheric Analysis of Spectral Hypercubes (FLAASH) module in ENVI v.5.3 [30]. Relative
atmospheric parameters were determined via a lookup table [31], which is based on a seasonal-latitude
surface temperature model. The initial visibility applied in this procedure was estimated using the
aerosol optical depth (AOD) obtained from MODIS Terra aerosol products of version 6 [22].

Due to the effects of sensor tilt and terrain relief, orthorectification was carefully undertaken
with the GF-2 images after atmospheric correction. Given that each GF-2 image contains Rational
Polynomial Coefficient (RPC) information in the header file, this procedure was performed using the
RPC orthorectification workflow in ENVI v5.3. To improve the precision of the geometric correction,
ground control points (GPCs) with average root mean square (RMS) values of no more than 0.5 pixels
were selected for each image to refine the RPCs, and the high-resolution digital elevation data (30 m) of
ASTER GDEM v.2 [32] were supplied. The output pixel sizes for panchromatic band and multispectral
bands are 1 m and 4 m, respectively. Afterwards, all orthorectified images were clipped to achieve
higher urban water percentages and lower visual interpretation costs.

3. Methodology

3.1. Pure Pixel Selection

A dataset of pure pixel reflectance values of nine major urban land cover types was sampled from
the GF-2 multispectral images of eight training sites. The urban land cover types are bright soil, black
soil, bright built, dark built, vegetation, asphalt, light shadow, dark shadow, and water. These pure
pixels were utilized to examine the spectral differences between water and other land cover types and
act as samples fed into a linear Support Vector Machine (SVM) model for index coefficient training,
aiming to design an urban water index that accurately distinguishes water from other urban surfaces.
This new index is expected to be robust against various water type changes within complex urban
environments. Therefore, as discussed in Section 2.1, eight training sites located in different cities
across China, including a wide range of water types and all the major interference factors, were used
to extract pure pixels.

Pure pixels were generated by manual digitization of the GF-2 multispectral images with the
assistance of Google EarthTM images. Pure pixels were generally extracted from the center of a land
cover patch to ensure their purity and were evenly distributed across each image to achieve high
representativeness. For each of the eight training sites, 120 pixels were extracted for each land cover
type, leading to 1080 pure pixels for each training site and 8640 for all sites.

3.2. Spectral Features of Water and Non-Water Types

Water indexes are typically mathematic combinations of several spectral features, aiming to
enhance the contrast between water and non-water pixels [22]. Given the distinct separability of
each feature for various land cover types, an optimal feature combination is required for an effective
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water index. Therefore, comprehensive analyses of the spectral characteristics of water and other
land cover types are prerequisites for identifying the optimal feature combination to be applied in the
formulation. Statistical distributions of pure pixel reflectance values of nine land cover types for blue,
green, red, and NIR bands were obtained and displayed in Figure 2a–d. The results showed that the
original bands generally demonstrated good performance in discriminating water from non-water
types. However, considerable spectral overlap can be observed between water and dark shadows in all
bands, making it difficult to extract water information while suppressing the shadow noise. To account
for this issue, the TSUWI was proposed, which consisted of two subindexes of UWI and USI derived
from different feature combinations. The UWI is formulated to effectively discriminate water and dark
shadows from other non-water types, and the USI is formulated to remove the dark shadow pixels
included in the extraction result of the UWI.
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Figure 2. Distributions of reflectance and water index values (a–h) for the major urban land cover
types, including bright soil, bright built, vegetation, black soil, asphalt, dark built, light shadow, dark
shadow, and water. Horizontal lines in each box plot (boxes and whiskers) indicate the locations of the
10th, 25th, 50th, 75th, and 90th percentiles, and the circles indicate the 5th and 95th (blue dashed line)
percentiles. The red dashed rectangles show the contrast between shadows and water in each water
index. NIR: near-infrared; NDWI: Normalized Difference Water Index; HRWI: High Resolution Water
Index; UWI: Urban Water Index; USI: Urban Shadow Index.
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For the UWI, the optimal feature combination was identified from the image bands. Figure 2a–d
showed that each band has a certain ability to separate water and dark shadows from other land cover
types, and the red band achieves the best separability. However, the unstable reflectance values in
the blue band may cause obvious variations in the optimal threshold values of the index [29], and no
significant improvement in accuracy was observed after the blue band was introduced (discussed in
Section 3.3.2). Therefore, the green, red and NIR bands were finally selected to formulate the UWI.

Band ratios were found to be capable of amplifying the minor differences between the spectral
reflectance of water and dark shadows. Meanwhile, band ratios can also help stabilize the
discrimination abilities of indexes by diminishing the undesired influence posed by topographic
relief and light intensity change. Hence, six band ratios composed of either two of all four bands were
calculated for the identification of the optimal feature combination for USI formulation, including
NIR/B, NIR/G, NIR/R, B/G, B/R, and G/R, where G, R, B, and NIR refer to the reflectance values
of the green, red, blue, and near infrared bands, respectively. Information redundancy exists among
the six band ratios, and only three of them can cover all four bands. The three band ratios with
maximum separability and minimum correlation were then chosen to formulate the USI. Scatter plots
and M-statistical tests were used to qualitatively and quantitatively measure the separability of water
and dark shadows in the band ratios. In the scatter plots shown in Figure 3, the area encompassed by
the two dashed lines in each plot shows the locations of pure dark shadow pixels in the corresponding
band ratio. Therefore, the more pure water pixels that fell out of this area, the better separability
the band ratio has. The M-statistical test (Equation (1)) is defined by quantifying the histogram
difference between two classes [33]. M values above 1.0 indicate fine separation, while M values below
1.0 indicate poor separation.

M =
µ1 − µ2

σ1 + σ2
(1)

where µ1 − µ2 is the difference in the means of two classes, and σ1 + σ2 is the sum of their standard
deviations. Considering that the USI is a linear combination of features, Pearson’s Correlation
Coefficient (PCC) analysis [34] was used to examine the linear correlation between two band ratios.
The closer a correlation coefficient to 1 or −1 is, the more significant the linear relation is, indicating
that one band ratio is more likely to be superseded by the other.

Separability results revealed that NIR/G, NIR/B, and NIR/R showed similar scattering
distribution patterns (Figure 3), and NIR/G achieved the best performance at separating water and
dark shadows with a high M value of 1.12 (Table 4). The PCC analysis further confirmed that there are
high correlations among NIR/G, NIR/B, and NIR/R, with correlation coefficients greater than 0.91.
Hence, NIR/G was chosen, while both NIR/B and NIR/R were discarded. The other three band ratios
of B/G, G/R, and B/R have M values of 0.91, 0.57, and 0.24, respectively. B/G and B/R are highly
correlated with a coefficient of 0.71, while G/R and B/G are only weakly correlated with a coefficient
of −0.25 (Table 5). Consequently, B/G and G/R were selected as the other two band ratios used in the
formulation of the USI. Any two of the selected band ratios (NIR/G, B/G and G/R) were significantly
correlated (Table 5).
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Table 4. Separability of water and dark shadows in six band ratios using the M-statistical test.

Class Pair
M Value

NIR/G NIR/R NIR/B B/G G/R B/R

Water vs. Dark shadows 1.12 0.87 0.65 0.91 0.57 0.24

Table 5. Pearson’s Correlation Coefficient (PCC) among the six band ratios.

Value
Band Ratio Pair

NIR/G vs.
NIR/B

NIR/G vs.
NIR/R

B/G vs.
B/R

G/R vs.
B/R

B/G vs.
G/R

NIR/G vs.
B/G

NIR/G vs.
G/R

Pearson’s r 0.91 0.94 0.71 0.50 −0.25 0.51 −0.58

3.3. Constructing the Two-Step Urban Water Index

The TSUWI was devised to effectively suppress non-water surfaces and extract urban water
with improved accuracy. As discussed in Section 3.2, the spectral features used to eliminate water
dark shadows differ from those used for other non-water types. Therefore, the TSUWI was designed
to compose the two subindexes of the UWI and USI, the coefficients of which were obtained using
linear SVM.

3.3.1. Linear Support Vector Machine

The coefficients of the water indexes imply the contribution of a corresponding feature to the
separation of water and non-water pixels and become a significant issue for the design of a water
index. The coefficients of conventional water indexes (e.g., NDWI, MNDWI, and AWEI) primarily
resulted from reflectance pattern analysis of various land cover types, and therefore are characterized
by certain subjectivity. In addition, because urban water bodies are typically sediment-rich and algae
polluted and exhibit complicated optical features [35], it would become a great challenge for index
designers to empirically determine the coefficients of an effective urban water index. In this paper,
creating a new index is essentially a linear problem. Hence, the linear SVM was adopted to identify
the optical coefficients for the new water indexes.

Linear SVM is a nonparametric statistical learning machine based on the structural risk
minimization criterion [36]. By recovering an optical linear hyperplane in the feature space that
maximizes the margin separation of two classes, it has been proven to be an advanced coefficient
training model [29]. Given a set of labeled training data (X, Y) = {(xi, yi)|i = 1, . . . , N, yi ∈ {−1,1}},
the margin of the positive class is represented by equation wTx + b ≥ 1, while the margin of the
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negative class is represented by equation wTx + b ≤−1. That is to say, the minimum margin difference
between these two classes is 2, which ensures that the classifier has stable discrimination ability. The
linear SVM can be explicitly formulated by solving the following constrained optimization problem
(Equations (2) and (3)) [37].

min
w,b

max
αi

1
2
‖ w ‖2 −

N

∑
i=1

αi

(
yi

(
wTxi + b

)
− 1

)
(2)

subject to 0 ≤ α ≤ C and
N

∑
i=1

αiyi = 0 ∀i (3)

where xi ∈ Rd is the feature vector of training sample i, here referring to the optimal feature
combination selected for index formulation. yi ∈ {−1, 1} is the corresponding class label. N is
the total number of training samples. αi is the Lagrangian multiplier ranging from 0 to a constant C.
Weight vector w is a normal vector that is perpendicular to the hyperplane, and parameter b stands for
the intercept term of the hyperplane.

The optical hyperplane is then represented by Equation (4).

wTx + b = 0 (4)

For a test pixel x, if the expression wTx + b output is greater than 0, it belongs to the positive class,
and if the expression output is less than 0, it belongs to the negative class. Obviously, the expression
wTx + b can be used as an index, and parameters [wT , b] are the coefficients. In addition to enhancing
the separability of the positive and negative classes, the linear SVM also provided a default threshold
of 0, which could be used as a reasonable starting threshold for binary classification.

3.3.2. Formulation of the Urban Water Index (UWI)

The UWI was formulated using the linear SVM to discriminate water and dark shadows from
other land cover types. Pure pixels of all land cover types were used to train the linear SVM, where
water and dark shadow pixels are labeled as 1, and the other pixels are labeled as−1. To help determine
whether the blue band should be introduced into the new index, two linear SVM training experiments
were conducted with and without the blue band. By comparing their classification abilities using pure
pixels, it was found that the addition of the blue band led to a reduced accuracy of 94.14% compared
with 94.27%. The feature combination composed of the green, red, and NIR bands was thus used as
the input training vector. After training, the coefficients for the optimal hyperplane were obtained
(Equation (5)).

PUWI = 5.83×G− 6.57× R− 30.32×NIR + 2.25 (5)

As shown in Figure 4a, the PUWI values of water and dark shadows did not display great
discrepancy with the values of other land cover types. To further enhance the separation ability,
PUWI was then divided by the expression |5.83 × G − 6.57 × R − 30.32 × NIR| to create the UWI.
This division enlarged the difference that water and dark shadows had from other types. Providing
insights into the histogram of pure pixel samples, it functioned by shifting water and dark shadow
pixels towards larger positive values and shifting other land cover pixels towards smaller negative
values, leading to a larger interval between them (Figure 4a,b). The modulus keeps the plus-minus
sign unchanged, which means the water and dark shadow pixels in the UWI remain above 0 and
other non-water pixels remain below 0. For ease of use, the common divisor 5.83 was removed in the
final index, and the coefficients were rounded to one decimal digit, which did not cause a significant
reduction in accuracy. The UWI formula is then represented by Equation (6).

UWI =
G− 1.1× R− 5.2×NIR + 0.4
|G− 1.1× R− 5.2×NIR| (6)
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3.3.3. Formulation of the Urban Shadow Index (USI)

The USI was designed to further improve the accuracy by removing the dark shadows that can
be confused with water classes from the extraction result of the UWI. Herein, pure water and dark
shadow pixels with NIR/G, B/G and G/R features were fed into the linear SVM to create the new
USI. Pure water pixels were labeled as 1, and pure dark shadow pixels were labeled as −1. For ease of
use, the coefficients of band ratios were rounded to two decimal digits, while one decimal digit was
reserved in the constant term. The USI was finally formulated as shown in Equation (7).

USI = 0.25× G
R
− 0.57× NIR

G
− 0.83× B

G
+ 1.0 (7)

3.3.4. The Two-Step Urban Water Index

The TSUWI was developed by combining the UWI and USI. The TSUWI extracts urban water
by sequentially applying the UWI and USI to the image. The UWI was first applied to generate
a temporary water mask. The USI was then used to eliminate dark and light shadow pixels included
in the temporary water mask and obtain the final water extraction result. Therefore, the TSUWI can
then be expressed as Equation (8).

TSUWI = (UWI > T1) ∧ (USI > T2) (8)

Here, the TSUWI is a binary index with its possible values being 0 or 1. A value of 0 indicates
non-water, while 1 indicates water. T1 and T2 denote the optimal thresholds of the UWI and USI,
respectively. Zero could theoretically be used as their default value. However, due to the variation in
scene brightness and contrast with time and space, the optimal thresholds should be determined in
accordance with specific conditions.

The water extraction results of the TSUWI were generated by intersecting the threshold
segmentation results from both the UWI and USI; thus, the commission error caused by one index could
be corrected by the other. The UWI demonstrated remarkable performance in suppressing non-water
land cover types, including bright built, bright soil, vegetation, black soil, dark built, and asphalt. But
in areas with dark or light shadow covered surfaces, the UWI may misclassify such surfaces as water
(Figure 2g). As a remedy for the UWI, although the USI showed limited ability to eliminate some
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non-water pixels, such as bright built, this index performed well in suppressing dark shadows and
performed even better in suppressing light shadows (Figure 2h).

3.4. Assessment Methods

The assessment of the TSUWI method included an accuracy assessment and stability analysis.
An accuracy assessment was used to measure how close the classification results were to the real world.
The threshold stability analysis was used to investigate the stability of the optimal threshold close to
the default threshold of 0 and the accuracy of water extraction near the optimum threshold.

3.4.1. Accuracy Assessment

To compare the accuracy of the proposed TSUWI with other methods, two well-known
water indexes for visible and near-infrared imagery, NDWI and HRWI, were chosen in this study.
The comparison between the TSUWI, NDWI, and HRWI was made at their optimum thresholds,
which were captured by an iterative approach on the principle of balance of commission and omission
errors [22]. Moreover, a nonlinear SVM with a Gaussian radial basis function was employed as a classic
and commonly used supervised classifier [35], and its classification accuracy was also compared with
that of the TSUWI. For the SVM classifier, the four multispectral bands of GF-2 imagery were chosen
as the feature vector input, and the parameters of the SVM were determined by the performance with
the highest accuracy. The training samples for each test site were taken from the pure pixel data of
the nine land cover types. For the additional test sites in Fuzhou, Haerbin, Yinchuan, and Dongguan,
pure pixels were acquired in the same way as other test sites (Section 3.2). After SVM classification,
pixels belonging to non-water types were assigned to one category, and binary water results were
then produced.

Classification accuracies of the TSUWI, NDWI, HRWI, and SVM, were assessed by calculating
the KCs, commission error (CE) and omission error (OE) derived from the confusion matrix [38].
The confusion matrix was produced via a pixel-by-pixel comparison between the classification and
reference images. As the reference image was the same for the different classification methods,
dependence between their confusion matrixes can easily occurs. This dependence may result in too
conservative inference about the superiority of one classification method over another [39]. McNemar’s
test was thus adopted to provide an assessment of the confidence in the accuracy difference between
the TSUWI and the other three methods. The test was based on a chi-square statistic, computed as
shown in Equation (9) [39].

χ2 =
(| f12 − f21| − 1)2

f12 + f21
(9)

where f12 and f21 denote the proportions of pixels that are correctly classified by one method but
wrongly classified by the other.

3.4.2. Threshold Stability Assessment

Threshold stability analysis is an important paradigm in the context of index development and
application. Because the NDWI and HRWI are similar to the UWI and USI and were formulated to
discriminate water from non-water pixels by forcing water pixels above 0 and non-water pixels below
0, the NDWI and HRWI were also chosen to further compare the stability of the proposed TSUWI. For
the three methods, a default value of 0 is, in theory, the optimum threshold that could extract water
with the highest accuracy. However, due to the variation in scene brightness and contrast with time and
space, the optimum threshold may not always lie at 0 but at a certain value near 0. As a result, a range
of multiple thresholds of approximately 0 at regular intervals are iteratively tested to find the optimum
threshold. To reduce the iteration times in adjusting the threshold, the threshold data for testing are
expected to have a small range but a large interval. Water extraction methods are thus required to (1)
stabilize the optimal threshold as close as possible to the 0 value and (2) maintain good performance
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near the optimum threshold. Therefore, the threshold stability comparison between the TSUWI, NDWI,
and HRWI was made from these two perspectives. The former perspective was assessed by examining
the variation in the optimal threshold values for the three methods across the twelve test sites, while
the latter one was tested by comparing their accuracy variability in a range of thresholds near the
optimum value. When testing the accuracy variability of the UWI and USI, the variation in the accuracy
of one index was calculated by fixing the other index at its optimum threshold.

4. Results

4.1. Water Extraction Maps

The water extraction maps generated by the TSUWI, NDWI, HRWI, and SVM at the twelve
test sites are presented in the Supplementary Material (Figure S1). Visual inspection of Figure S1
indicates that the TSUWI was effective in extracting surface water in the presence of complex urban
surfaces. Compared to the NDWI and HRWI, the proposed TSUWI consistently performed better in
suppressing shadows and other non-water surfaces, particularly at the test sites in Shanghai, Yinchuan,
and Dongguan. In most cases, the NDWI and HRWI resulted in noisy results with a large number
of misclassified pixels. The SVM resulted in classification outputs that were (visually) similar to the
TSUWI at first sight. However, closer inspection revealed that the proposed TSUWI did improve the
water extraction accuracy at most test sites compared to SVM.

4.2. Water Extraction Accuracy

The water classification accuracies of the TSUWI, NDWI, HRWI, and SVM methods at the twelve
sites are presented in Table 6. Statistical analysis of Table 6 indicated that the TSUWI successfully
achieved high accuracy of urban surface water mapping at all test sites, with a mean KC equal to
0.97 and a mean TE (the sum of the CE and OE) of 5.82%. In contrast, the other three methods
consistently exhibited lower classification accuracy, with an exception at the test site in Aksu for
SVM (TE = 6.89% for TSUWI, while TE = 6.22% for SVM). The two conventional indexes, NDWI and
HRWI, exhibited similar performance and resulted in a lower classification accuracy than the other two
methods, and their mean KC and mean TE were 0.90, 17.41% and 0.93, 13.21%, respectively. The SVM
classifier fell between, with a mean KC of 0.95 and a mean TE of 8.81%. For the overall stability,
it clearly appeared that the classification accuracy of the TSUWI at different test sites exhibited smaller
variations compared to the other three methods (Figure A1). By comparing the TEs at each test site,
it is found that at most test sites, the TE of TSUWI was less than 55% of that of NDWI or HRWI and
85% of that of the SVM classifier (Figure A2). In other words, the proposed TSUWI could generally
decrease the classification error by more than 45% compared to NDWI or HRWI, and 15% for the SVM.

Table 6. Summary of classification accuracies of the three methods by test site. TSUWI: Two-Step
Urban Water Index; NDWI: Normalized Difference Water Index; HRWI: High Resolution Water Index;
SVM: Support Vector Machine.

Test Sites
Kappa Coefficient Total Error (%)

TSUWI NDWI HRWI SVM TSUWI NDWI HRWI SVM

Guangzhou 0.96 0.92 0.92 0.95 7.72 14.46 13.90 8.35
Aksu 0.97 0.96 0.96 0.97 6.89 7.58 7.07 6.22

Chengdu 0.94 0.84 0.84 0.83 11.33 30.15 29.75 29.70
Lhasa 0.96 0.94 0.92 0.94 7.97 12.16 14.84 11.05

Nanchang 0.98 0.95 0.96 0.98 3.11 9.45 7.41 3.28
Qingdao 1.00 0.99 0.99 0.99 0.34 0.65 0.69 0.75
Shanghai 0.99 0.96 0.94 0.99 1.24 5.38 7.80 1.48
Shigatse 0.96 0.90 0.87 0.93 7.10 19.43 24.51 13.81
Fuzhou 0.98 0.95 0.96 0.96 4.31 8.10 7.82 6.25
Haerbin 0.97 0.90 0.91 0.97 6.17 18.09 17.64 6.50

Yinchuan 0.96 0.57 0.93 0.94 7.97 63.79 13.25 11.04
Dongguan 0.97 0.89 0.92 0.96 5.65 19.69 13.78 7.33
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Table 7 summarizes the significance of the accuracy difference at the twelve test sites by
McNemar’s chi-square test. Overall, significant accuracy improvement was achieved by the TSUWI
compared to the NDWI, HRWI, and SVM (p-value < 0.001). Exceptions were found in the test site
in Aksu for the HRWI and SVM. At this site, the superiority of the TSUWI over the HRWI was
nonsignificant (p-value = 0.364), and the TSUWI performed significantly worse than the SVM because
the TE of the TSUWI (6.89%) was greater than that of the SVM, and the p-value was below 0.001.

Table 7. Summary of McNemar’s χ2 test for accuracy difference between the TSUWI and the NDWI,
HRWI and SVM.

Test Sites
TSUWI vs. NDWI TSUWI vs. HRWI TSUWI vs. SVM

χ2 p-Value χ2 p-Value χ2 p-Value

Guangzhou 132,839.0 <0.001 115,749.6 <0.001 3154.6 <0.001
Aksu 77.3 <0.001 0.8 0.364 93.6 <0.001

Chengdu 17,469.1 <0.001 16,782.9 <0.001 29,634.9 <0.001
Lhasa 789.6 <0.001 1611.7 <0.001 565.7 <0.001

Nanchang 156,460.7 <0.001 90,288.0 <0.001 473.3 <0.001
Qingdao 27,076.7 <0.001 29,515.0 <0.001 37,705.9 <0.001
Shanghai 365,387.6 <0.001 614,546.5 <0.001 5523.5 <0.001
Shigatse 5466.0 <0.001 9882.5 <0.001 2461.9 <0.001
Fuzhou 93,062.7 <0.001 82,875.6 <0.001 33,324.0 <0.001
Haerbin 146,443.9 <0.001 148,493.8 <0.001 474.1 <0.001

Yinchuan 1,637,618.0 <0.001 41,856.2 <0.001 18,304.1 <0.001
Dongguan 242,347.7 <0.001 118,820.2 <0.001 10,548.3 <0.001

4.3. Threshold Stability Analysis

A comparison of the stability of the optimal thresholds of the UWI, USI, NDWI, and HRWI is
shown in Figure 5. The optimal thresholds of the UWI and USI at different test sites presented similar
ranges, which were from −0.38 to 0.15 and −0.38 to 0.11, respectively. Compared to the NDWI and
HRWI, the optimal thresholds of these two new indexes have smaller ranges of approximately 0.
Themaximum deviations of the optimal thresholds for the UWI and USI were both 0.38, whereas those
for the NDWI and HRWI reached 0.56 and 0.85. It was concluded that the optimal thresholds of the
UWI and USI at different test sites exhibited small variations from the default threshold of 0 compared
to the NDWI and HRWI. Therefore, 0 could be used as the initial threshold in the iteration to find the
optimum thresholds for both the UWI and USI.

Figure 6 shows the accuracies of the UWI, USI, NDWI, and HRWI in the range of [−0.1, 0.1]
near the optimal thresholds. At all twelve sites, the UWI exhibited almost unnoticeable variations,
whereas the variations in the USI variation were relatively more obvious. This result means that the
accuracy stability of the TSUWI near the optimal threshold is mainly dependent on that of the USI. In
most cases, the accuracy of the USI is much more stable and higher than that of the NDWI and HRWI.
Therefore, the TSUWI can alleviate the manual iteration issue for the optimum threshold, which is
often normal and serious in the application of water indexes [40]. Moreover, the UWI can maintain
the best performance in the range [−0.1, 0.1], while the USI can maintain the best performance in the
range [−0.01, 0.01]. In the application of the TSUWI, we thus recommend 0.2 as the iteration step size
for the UWI and 0.02 for the USI.
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5. Discussion

5.1. Effects of Shadow Detection

The fact that shadows are widely distributed throughout urban areas and exhibit spectral patterns
that are similar to those of water makes shadow removal a challenging problem in urban water
extraction [25,41]. To address this issue, many researchers have contributed to previous research on
the improvement of extraction accuracy by introducing additional shadow detection methods, such
as object-oriented classification [35,42], shadow detection model based on SVM feature training [29],
morphological shadow indexes [43,44] and invariant color model [45–47]. These methods may
achieve expected results but are relatively difficult to apply and are time-consuming. Our new
USI automatically suppresses shadow pixels through the arithmetic of bands. The circumvention of
complex shadow detection procedures may simplify urban water mapping.

As shown in Section 3.3.4, the USI was preliminarily verified to have good separation through
statistical analysis of pure pixels. To further confirm the role of this shadow detection index,
we compared the accuracy results of the NDWI and HRWI, as well as their combination with the
USI, and the proposed TSUWI at the twelve test sites (Table 8). Compared to the NDWI and HRWI,
the combination of both with the USI achieved improved accuracy at each test site. For the NDWI
and HRWI, the OE at most test sites was greater than the CE. The reason for this difference is that
only the NDWI or HRWI cannot suppress the signal from shadows (Figure 2e,f), and the threshold
has to be increased to achieve high accuracy at the cost of increasing the OE. By combining these
indexes with the USI, the USI can successfully remove the noise from shadows (Figure 2h), and the
NDWI or HRWI can then reduce the threshold to decrease the OE, thus resulting in improved accuracy.
However, reducing the threshold of the NDWI (or HRWI) may simultaneously increase the number
of misclassified pixels, such as dark built, asphalt and bright built (dark built and asphalt for HRWI)
pixels, on which the USI also has limited effects (Figure 2h). Among the three combination methods
with USI, the proposed TSUWI (UWI + USI) demonstrated the best performance with the highest
accuracy in detecting urban water bodies at all test sites. Therefore, we recommend using the TSUWI
method to extract urban water rather than the NDWI or the HRWI combined with the USI. However,
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the accuracies delivered by the combination of USI with NDWI and HRWI were quite similar to that of
the TSUWI. This finding not only implies that the USI is much more important for the performance
of the TSUWI, but also highlights the potential of USI to further improve the performance of other
water indices.

Table 8. Summary of the accuracy using HRWI, NDWI, NDWI+USI, HRWI+USI and TSUWI (UWI+USI)
at each optimal threshold.

Test Sites
NDWI HRWI NDWI + USI HRWI + USI TSUWI

Kappa OE% CE% Kappa OE% CE% Kappa OE% CE% Kappa OE% CE% Kappa OE% CE%

Guangzhou 0.92 10.22 4.24 0.92 10.68 3.22 0.93 9.08 3.46 0.95 5.84 3.48 0.96 5.37 2.35
Aksu 0.96 2.04 5.55 0.96 2.96 4.11 0.96 2.04 5.51 0.96 2.98 4.03 0.97 1.98 4.91

Chengdu 0.84 25.29 4.86 0.84 24.49 5.26 0.88 11.76 10.96 0.93 6.66 8.02 0.94 5.91 5.42
Lhasa 0.94 8.61 3.55 0.92 7.30 7.55 0.95 7.42 3.27 0.94 7.32 4.09 0.96 6.68 1.30

Nanchang 0.95 6.15 3.30 0.96 4.43 2.98 0.96 3.72 2.64 0.97 2.66 2.19 0.98 1.99 1.11
Qingdao 0.99 0.35 0.31 0.99 0.33 0.36 1.00 0.19 0.33 0.99 0.19 0.38 1.00 0.17 0.17
Shanghai 0.96 2.05 3.33 0.94 3.25 4.55 0.99 0.92 0.45 0.99 0.86 0.47 0.99 0.83 0.41
Shigatse 0.90 10.80 8.63 0.87 7.51 17.00 0.91 9.67 7.50 0.91 9.17 8.23 0.96 3.83 3.28
Fuzhou 0.95 6.64 1.46 0.96 6.05 1.77 0.96 5.93 1.65 0.97 3.69 2.01 0.98 3.05 1.25
Haerbin 0.90 13.60 4.49 0.91 9.67 7.98 0.91 11.39 4.49 0.92 9.55 4.67 0.97 4.20 1.97

Yinchuan 0.57 7.93 55.86 0.93 9.23 4.02 0.96 5.42 2.70 0.96 6.14 1.89 0.96 5.41 2.56
Dongguan 0.89 7.54 12.16 0.92 8.09 5.69 0.97 3.38 2.61 0.96 3.72 3.01 0.97 3.04 2.61

5.2. Advantages of the Proposed Method

The TSUWI proposed in this paper contributes to the efforts to improve the accuracy of urban
water extraction for various environmental studies. Although a number of improved water mapping
indexes [22,24] have been proposed, few of them were established based on pure pixels derived from
various water body types in various environments with a sufficient number of study sites. This method
is constructed by combining the UWI and USI. To create effective indexes, a linear SVM model and
numerous pure pixels were used in this study. As an outstanding machine learning technique for
training the coefficient index, the linear SVM will not only provide an inherent default threshold of
zero but also automatically achieve the largest separation between positive and negative classes [29].
The pure pixels were selected from eight sites located in different regions across China, which were
deliberately chosen to cover various water body types and urban surfaces. As expected, the TSUWI
was shown to extract urban surface water with high accuracy and remain robust for different types of
water bodies under various urban environments.

The lack of a stable threshold is a problem in many water indexes, which may make the decision
of a cut-off threshold more time-consuming and easily lead to a subjective choice of threshold with
decreased accuracy [22]. In addition to accuracy improvement, the two indexes in the TSUWI were
also shown to have a relatively stable optimal threshold that is close to zero and maintain good
performance in the range of neighborhood thresholds near the optimal value. In the determination
of optimal thresholds, 0 could be used as the starting point for the iterations for both the UWI and
USI; 0.2 is recommended as the iteration step size for the UWI, and 0.02 is recommended for the USI.
Benefiting from this, the application of this method is simplified, and the likelihood of achieving the
highest urban water accuracy is improved. However, our findings are based on the suggestion that
radiometric calibration and atmospheric correction were carefully undertaken for the images from all
test sites. If either of these corrections is ignored, the accuracy and optimal thresholds may be different
from those observed in this study.

Although high-resolution images have been available for a few decades, simple yet efficient
indexes to characterize urban water extent with adequate detail are still lacking. This deficiency
mainly results from the limited bands and surface noise in these images, which are often major causes
of misclassification in urban surface water mapping. Our new TSUWI fills this gap. The TSUWI
is calculated by the simple arithmetic of four standard bands prevalent at high resolution images.
Using a simple threshold segmentation approach, the TSUWI consistently provides accurate water
results in various water conditions with regard to depth, turbidity, chemical composition, and surface
appearance. The extracted urban surface water can be further used as basic information for various
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urban studies, such as water quality analysis, urban heat island effect, and urban surface water change
under the context of urbanization.

5.3. Further Improvements

Although the proposed TSUWI achieved satisfactory results in this study, some issues remain,
such as atmospheric composition, transferability of the proposed method to other image data, seasonal
variation in the angle of the sun, and seasonal behavior of water bodies themselves. All of these factors
have an impact on the performance of the TSUWI. The use of different atmospheric correction methods
may also influence thresholds and accuracies, especially when there is heavy haze. Heavy haze has
been a serious issue in Chinese urban areas during wintertime in recent years. Current atmospheric
correction models may not necessarily work well when correcting atmospheric haze. Therefore,
one may need to consider the importance and type of atmospheric correction applied in the image
preprocessing stage when evaluating the accuracies of different water extraction methods. Because the
TSUWI is designed based on the land cover reflectance using GF-2 images, it is theoretically free of the
constraints in terms of satellite image type with similar spectral bands. However, due to the inevitable
differences among different sensors, it is still necessary to test the TSUWI on image data from other
sources. Seasonal variation in the angle of the sun leads to changes in the brightness of images, and
may also influence the performance of TSUWI. In addition, the spectral properties of water bodies will
vary with seasonal changes in precipitation, biodegradability, domestic animals, and aquatic plants.
In our test cases, we did not consider the influence of seasonal variation in the angle of the sun as well
as the seasonal behavior of water bodies themselves. Therefore, the robustness of the new method also
needs to be tested during different seasons. These issues are worth a follow-up study and verification.

6. Conclusions

The main purpose of this study was to devise a method that improves the accuracy of urban
water extraction by increasing the spectral separability between water and non-water surfaces in the
presence of shadows, which are often major causes of low classification accuracy. Using GF-2 data,
we proposed an urban water extraction method called the TSUWI, which is a combination of two new
indexes (UWI and USI) and compared its accuracy and threshold stability with that of the NDWI,
HRWI, and SVM classifiers. In twelve cities across China, the accuracy assessment results showed
that this method exhibited good performance, with an average KC of 0.97 and an average TE of 5.82%.
Compared with the NDWI, HRWI, and SVM, the TSUWI generally exhibited improved accuracy by
decreasing the TEs by more than 45% for the NDWI or HRWI and 15% for the SVM. In addition, both
the UWI and USI were shown to have stable thresholds that were close to 0 and maintained good
performance near their optimum thresholds with images from different locations and times compared
to the NDWI and HRWI. Therefore, the TSUWI is an alternative and improved method for urban water
mapping using high-resolution imagery. Moreover, the USI can be used alone to combine with other
water indices for the further improvement of their performance in more accurate water extraction.
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and SVM at the twelve test sites.
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